1
|
Zamruddin NM, Herman H, Asman S, Hasanah AN. Synthesis and characterization of magnetic molecularly imprinted polymers for the rapid and selective determination of clofazimine in blood plasma samples. Heliyon 2024; 10:e33396. [PMID: 39040332 PMCID: PMC11260949 DOI: 10.1016/j.heliyon.2024.e33396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Clofazimine (CLF) is a riminophenazine derivative and a new therapeutic option with high efficacy for patients with rifampicin-resistant tuberculosis (TB). The blood levels of CLF are low and suboptimal, so therapeutic drug monitoring is required. Prior to this study, there were no molecular imprinting-based solid phase extraction (SPE) sorbents that could be used to determine the blood CLF levels. Hence, we prepared a magnetic molecularly imprinted polymer (MMIPs) to capture CLF. We employed computational selection of a functional monomer and crosslinker and confirmed these selections based on the association constant (K a) and a Job plot. We synthesised MMIPs with two surface modifiers and characterized the polymers. Our computational analysis based on the bond energy revealed that methyl methacrylate (MMA) was the most suitable functional monomer at a CLF-to-MMA molar ratio of 1:4. Based on the bond energy, the most suitable crosslinker was trimethylolpropane trimethacrylate (TRIM) at a CLF-to-TRIM molar ratio of 1:1. We determined the K a of MMA and TRIM in different solvents. Isopropanol produced the highest K a. The Job plot showed that a template-to-MMA-to-TRIM molar ratio of 1:4:20 was optimal to synthesize imprinted polymer in isopropanol. We prepared MMIPs using two different modifiers, namely aminopropyltrimethoxysilane (APTES) and oleic acid (OA), using the ratio determined from the Job plot. Physical characteristic tests carried out using FT-IR, SEM-EDS, PSA, BET and VSM, showed that the synthesis was success with a spherical and uniform agglomeration of particles, also a flat surface with many holes with a particle size of MMIP-APTES and MMIP-OA respectively 0.14 μm and 0.28 μm, showed a surface area for MMIP-APTES is 2874.51 m2/g and MMIP-OA 2913.07 m2/g, exhibiting superparamagnetic properties with a saturation magnetization value of MMIP-APTES 21.1 emu/g-1 and MMIP-OA 49.9 emu/g-1. Adsorption capacity result showed that MMIP-OA fits well with the Langmuir model, while MMIP-APTES fits better with the Freundlich. Application of MMIP-SPE (Magnetic Molecular Imprinted Polymer-Solid Phase Extraction) APTES resulted 92.3 ± 6.1 % and MMIP-SPE-OA 51.5 ± 8.1 % for recovering CLF in blood. The result of selectivity test also showed that MMIP-SPE-APTES is better than MMIP-SPE-OA and selectively recover CLF from human blood plasma existed together with other TB-Drugs. The study result shows that MMIPs with APTES modification can be used for CLF determination in human blood plasma.
Collapse
Affiliation(s)
- Nur Masyithah Zamruddin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang, 45363, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mulawarman University Gunung Kelua, 75119 Indonesia
| | - Herman Herman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mulawarman University Gunung Kelua, 75119 Indonesia
| | - Saliza Asman
- Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, UTHM Pagoh Campus, Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84600, Muar, Johor, Malaysia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang, 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Chen Y, Cao J, Zhang J, Qi Z, Yan H. Functionalized nanofibers mat prepared through thiol-ene "click" reaction as solid phase extraction adsorbent for simultaneous detection of florfenicol and paracetamol residues in milk. Food Chem 2023; 437:137830. [PMID: 39491293 DOI: 10.1016/j.foodchem.2023.137830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Due to the significant differences in physical and chemical properties of various veterinary drugs, sample pretreatment is still the bottleneck of simultaneous detection of multiple veterinary drug residues. In order to achieve quantitative determination of two different types of veterinary drug residues (florfenicol and paracetamol) in milk, 1-allyl-3-methylimidazolium chloride (AmimCl) functionalized nanofibers mat (AmimCl-NFsM) was prepared through thiol-ene "click" reaction and applied as a new solid phase extraction adsorbent. The preparation parameters were systematically investigated and optimized through dynamic adsorption experiments. The developed method achieved significant extraction and purification efficiency, which was attributed to the multiple adsorption mechanisms of AmimCl-NFsM. Under the optimal condition, the established method showed low detection limit (1.25-2.90 ng/mL), high precision (RSDs ≤ 12.6 %) and good recovery (76.4 %-96.1 % with RSDs ≤ 5.23 %). The obtained results demonstrated the practical application value of the established method in food safety field.
