1
|
Gupta T, Ratandeep, Dutt M, Kaur B, Punia S, Sharma S, Sahu PK, Pooja, Saya L. Graphene-based nanomaterials as potential candidates for environmental mitigation of pesticides. Talanta 2024; 272:125748. [PMID: 38364558 DOI: 10.1016/j.talanta.2024.125748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Over the years, bioaccumulation of hazardous chemicals in the food chain has become a critical issue, resulting in numerous health risks. Environmental mitigation aims to clean up contaminated sites and eliminate hazardous materials from the air, water, or soil to restore the site to its original and safe condition. Pesticides constitute one of the most dangerous environmental pollutants which are generally used to increase crop production. Addressing the removal or treatment of pesticides has become pivotal in mitigating environmental threats. Diverse remediation methods are employed to protect the environment and public health. Graphene-based materials have emerged as promising candidates with exceptional properties, including excellent adsorption capacity due to their high surface area, strong hydrophilicity, and tunable properties. Owing to these properties, they have been attracting major research attention in the field of design and fabrication of materials for the mitigation of pesticides from the environment such as from contaminated food, water and other samples. Various physical, chemical and biological extraction techniques are adopted to remove pesticides. This review article provides an insight into the potential role of graphene-based materials in the environmental remediation of pesticides. We have focused on the removal of Organophosphates, Organochlorines, Carbamates and Pyrethroids present in water, fruit, vegetable and other samples, highlighting the urgent need for environmental remediation. While graphene-based materials hold potential for pesticide remediation, addressing challenges in scalable production, assessing long-term sustainability, and mitigating potential environmental impacts are critical steps for successful large-scale applications.
Collapse
Affiliation(s)
- Tarisha Gupta
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ratandeep
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Madhav Dutt
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Bikaramjeet Kaur
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Srishti Punia
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Suhani Sharma
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Prasanta Kumar Sahu
- Department of Chemistry, Shivaji College, (University of Delhi), Raja Garden, New Delhi, 110027, India
| | - Pooja
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India.
| | - Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
2
|
Yang Y, Guo Y, Jia X, Zhang Q, Mao J, Feng Y, Yin D, Zhao W, Zhang Y, Ouyang G, Zhang W. An ultrastable 2D covalent organic framework coating for headspace solid-phase microextraction of organochlorine pesticides in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131228. [PMID: 36963192 DOI: 10.1016/j.jhazmat.2023.131228] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Herein, a quinoline-linked ultrastable 2D covalent organic framework (COF-CN) coated fiber was successfully prepared and used for highly-sensitive headspace solid-phase microextraction (HS-SPME) of organochlorine pesticides (OCPs) in environmental water. The extraction efficiency of the COF-CN coating for all 14 OCPs was higher than that of four commercial SPME fiber coatings and most of the published works, with enrichment factors ranging from 540 to 5065. In combination with gas chromatography-tandem mass spectrometry (GC-MS/MS), a wide linear range (0.05-200 ng/L), low detection limits (LODs, 0.0010-13.54 ng/L) and satisfactory reproducibility and repeatability were obtained under optimal conditions. Compared with the published works, the LODs of the developed technique were improved 2-5.9 times, and the enrichment factors (EFs) of the developed method were enhanced at least 2 times. The COF-CN coated fiber can be easily recycled and reused at least 70 times without any washing step. The adsorption mechanism was first characterized by density functional theory calculations and X-ray photoelectron spectroscopy analysis. Besides, the established method was successfully applied to the analysis of the distribution of trace OCPs in real water samples from Henan Province. All these results proved the promising application of the developed HS-SPME-GC-MS/MS method for organic pollutants analysis in water samples.
Collapse
Affiliation(s)
- Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yun Guo
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qidong Zhang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Jian Mao
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Yumin Feng
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Gangfeng Ouyang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
3
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Characterization of scents from Juniperus chinensis by headspace in-needle microextraction using graphene oxide-polyaniline nanocomposite coated wire followed by gas chromatography-mass spectrometry. Talanta 2022; 245:123463. [DOI: 10.1016/j.talanta.2022.123463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
5
|
In situ soft templated synthesis of polyfluorene-molybdenum oxide (PF-MoO3) nanocomposite: A nanostructure glucose sensor. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Preparation and evaluation of a new solid-phase microextraction fiber based on polythionine for analysis of phthalate esters in aqueous samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Jing W, Zhou Y, Wang J, Zhu Y, Lv Y, Bi W, Chen DDY. Sorbent and solvent co-enhanced direct analysis in real time-mass spectrometry for high-throughput determination of trace pollutants in water. Talanta 2020; 208:120378. [DOI: 10.1016/j.talanta.2019.120378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
|
9
|
Mirzajani R, Kardani F, Ramezani Z. Fabrication of UMCM-1 based monolithic and hollow fiber - Metal-organic framework deep eutectic solvents/molecularly imprinted polymers and their use in solid phase microextraction of phthalate esters in yogurt, water and edible oil by GC-FID. Food Chem 2020; 314:126179. [PMID: 31968292 DOI: 10.1016/j.foodchem.2020.126179] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/28/2019] [Accepted: 01/07/2020] [Indexed: 01/15/2023]
Abstract
In this study, for the first time, hollow fiber and monolithic fiber were fabricated based on metal-organic framework deep eutectic solvents/molecularly imprinted polymers (MOF- DES/MIPs) and were used for microextraction of phthalate esters under termed hollow fiber liquid membrane-protected solid-phase microextraction (HFLMP-SPME) followed by gas chromatography- flame ionization detection. Several parameters influencing extraction recoveries of phthalate esters including adsorption and desorption parameters were investigated and optimized using fabricated MOF- DES/MIPs monolithic fiber. Under optimal conditions, detection limits (S/N = 3) of the method were in a range of 0.008-0.03 µg L-1 and limits of quantification (S/N = 10) were between 0.028 and 0.12 µg L-1. RSD (%) for intra-day and inter-day precisions were between 2.4-4.7% and 2.6-3.4%, respectively. Subsequently, this procedure was successfully applied with satisfactory results in the determination of phthalate esters in yogurt, water, and soybean oil samples. The R (%) ranged from 95.5 to 100.0% in different samples.
Collapse
Affiliation(s)
- Roya Mirzajani
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Fatemeh Kardani
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Ramezani
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Chen T, Xu H. In vivo investigation of pesticide residues in garlic using solid phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 2019; 1090:72-81. [DOI: 10.1016/j.aca.2019.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
|
11
|
Corn-like stationary phase for solid phase microextraction prepared by electro-assisted deposition of sol-gel/silica nanoparticles composite. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Razmi H, Manafi Khoshmanesh S. An in situ electrochemical fabrication of layer by layer graphenized graphite polyaniline as a stable solid‐phase microextraction fiber coating for trace environmental analysis. J Sep Sci 2019; 42:1364-1373. [DOI: 10.1002/jssc.201801200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Habib Razmi
- Department of ChemistryFaculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| | - Sara Manafi Khoshmanesh
- Department of ChemistryFaculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
13
|
A 3D nanoscale polyhedral oligomeric silsesquioxanes network for microextraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2018; 185:418. [PMID: 30120566 DOI: 10.1007/s00604-018-2950-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022]
Abstract
Polyhedral oligomeric silsesquioxanes are 3D nanoscaled materials with large potential in solid phase microextraction (SPME). Here, as a case study, an octaglycidyldimethylsilyl modified polyhedral oligomeric silsesquioxane network is described. It was deposited on a stainless steel wire via a sol-gel method and used as a fiber coating for SPME of aromatic compounds. The uniform pore structure, high surface area, and hydrophobicity of the network make it susceptible toward isolation of non-polar and semi-polar chemical compounds. The performance of the fiber coating was tested with three classes of environmental pollutants, viz. chlorobenzenes (CBs), benzenes (benzene, toluene, ethylbenzene, xylene; known as BTEX), and polycyclic aromatic hydrocarbons. The effects of various types of sol-gel precursors on the fabrication and performance of fiber coatings were investigated. The extraction capability of the fiber coating was compared with the polydimethyl siloxane/divinylbenzene based commercial fiber. Parameters affecting headspace analysis and gas chromatographic quantitation were optimized. The method was applied to the quantification of PAHs, as model analytes, in tea, coffee and some environmental waters. Linear responses typically cover the 1-200 ng·L-1 concentration range, limits of detection are between 0.1 and 0.3 ng·L-1, intra-day relative standard deviation are <10%, and inter-day RSDs are <12%. The fiber has a long lifespan and can be used >200 times. Graphical abstract Schematic presentation of a headspace solid phase microextraction process which is implemented to the analysis of PAHs in tea and coffee samples. The SEM image of the SPME fiber coating, the 3D nanoscale polyhedral oligomeric silsesquioxane (POSS) network, and the POSS-epoxy molecular structure are shown.