Collapse
Affiliation(s)
- Yumo Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Jie Zhang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhezhe Qi
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, School of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Naguib IA, Majed M, Albogami M, Alshehri M, Bukhari A, Alshabani H, Alsalahat I, Abd-ElSalam HAH. Greenness Assessment of HPLC Analytical Methods with Common Detectors for Assay of Paracetamol and Related Materials in Drug Products and Biological Fluids. SEPARATIONS 2023; 10:283. [DOI: 10.3390/separations10050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Paracetamol is one of the most widely consumed analgesic and antipyretic medications worldwide. It is frequently analyzed in many quality control (QC) laboratories in pharmaceutical companies, either in raw materials or drug products. It was reported that paracetamol self-toxicity often occurs, leading to the frequent analysis of paracetamol in toxicological centers in biological fluids. Green analytical chemistry (GAC) is growing to be a global philosophy; therefore, the high frequency of paracetamol analysis poses potential concerns. Chromatographic analytical methods used for the daily analysis of paracetamol could be a potential risk to the environment or the health of the analysts if not thoroughly considered. The presented study aims to establish greenness assessments of nine HPLC methods used to assay paracetamol in raw materials and drug products and twenty-one HPLC methods. The reason for selecting HPLC methods of analysis to be the core of the study is the known reproducibility, reliability and availability in most QC laboratories. The most commonly used metric systems for greenness evaluation are the Analytical GREEnness (AGREE), the eco-scale assessment (ESA) and the national environmental methods index (NEMI) which have been used in this comparative study. The greenest chromatographic method for the analysis of paracetamol in raw materials and drug products was introduced by Rao et al. (the obtained scores were ESA = 76 and AGREE = 0.62, while the greenest chromatographic method for the analysis of paracetamol in biological fluids was proposed by Modick et al.). The obtained scores were ESA = 85 and AGREE = 0.7. The NEMI tool proved to have limited performance compared to other metric systems, hence it could not be used alone. Accordingly, the collaboration of NEMI results with ESA and AGREE for greenness assessment is highly recommended to reach appropriate conclusions.
Collapse
Affiliation(s)
- Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Meral Majed
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Maram Albogami
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Maram Alshehri
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Aseel Bukhari
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeel Alshabani
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 1TP, UK
| | - Heba-Alla H. Abd-ElSalam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy & Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
4
|
Villarreal-Lucio DS, Vargas-Berrones KX, Díaz de León-Martínez L, Flores-Ramíez R. Molecularly imprinted polymers for environmental adsorption applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89923-89942. [PMID: 36370309 DOI: 10.1007/s11356-022-24025-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Molecular imprinting polymers (MIPs) are synthetic materials with pores or cavities to specifically retain a molecule of interest or analyte. Their synthesis consists of the generation of three-dimensional polymers with specific shapes, arrangements, orientations, and bonds to selectively retain a particular molecule called target. After target removal from the binding sites, it leaves empty cavities to be re-occupied by the analyte or a highly related compound. MIPs have been used in areas that require high selectivity (e.g., chromatographic methods, sensors, and contaminant removal). However, the most widely used application is their use as a highly selective extraction material because of its low cost, easy preparation, reversible adsorption and desorption, and thermal, mechanical, and chemical stability. Emerging pollutants are traces of substances recently found in wastewater, river waters, and drinking water samples that represent a special concern for human and ecological health. The low concentration in which these pollutants is found in the environment, and the complexity of their chemical structures makes the current wastewater treatment not efficient for complete degradation. Moreover, these substances are not yet regulated or controlled for their discharge into the environment. According to the literature, MIPs, as a highly selective adsorbent material, are a promising approach for the quantification and monitoring of emerging pollutants in complex matrices. Therefore, the main objective of this work was to give an overview of the actual state-of-art of applications of MIPs in the recovery and concentration of emerging pollutants.
Collapse
Affiliation(s)
- Diana Samantha Villarreal-Lucio
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Karla Ximena Vargas-Berrones
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 6, C.P. 78260, San Luis Potosí, S.L.P, México
| | - Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México
| | - Rogelio Flores-Ramíez
- Centro de Investigación Aplicada en Ambiente Y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, S.L.P, México.
| |
Collapse
|
5
|
Calle Luzuriaga M, Ávila EE, Viloria DA. Porous frameworks from Ecuadorian clays. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This research provides a literature review on several topics as a foundation to comprehend porous materials, their structure, and behavior to explore how they can be derived from clays and nanoclays. In this case, considering the several minerals present in some Ecuadorian clays, which are a potential starting material for the synthesis of porous frameworks, they constitute a solid source of metal atoms such as Silicon or Aluminum. This research presents the evaluation and characterization via XRD and AAS of clay samples collected in the southeast of Ecuador in the provinces of Azuay, Morona Santiago and Zamora Chinchipe, which present diversified soil mineralogy with many chemical and crystallographic features for suitable precursors in nanomaterials design.
Collapse
Affiliation(s)
- María Calle Luzuriaga
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| | - Edward E. Ávila
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| | - Dario Alfredo Viloria
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| |
Collapse
|
6
|
Güzel R, Ertekin ZC, Ziyadanoğulları B, Dinç E, Ziyadanoğulları R. Comparative Study of the Quantitative Resolution of Paracetamol and Methocarbamol Mixture by Spectrophotometry with Wavelet Transform and UPLC Techniques. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Meseguer-Lloret S, Torres-Cartas S, Gómez-Benito C, Herrero-Martínez JM. Magnetic molecularly imprinted polymer for the simultaneous selective extraction of phenoxy acid herbicides from environmental water samples. Talanta 2021; 239:123082. [PMID: 34823860 DOI: 10.1016/j.talanta.2021.123082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
A selective magnetic molecularly imprinted polymer (MMIP) was synthetized with 4-chloro-2-methylphenoxyacetic acid as template and 4-vinylpiridine as monomer in presence of vinylized magnetite nanoparticles. Scanning electron microscopy, nitrogen adsorption-desorption isotherms, Fourier transform infrared spectrometry and vibrating sample magnetometry were applied to characterize the resulting material. The synthesized MMIP was applied as sorbent in magnetic molecularly imprinted solid-phase extraction (MMISPE) for selective extraction of a mixture of the five herbicides 4-chloro-2-methylphenoxyacetic acid (MCPA), 4-(4-chloro-2-methylphenoxy)butyric acid (MCPB), mecoprop (MCPP), fenoxaprop (FEN) and haloxyfop (HAL). Several parameters affecting the extraction conditions were optimized to achieve the best extraction performance. The best MMISPE combined with HPLC-DAD gave detection and quantification limits between 0.33 and 0.71 μg L-1 and 1.1-2.4 μg L-1, respectively, were obtained. The precision of the whole method provided RSD values below 7.3%, and the accuracy was demonstrated by the analysis of several water samples of different origins, with recoveries ranged from 77 to 98%. Moreover, a remarkable re-usability of the MMIP sorbent, more than 65 uses without losses in extraction capacity, was obtained.
Collapse
Affiliation(s)
- Susana Meseguer-Lloret
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain.
| | - Sagrario Torres-Cartas
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain
| | - Carmen Gómez-Benito
- Institut d'Investigació per a la Gestió Integrada de Zones Costaneres, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, 46730, Grao de Gandia, València, Spain
| | | |
Collapse
|
8
|
Vortex-Assisted Dispersive Molecularly Imprinted Polymer-Based Solid Phase Extraction of Acetaminophen from Water Samples Prior to HPLC-DAD Determination. SEPARATIONS 2021. [DOI: 10.3390/separations8100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the present study, acetaminophen (ACT) molecularly imprinted polymer (ACT-MIP) were successfully synthesized via surface imprinting polymerization. The structural and morphological properties of ACT-MIP were characterized using various analytical techniques. ACT-MIP were used as an adsorbent in a vortex-assisted dispersive molecularly imprinted solid-phase micro-extraction (VA-d-μ-MISPE), coupled with a high-performance liquid chromatography–diode array detector (HPLC-DAD) method for the determination of ACT in water samples. Influential parameters such as the mass of adsorbent, vortex speed, extraction time, desorption volume, and desorption time were optimized using a multivariate approach. Under optimum conditions, the maximum binding capacities of ACT-MIP and NIP (non-imprinted polymers) were 191 mg/g and 71.5 mg/g, respectively. The linearity was attained across concentrations ranging from 0.630 to 500 µg/L, with a coefficient of determination of 0.9959. For ACT-MIP, the limit of detection (LOD) and limit of quantification (LOQ), enhancement factor, and precision of the method were 0.19 ng/L, 0.63 ng/L, 79, and <5%, respectively. The method was applied in the analysis of spiked water samples, and satisfactory percentage recoveries in the range of 95.3–99.8% were obtained.