Collapse
|
14
|
Farrokhzadeh S, Razmi H. Facile preparation of a chicken feet yellow membrane coated fiber for application in solid-phase microextraction. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Samaneh Farrokhzadeh
- Analytical Chemistry Research Laboratory; Faculty of Basic Sciences; Azarbaijan Shahid Madani University; Tabriz Iran
| | - Habib Razmi
- Analytical Chemistry Research Laboratory; Faculty of Basic Sciences; Azarbaijan Shahid Madani University; Tabriz Iran
| |
Collapse
|
15
|
Fresco-Cala B, López-Lorente ÁI, Cárdenas S. Monolithic Solid Based on Single-Walled Carbon Nanohorns: Preparation, Characterization, and Practical Evaluation as a Sorbent. NANOMATERIALS 2018; 8:nano8060370. [PMID: 29799488 PMCID: PMC6027447 DOI: 10.3390/nano8060370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 01/26/2023]
Abstract
A monolithic solid based solely on single walled carbon nanohorns (SWNHs) was prepared without the need of radical initiators or gelators. The procedure involves the preparation of a wet jelly-like system of pristine SWNHs followed by slow drying (48 h) at 25 °C. As a result, a robust and stable porous network was formed due to the interaction between SWNHs not only via π-π and van der Waals interactions, but also via the formation of carbon bonds similar to those observed within dahlia aggregates. Pristine SWNHs and the SWNH monolith were characterized by several techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen intrusion porosimetry. Taking into account the efficiency of carbon nanoparticles in sorption processes, the potential applicability of the SWNH-monolith in this research field was explored using toluene; m-, p-, and o-xylene; ethylbenzene; and styrene, as target analytes. Detection limits were 0.01 µg·L−1 in all cases and the inter-day precision was in the interval 7.4–15.7%. The sorbent performance of the nanostructured monolithic solid was evaluated by extracting the selected compounds from different water samples with recovery values between 81.5% and 116.4%.
Collapse
Affiliation(s)
- Beatriz Fresco-Cala
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - Ángela I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| |
Collapse
|
16
|
Behzadi M, Noroozian E, Mirzaei M. Electrodeposition of a copolymer nanocomposite for the headspace solid-phase microextraction of benzene, toluene, ethylbenzene and xylenes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1339-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples. MATERIALS 2018; 11:ma11040467. [PMID: 29565297 PMCID: PMC5951313 DOI: 10.3390/ma11040467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/27/2022]
Abstract
Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.