Collapse
|
9
|
Abstract
The review describes the development of batch solid phase extraction procedures based on dispersive (micro)solid phase extraction with molecularly imprinted polymers (MIPs) and magnetic MIPs (MMIPs). Advantages and disadvantages of the various MIPs for dispersive solid phase extraction and dispersive (micro)solid phase extraction are discussed. In addition, an effort has also been made to condense the information regarding MMIPs since there are a great variety of supports (magnetite and magnetite composites with carbon nanotubes, graphene oxide, or organic metal framework) and magnetite surface functionalization mechanisms for enhancing MIP synthesis, including reversible addition-fragmentation chain-transfer (RAFT) polymerization. Finally, drawbacks and future prospects for improving molecularly imprinted (micro)solid phase extraction (MIMSPE) are also appraised.
Collapse
|
10
|
Exploration of a Molecularly Imprinted Polymer (MIPs) as an Adsorbent for the Enrichment of Trenbolone in Water. Processes (Basel) 2021. [DOI: 10.3390/pr9020186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The presence of endocrine disruptors in surface waters can have negative implications on wildlife and humans both directly and indirectly. A molecularly imprinted polymer (MIP) was explored for its potential to enhance the UV-Vis determination of trenbolone in water using solid-phase extraction (SPE). The synthesized MIP was studied using Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM). Using the MIP resulted in a preconcentration and enrichment factor of 14 and 8, respectively. Trenbolone binding on the MIP was shown to follow a Langmuir adsorption and had a maximum adsorption capacity of 27.5 mg g−1. Interference studies showed that the MIP selectivity was not compromised by interferences in the sample. The MIP could be recycled three times before significant loss in analyte recovery.
Collapse
|
11
|
Ma X, Zhang X, Lin H, Abd El-Aty AM, Rabah T, Liu X, Yu Z, Yong Y, Ju X, She Y. Magnetic molecularly imprinted specific solid-phase extraction for determination of dihydroquercetin from Larix griffithiana using HPLC. J Sep Sci 2020; 43:2301-2310. [PMID: 32191398 DOI: 10.1002/jssc.201901086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 11/07/2022]
Abstract
The naturally occurring quercetin flavonoid, dihydroquercetin, is widely distributed in plant tissues and has a variety of biological activities. Herein, a magnetic molecularly imprinted solid-phase extraction was tailor made for selective determination of dihydroquercetin in Larix griffithiana using high-performance liquid chromatography. Amino-functionalized core-shell magnetic nanoparticles were prepared and characterized using scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and infrared spectroscopy. The polymer had an average diameter of 250 ± 2.56 nm and exhibited good stability and adsorption for template molecule, which is enriched by hydrogen bonding interaction. Multiple factors for extraction, including loading, washing, elution solvents, and extraction time, were optimized. The limit of detection was 1.23 μg/g. The precision determined at various concentration of dihydroquercetin was less than 4% and the mean recovery was between 74.64 and 101.80%. It has therefore been shown that this protocol can be used as an alternative extraction to quantify dihydroquercetin in L. griffithiana and purify quercetin flavonoid from other complex matrices.