Collapse
|
18
|
Solid-phase microextraction of volatile organic compounds in headspace of PM-induced MRC-5 cell lines. Talanta 2018; 185:23-29. [PMID: 29759194 DOI: 10.1016/j.talanta.2018.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 02/04/2023]
Abstract
The exploration of volatile organic compounds (VOCs) produced by cell lines may be a powerful and non-invasive tool for the study of the health risk of human exposure to atmospheric particulate matter (PM). In this work, we developed a sensitive solid phase microextraction-gas chromatography-mass spectrometry method (SPME-GC-MS) to analyze VOCs in breathed gas of PM2.5-induced human embryonic fibroblast cell line (MRC-5). A novel graphene oxide/polyaniline/polydopamine (GO/PANI/PDA) coating was prepared on a stainless steel wire via electrochemical deposition and self-polymerization for the first time. The GO/PANI/PDA coating exhibited high extraction efficiency, good thermal stability (> 380 ℃), excellent mechanical stability as well as long service time (> 150 times). Parameters that may affect the results were optimized systematically. Under the optimal conditions, VOCs including benzene series, aldehydes and alkane were detected with low limit of detection (0.2-2.0 μg L-1) and good correlation (correlation coefficients above 0.9922). The relative standard deviations of within-day and between-day were 1.1-8.4% and 0.2-11.2%, respectively. Satisfactory recoveries of 82-117% indicated good repeatability of the method. The method has been successfully applied for the determination of target VOCs in the headspace gas of PM2.5-induced MRC-5 cell. And it is expected to provide an alternative tool for the study of cytotoxicology of atmospheric particulates.
Collapse
|
19
|
Madej K, Janiga K, Piekoszewski W. The Potential of Graphene as an Adsorbent for Five Pesticides from Different Classes in Rape Oil Samples Using Dispersive Solid-Phase Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:3587860. [PMID: 29805833 PMCID: PMC5901433 DOI: 10.1155/2018/3587860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 05/11/2023]
Abstract
Isolation conditions for five pesticides (metazachlor, tebuconazole, λ-cyhalothrin, chlorpyrifos, and deltamethrin) from rape oil samples were examined using the dispersive solid-phase graphene extraction technique. To determine the optimal extraction conditions, a number of experimental factors (amount of graphene, amount of salt, type and volume of the desorbing solvent, desorption time with and without sonication energy, and temperature during desorption) were studied. The compounds of interest were separated and detected by an HPLC-UV employing a Kinetex XB-C18 column and a mobile phase consisting of acetonitrile and water flowing in a gradient mode. The optimized extraction conditions were: the amount of graphene 15 mg, desorbing solvent (acetonitrile) 5 mL, time desorption 10 min at 40°C, and amount of NaCl 1 g. The detection limit for metazachlor, tebuconazole, λ-cyhalothrin, and chlorpyrifos was 62.5 ng·g-1, and for deltamethrin, it was 500 ng·g-1. The obtained results lead to the conclusion that graphene may be successfully used for the isolation of the five pesticides from rape oil. However, their determination at low concentration levels, as they occur in real oil samples, requires the employment of appropriately highly sensitive analytical methods, as well as a more suitable graphene form (e.g., magnetically modified graphene).
Collapse
Affiliation(s)
- Katarzyna Madej
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow 30-387, Poland
| | - Katarzyna Janiga
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow 30-387, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow 30-387, Poland
- Department of Food Science and Technology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
20
|
Li J, Xu H. A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines. Talanta 2017; 167:623-629. [PMID: 28340770 DOI: 10.1016/j.talanta.2017.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
Exploration of volatile organic compounds (VOCs) generated by lung cell lines is a powerful and non-invasive tool for the detection of potential volatile biomarkers of lung cancer. In this study, a simple and sensitive solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method was developed for the determination of VOCs in the headspace gas of lung cell lines. For the purpose of preconcentration, a novel polyaniline/polypyrrole/graphene oxide (PANI/PPy/GO) coating was prepared on the surface of stainless steel fiber via in-situ electrochemical deposition for the first time. The characteristic properties of the coating were studied and the results revealed that the coating possessed large surface area, high extraction efficiency, excellent thermal and mechanical stability as well as long lifespan. Some parameters affecting the extraction efficiency such as synthesis conditions, extraction and desorption conditions were optimized. Under the optimal conditions, the method displayed relatively wide linear range (three or four orders of magnitude) with correlation coefficients above 0.9916. Low detection limits from 1.0 to 12ngL-1 were obtained. Relative standard deviations ranged from 1.2% to 18.0% indicating good repeatability and reproducibility of the method. This method has been successfully applied to analyze VOCs in the headspace gas of lung adenocarcinoma epithelial cell line (A549) and human embryonic fibroblast cell line (MRC-5).
Collapse
Affiliation(s)
- JingHong Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
21
|
Ghiasvand AR, Yazdankhah F. Single-step reinforced microextraction of polycyclic aromatic hydrocarbons from soil samples using an inside needle capillary adsorption trap with electropolymerized aniline/multi-walled carbon nanotube sorbent. J Chromatogr A 2017; 1487:47-53. [DOI: 10.1016/j.chroma.2017.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/02/2017] [Accepted: 01/22/2017] [Indexed: 01/17/2023]
|
22
|
Arnnok P, Patdhanagul N, Burakham R. Dispersive solid-phase extraction using polyaniline-modified zeolite NaY as a new sorbent for multiresidue analysis of pesticides in food and environmental samples. Talanta 2017; 164:651-661. [DOI: 10.1016/j.talanta.2016.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
23
|
Li Y, Li J, Xu H. Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell. RSC Adv 2017. [DOI: 10.1039/c6ra25453e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a graphene/polyaniline (G/PANI) electrodeposited coating was introduced as a novel extraction phase of needle trap microextraction (NTME) for the extraction of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - JingHong Li
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
24
|
Ayazi Z. Application of nanocomposite-based sorbents in microextraction techniques: a review. Analyst 2017; 142:721-739. [DOI: 10.1039/c6an02744j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides a general overview of the recent trends for the preparation of nanocomposites and their applications in microextraction techniques.
Collapse
Affiliation(s)
- Zahra Ayazi
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
25
|
Amanzadeh H, Yamini Y, Moradi M, Asl YA. Determination of phthalate esters in drinking water and edible vegetable oil samples by headspace solid phase microextraction using graphene/polyvinylchloride nanocomposite coated fiber coupled to gas chromatography-flame ionization detector. J Chromatogr A 2016; 1465:38-46. [DOI: 10.1016/j.chroma.2016.08.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022]
|
26
|
Liang W, Wang J, Zang X, Wang C, Wang Z. A porous carbon derived from amino-functionalized material of Institut Lavoisier as a solid-phase microextraction fiber coating for the extraction of phthalate esters from tea. J Sep Sci 2016; 39:1331-8. [PMID: 26840882 DOI: 10.1002/jssc.201501290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/09/2022]
Abstract
In this work, a porous carbon derived from amino-functionalized material of Institut Lavoisier (C-NH2 -MIL-125) was prepared and coated onto a stainless-steel wire through sol-gel technique. The coated fiber was used for the solid-phase microextraction of trace levels of phthalate esters (diallyl phthalate, di-iso-butyl ortho-phthalate, di-n-butyl ortho-phthalate, benzyl-n-butyl ortho-phthalate, and bis(2-ethylhexy) ortho-phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05-30.00 μg/L for green jasmine tea beverage samples, and 0.10-30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0-3.0 ng/L for green jasmine tea beverage sample, and 4.0-5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0-106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%.
Collapse
Affiliation(s)
- Weiqian Liang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding, China
| | - Juntao Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding, China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding, China
| | - Chun Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
27
|
Mehdinia A, Rouhani S, Mozaffari S. Microwave-assisted synthesis of reduced graphene oxide decorated with magnetite and gold nanoparticles, and its application to solid-phase extraction of organochlorine pesticides. Mikrochim Acta 2016. [DOI: 10.1007/s00604-015-1691-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Nodeh HR, Wan Ibrahim WA, Sanagi MM, Aboul-Enein HY. Magnetic graphene-based cyanopropyltriethoxysilane as an adsorbent for simultaneous determination of polar and non-polar organophosphorus pesticides in cow’s milk. RSC Adv 2016. [DOI: 10.1039/c5ra26742k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A new adsorbent based on magnetic nanoparticles (Fe3O4), graphene and cyanopropyltriethoxysilane was fabricated and applied to the magnetic solid phase extraction of organophosphorus pesticides.