Collapse
Affiliation(s)
- Xingbin Ma
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Xukun Zhang
- College of Pharmacy, Queen's University, Belfast, Northern Ireland, UK
| | - Hongling Lin
- Zhanjiang Experimental Station, Southern-Subtropical Crop Research Institute, Chinese Academy of Tropical Sciences, Zhanjiang, P. R. China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, P. R. China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Tsdan Rabah
- Institute of Veterinary and Animal Husbandry, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Zhichao Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, P. R. China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
12
|
Selective recognition and enrichment of sterigmatocystin in wheat by thermo-responsive imprinted polymer based on magnetic halloysite nanotubes. J Chromatogr A 2020; 1619:460952. [PMID: 32057446 DOI: 10.1016/j.chroma.2020.460952] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
Two thermo-responsive molecularly imprinted polymers (MHNTs@MIP and MCNTs@MIP) for the selective extraction of sterigmatocystin have been prepared on the surface of the magnetic halloysite nanotubes (MHNTs) and magnetic carbon nanotubes (MCNTs), respectively. 1, 8-dihydroxyanthraquinone, n-isopropyl acrylamide, methacrylic acid, ethylene dimethacrylate and dimethyl sulfoxide were used as the dummy template, thermo-sensitive functional monomer, co-monomer, cross-linker and porogen, respectively. The magnetic properties, adsorption properties as well as the temperature responsive behaviors of MHNTs@MIP and MCNTs@MIP were systematically studied and compared for the first time. Enough saturation magnetizations of MHNTs@MIP (9.42 emu/g) and MCNTs@MIP (10.54 emu/g) were obtained. MHNTs@MIP and MCNTs@MIP also showed controllable adsorption and release behaviors to sterigmatocystin in response to the temperature change (35 °C and 20 °C). Compared with MCNTs@MIP, MHNTs@MIP had higher adsorption affinity (KL = 0.120 L/mg), higher adsorption kinetic (K2 = 0.0100 g/(mg•min)) and higher imprinting factor (5.22) to sterigmatocystin. These results indicated that MHNTs@MIP was favorable adsorbent for the selective separation of sterigmatocystin. Furthermore, the elution conditions of MHNTs@MIP were optimized by response surface methodology. Under the optimal conditions, MHNTs@MIP coupled with high performance liquid chromatography were successfully applied to the selective recognition, purification, enrichment and detection of sterigmatocystin in wheat samples. The recoveries were calculated from 88.62% to 102.9% with RSDs less than 3.5 % and limit of detection of 1.1 μg/kg. This work provided a suitable carrier for the preparation of imprinted polymers and a practical approach for highly selective recognition and determination of analytes in real samples.
Collapse
|
13
|
A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins. Mikrochim Acta 2019; 186:822. [DOI: 10.1007/s00604-019-3985-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023]
|
14
|
Xie Z, Chen Y, Zhang L, Hu X. Magnetic molecularly imprinted polymer combined with high performance liquid chromatography for selective extraction and determination of the metabolic content of quercetin in rat plasma. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:53-71. [DOI: 10.1080/09205063.2019.1675224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zenghui Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Yanli Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Lanyun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xujia Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| |
Collapse
|
15
|
Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles. Mikrochim Acta 2019; 186:428. [DOI: 10.1007/s00604-019-3548-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
|
16
|
Abbasi S, Haeri SA, Sajjadifar S. Bio-dispersive liquid liquid microextraction based on nano rhamnolipid aggregates combined with molecularly imprinted-solid phase extraction for selective determination of paracetamol in human urine samples followed by HPLC. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ulusoy Hİ, Yılmaz E, Soylak M. Magnetic solid phase extraction of trace paracetamol and caffeine in synthetic urine and wastewater samples by a using core shell hybrid material consisting of graphene oxide/multiwalled carbon nanotube/Fe3O4/SiO2. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I. Alumina/graphene/Cu hybrids as highly selective sensor for simultaneous determination of epinephrine, acetaminophen and tryptophan in human urine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Keçili R, Hussain CM. Recent Progress of Imprinted Nanomaterials in Analytical Chemistry. Int J Anal Chem 2018; 2018:8503853. [PMID: 30057612 PMCID: PMC6051082 DOI: 10.1155/2018/8503853] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are a type of tailor-made materials that have ability to selectively recognize the target compound/s. MIPs have gained significant research interest in solid-phase extraction, catalysis, and sensor applications due to their unique properties such as low cost, robustness, and high selectivity. In addition, MIPs can be prepared as composite nanomaterials using nanoparticles, multiwalled carbon nanotubes (MWCNTs), nanorods, quantum dots (QDs), graphene, and clays. This review paper aims to demonstrate and highlight the recent progress of the applications of imprinted nanocomposite materials in analytical chemistry.