Collapse
Affiliation(s)
- Hamid Rashidi Nodeh
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- 81310 UTM Johor Bahru
- Malaysia
| | - Wan Aini Wan Ibrahim
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- 81310 UTM Johor Bahru
- Malaysia
| | - Mohd Marsin Sanagi
- Department of Chemistry
- Faculty of Science
- Universiti Teknologi Malaysia
- 81310 UTM Johor Bahru
- Malaysia
| | - Hassan Y. Aboul-Enein
- National Research Centre
- Department of Pharmaceutical and Medicinal Chemistry
- 12311 Cairo
- Egypt
| |
Collapse
|
29
|
Luo YB, Li X, Jiang XY, Cai BD, Zhu FP, Zhang HF, Chen ZG, Pang YQ, Feng YQ. Magnetic graphene as modified quick, easy, cheap, effective, rugged and safe adsorbent for the determination of organochlorine pesticide residues in tobacco. J Chromatogr A 2015; 1406:1-9. [PMID: 26091785 DOI: 10.1016/j.chroma.2015.05.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/23/2015] [Accepted: 05/31/2015] [Indexed: 11/30/2022]
Abstract
In this study, magnetic graphene was used as modified quick, easy, cheap, effective, rugged and safe (QuEChERS) adsorbent for the determination of organochlorine pesticide (OCPs) residues in tobacco. To achieve the optimum conditions of modified QuEChERS procedure toward target analytes, several parameters affecting the clean-up efficiency including the amount of the adsorbent and clean-up time were investigated. Under the optimized conditions, a method for the determination of 26 OCPs residues in tobacco was established by coupling the modified QuEChERS procedure to on-line gel permeation chromatography-gas chromatography-tandem mass spectrometry (on-line GPC-GC-MS(2)). The limits of detection of proposed method for 26 OCPs residues ranged from 0.01275 to 3.150ng/g. And good linearities of the proposed method were obtained with coefficients of determination (R(2)) greater than 0.9985 for all target analytes. Good reproducibility of method was obtained as intra- and inter-day precisions, the relative standard deviations were less than 11.1 and 15.0%, respectively. The apparent recoveries were in the range of 64-126% at different concentrations for real samples. Compared with the reported methods for the determination of OCPs residues in tobacco, the proposed method has the advantages of simple to operate, low cost and high clean-up ability. Finally, the method was successfully applied to the analysis of OCPs residues in real samples.
Collapse
Affiliation(s)
- Yan-Bo Luo
- China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Xue Li
- China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Xing-Yi Jiang
- China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Bao-Dong Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Feng-Peng Zhu
- China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Hong-Fei Zhang
- China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Zai-Gen Chen
- China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Yong-Qiang Pang
- China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou High and New Technology Industries Development Zone, Zhengzhou 450001, China.
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Zhang X, Zang XH, Wang JT, Wang C, Wu QH, Wang Z. Porous carbon derived from aluminum-based metal organic framework as a fiber coating for the solid-phase microextraction of polycyclic aromatic hydrocarbons from water and soil. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1566-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. J Chromatogr A 2015; 1406:87-93. [DOI: 10.1016/j.chroma.2015.06.052] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
|
32
|
Ibrahim WAW, Nodeh HR, Sanagi MM. Graphene-Based Materials as Solid Phase Extraction Sorbent for Trace Metal Ions, Organic Compounds, and Biological Sample Preparation. Crit Rev Anal Chem 2015; 46:267-83. [PMID: 26186420 DOI: 10.1080/10408347.2015.1034354] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.
Collapse
Affiliation(s)
- Wan Aini Wan Ibrahim
- a Separation Science and Technology Group (SepSTec), Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia , Johor , Malaysia.,b Frontier Materials Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia
| | - Hamid Rashidi Nodeh
- a Separation Science and Technology Group (SepSTec), Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia , Johor , Malaysia
| | - Mohd Marsin Sanagi
- b Frontier Materials Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia.,c Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia , Johor , Malaysia
| |
Collapse
|
33
|
Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2030293] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Pelit L, Yılmaz B, Tatlı AY, Pelit F, Dizdaş TN, Özdokur KV, Ertaş H, Ertaş FN. Polythiophene–Clay Composite Solid-Phase Microextraction Fiber: Preparation, Characterization, and Application to the Determination of Methanol in Biodiesel. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1039016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Development of a novel graphene/polyaniline electrodeposited coating for on-line in-tube solid phase microextraction of aldehydes in human exhaled breath condensate. J Chromatogr A 2015; 1395:23-31. [DOI: 10.1016/j.chroma.2015.03.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
|
36
|
Abedi H, Ebrahimzadeh H. Electromembrane-surrounded solid-phase microextraction coupled to ion mobility spectrometry for the determination of nonsteroidal anti-inflammatory drugs: A rapid screening method in complicated matrices. J Sep Sci 2015; 38:1358-64. [DOI: 10.1002/jssc.201401350] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/18/2015] [Accepted: 01/23/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Hamid Abedi
- Faculty of Chemistry; Shahid Beheshti University G.C; Tehran Islamic Republic of Iran
| | - Homeira Ebrahimzadeh
- Faculty of Chemistry; Shahid Beheshti University G.C; Tehran Islamic Republic of Iran
| |
Collapse
|
37
|
Jiang R, Ouyang G. Fast Analytical Techniques Based on Microextraction. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-444-63299-9.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
38
|
Zhang BT, Li HF, Zheng X, Teng Y, Liu Y, Lin JM. Preparation of durable graphene-bonded titanium fibers for efficient microextraction of phthalates from aqueous matrices and analysis with gas chromatography–mass spectrometry. J Chromatogr A 2014; 1370:9-16. [DOI: 10.1016/j.chroma.2014.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
|
39
|
Saraji M, Mehrafza N. Polysiloxane coated steel fibers for solid-phase microextraction of chlorobenzenes. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1395-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Abedi H, Ebrahimzadeh H, Ghasemi JB. Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1367-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Jafari M, Ebrahimzadeh H, Banitaba MH, Davarani SSH. Solid-phase microextraction of phthalate esters by a new coating based on a thermally stable polypyrrole/graphene oxide composite. J Sep Sci 2014; 37:3142-9. [DOI: 10.1002/jssc.201400664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Mostafa Jafari
- Faculty of Chemistry; Shahid Beheshti University G.C; Tehran Islamic Republic of Iran
| | - Homeira Ebrahimzadeh
- Faculty of Chemistry; Shahid Beheshti University G.C; Tehran Islamic Republic of Iran
| | | | | |
Collapse
|
42
|
Zhang B, He Y, Liu B, Tang D. Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1366-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Wang X, Liu B, Lu Q, Qu Q. Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A 2014; 1362:1-15. [PMID: 25160951 DOI: 10.1016/j.chroma.2014.08.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 01/09/2023]
Abstract
Graphene, a single layer of carbon atoms densely packed into a honeycomb crystal lattice with unique electronic, chemical, and mechanical properties, is the 2D allotrope of carbon. Owing to the remarkable properties, graphene and graphene-based materials are likely to find potential applications as a sorbent in analytical chemistry. The current review focuses predominantly on the recent development of graphene-based materials and demonstrates their enhanced performance in adsorption of organic compounds, metal ions, and solid phase extraction as well as in separation science since mostly 2012.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemistry, School of Science, Beijing JiaoTong University, Beijing 100044, China
| | - Bo Liu
- Department of Chemistry, School of Science, Beijing JiaoTong University, Beijing 100044, China
| | - Qipeng Lu
- Institute of Optoelectronic Technology, Beijing JiaoTong University, Beijing 100044, China
| | - Qishu Qu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China.
| |
Collapse
|
44
|
|
45
|
Polyoxotungstate nanoclusters supported on silica as an efficient solid-phase microextraction fiber of polycyclic aromatic hydrocarbons. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1239-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|