Collapse
Affiliation(s)
- Rüstem Keçili
- Anadolu University, Yunus Emre Vocational School of Health Services, Department of Medical Services and Techniques, 26470 Eskişehir, Turkey
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J 07102, USA
| |
Collapse
|
20
|
Magnetic molecularly imprinted polymer nanoparticles for dispersive micro solid-phase extraction and determination of buprenorphine in human urine samples by HPLC-FL. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1355-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Extraction of melamine from milk using a magnetic molecularly imprinted polymer. Food Chem 2017; 227:85-92. [DOI: 10.1016/j.foodchem.2016.12.090] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022]
|
22
|
Madikizela LM, Tavengwa NT, Chimuka L. Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal 2017; 147:624-633. [PMID: 28477973 DOI: 10.1016/j.jpba.2017.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/19/2023]
Abstract
The occurrence of pharmaceuticals used as non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics in the aquatic environment is a threat to humans and aquatic species at large. The primary route of these pharmaceuticals to aquatic environment is through human waste such as urine and faeces. The application of molecularly imprinted polymers (MIPs) in the solid-phase extraction (SPE) of such pollutants from environmental and biological samples is important for the pre-concentration of compounds and selectivity of the analytical methods. To date, there are still limited commercial suppliers of MIPs. However, it is easy to synthesize such polymers via non-covalent imprinting approach using easily available and affordable reagents. Therefore, the applications of MIPs in the SPE of NSAIDs and analgesics from environmental and biological samples are reviewed. This is very important because despite the fact that review articles on applications of MIPs for organic compounds have been reported, very little has focussed on NSAIDs and analgesics which are the major studied pharmaceuticals in the environment and biological samples. The review also brings out important aspects of common reagents used including the template molecules during MIP synthesis. Application and future trends are also discussed. Gaps such as little use of environmental friendly reagents such as ionic liquids have been identified. Also, the lack of MIP applications to some compounds such as fenoprofen has been observed which is likely to be developed in the near future.
Collapse
Affiliation(s)
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| |
Collapse
|
23
|
|
24
|
Li H, Xie T, Ye L, Wang Y, Xie C. Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Díaz-Bao M, Regal P, Barreiro R, Fente CA, Cepeda A. A facile method for the fabrication of magnetic molecularly imprinted stir-bars: A practical example with aflatoxins in baby foods. J Chromatogr A 2016; 1471:51-59. [DOI: 10.1016/j.chroma.2016.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/13/2016] [Accepted: 10/08/2016] [Indexed: 11/24/2022]
|
26
|
Temperature sensitive molecularly imprinted microspheres for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1947-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Voltammetric paracetamol sensor using a gold electrode made from a digital versatile disc chip and modified with a hybrid material consisting of carbon nanotubes and copper nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1950-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Niu M, Pham-Huy C, He H. Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1930-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Synthesis and Characterization of Magnetic Molecularly Imprinted Polymer for the Enrichment of Ofloxacin Enantiomers in Fish Samples. Molecules 2016; 21:molecules21070915. [PMID: 27428943 PMCID: PMC6273836 DOI: 10.3390/molecules21070915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 12/02/2022] Open
Abstract
A new method for the isolation and enrichment of ofloxacin enantiomers from fish samples was developed using magnetic molecularly imprinted polymers (MMIPs). These polymers can be easily collected and rapidly separated using an external magnetic field, and also exhibit a high specific recognition for ofloxacin enantiomers. The preparation of amino-functionalized MMIPs was carried out via suspension polymerization and a ring-opening reaction using rac-ofloxacin as a template, ethylenediamine as an active group, glycidyl methacrylate and methyl methacrylate as functional monomers, divinylbenzene as a cross-linker, and Fe3O4 nanoparticles as magnetic cores. The characteristics of the MMIPs were assessed using transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) measurements. Furthermore, the adsorption properties were determined using Langmuir and Freundlich isotherm models. The conditions for use of these MMIPs as magnetic solid-phase extraction (MSPE) sorbents, including pH, adsorption time, desorption time, and eluent, were investigated in detail. An extraction method using MMIPs coupled with high performance liquid chromatography (HPLC) was developed for the determination of ofloxacin enantiomers in fish samples. The limits of quantitation (LOQ) for the developed method were 0.059 and 0.067 μg∙mL−1 for levofloxacin and dextrofloxacin, respectively. The recovery of ofloxacin enantiomers ranged from 79.2% ± 5.6% to 84.4% ± 4.6% and ofloxacin enantiomers had good linear relationships within the concentration range of 0.25–5.0 μg∙mL−1 (R2 > 0.999). The obtained results demonstrate that MSPE-HPLC is a promising approach for preconcentration, purification, and simultaneous separation of ofloxacin enantiomers in biomatrix samples.
Collapse
|
30
|
Sierra-Martin B, Fernandez-Barbero A. Inorganic/polymer hybrid nanoparticles for sensing applications. Adv Colloid Interface Sci 2016; 233:25-37. [PMID: 26782148 DOI: 10.1016/j.cis.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
This paper reviews a wide set of sensing applications based on the special properties associated with inorganic/polymer composite nanoparticles. We first describe optical sensing applications performed with hybrid nanoparticles and hybrid microgels with special emphasis on photoluminescence detection and imaging. Analyte detection with molecularly imprinted polymers and HPLC-based sensing using hybrid nanoparticles as stationary phase is also summarized. The final part is devoted to the study of ultra-sensitive molecule detection by surface-enhanced Raman spectroscopy using core-shell hybrid materials composed of noble metal nanoparticles and cross-linked polymers.
Collapse
|
31
|
Ultra-high performance liquid chromatography combined with mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated magnetic nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1790-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Li S, Wu X, Zhang Q, Li P. Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1765-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Abdollahi E, Abdouss M, Salami-Kalajahi M, Mohammadi A. Molecular Recognition Ability of Molecularly Imprinted Polymer Nano- and Micro-Particles by Reversible Addition-Fragmentation Chain Transfer Polymerization. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1119162] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Abdollahi E, Abdouss M, Mohammadi A. Synthesis of a nano molecularly imprinted polymeric sorbent for solid phase extraction and determination of phenytoin in plasma, urine, and wastewater by HPLC. RSC Adv 2016. [DOI: 10.1039/c6ra00421k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this work a nano polymeric sorbent for phenytoin was synthesized by non-covalent molecularly imprinted polymerization approach.
Collapse
Affiliation(s)
- E. Abdollahi
- Department of Chemistry
- Amirkabir University of Technology
- Tehran 15875-4413
- Iran
- Department of Drug and Food Control
| | - M. Abdouss
- Department of Chemistry
- Amirkabir University of Technology
- Tehran 15875-4413
- Iran
| | - A. Mohammadi
- Department of Drug and Food Control
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran 14155-6451
- Iran
| |
Collapse
|
35
|
Abstract
The term composite refers to a class of synthetic materials made from different constituents which exhibit final properties which are different from those of the individual components. Composites have been extensively used in the sample treatment context as sorbents since the resulting solid presents better extraction efficiency. In this realm, polymeric nanocomposites are raised as a powerful alternative. They can be tailored-synthesized for selectivity enhancement or include a magnetic core to simplify the extraction/elution process. This review article points out the relevance of such nanomaterials in bioanalysis. Several synergic combinations of nanoparticles (magnetic, carbon-based) as well as polymeric coatings (conventional, conductive or molecularly imprinted) are commented on. Finally, the potential of biopolymers in the microextraction field is briefly highlighted.
Collapse
|
36
|
Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosens Bioelectron 2015; 75:411-9. [PMID: 26344904 DOI: 10.1016/j.bios.2015.07.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 02/08/2023]
Abstract
We have developed a novel and economical electrochemical sensor to measure Gram-negative bacterial quorum signaling molecules (AHLs) using magnetic nanoparticles and molecularly imprinted polymer (MIP) technology. Magnetic molecularly imprinted polymers (MMIPs) capable of selectively absorbing AHLs were successfully synthesized by surface polymerization. The particles were deposited onto a magnetic carbon paste electrode (MGCE) surface, and characterized by electrochemical measurements. Differential Pulse Voltammetry (DPV) was utilized to record the oxidative current signal that is characteristic of AHL. The detection limit of this assay was determined to be 8×10(-10)molL(-1) with a linear detection range of 2.5×10(-9)molL(-1) to 1.0×10(-7)molL(-1). This Fe3O4@SiO2-MIP-based electrochemical sensor is a valuable new tool that allows quantitative measurement of Gram-negative bacterial quorum signaling molecules. It has potential applications in the fields of clinical diagnosis or food analysis with real-time detection capability, high specificity, excellent reproducibility, and good stability.
Collapse
|
37
|
Simultaneous determination of eperisone hydrochloride and paracetamol in mouse plasma by high performance liquid chromatography-photodiode array detector. J Chromatogr A 2015; 1388:79-86. [DOI: 10.1016/j.chroma.2015.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/19/2022]
|