1
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
2
|
Gschneidtner TA, Lerch S, Olsén E, Wen X, Liu ACY, Stolaś A, Etheridge J, Olsson E, Moth-Poulsen K. Constructing a library of metal and metal-oxide nanoparticle heterodimers through colloidal assembly. NANOSCALE 2020; 12:11297-11305. [PMID: 32420581 DOI: 10.1039/d0nr02787a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticle dimers composed of different metals or metal oxides, as well as different shapes and sizes, are of wide interest for applications ranging from nanoplasmonic sensing to nanooptics to biomedical engineering. Shaped nanoparticles, like triangles and nanorods, can be particularly useful in applications due to the strong localized plasmonic hot-spot that forms at the tips or corners. By placing catalytic, but traditionally weakly- or non-plasmonic nanoparticles, such as metal oxides and metals like palladium, in these hot-spots, an enhanced function for sensing, photocatalysis or optical use is predicted. Here, we present an electrostatic colloidal assembly strategy for nanoparticles, incorporating different sizes, shapes and metal or metal oxide compositions into heterodimers with smaller gaps than are achievable using nanofabrication techniques. This versatile method is demonstrated on 14 combinations, including a variety of shaped gold nanoparticles as well as palladium, iron oxide, and titanium oxide nanoparticles. These colloidal nanoparticles are stabilized with traditional surfactants, such as citrate, CTAB, PVP and oleic acid/oleylamines, indicating the wide applicability of our approach. Heterodimers of gold and palladium are further analyzed using cathodoluminescence to demonstrate the tunability of these "plasmonic molecules". Since systematically altering the absorption and emission of the plasmonic nanoparticles dimers is crucial to extending their functionality, and small gap sizes produce the strongest hot-spots, this method indicates that the electrostatic approach to heterodimer assembly can be useful in creating new nanoparticle dimers for many applications.
Collapse
Affiliation(s)
- Tina A Gschneidtner
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Sarah Lerch
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Erik Olsén
- Department of Physics, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Xin Wen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Amelia C Y Liu
- Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia. and School of Physics and Astronomy, Monash University, VIC 3800, Australia
| | - Alicja Stolaś
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Joanne Etheridge
- Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia. and Department of Materials Science and Metallurgy, Monash University, VIC 3800, Australia
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| |
Collapse
|
3
|
Shams SF, Ghazanfari MR, Schmitz-Antoniak C. Magnetic-Plasmonic Heterodimer Nanoparticles: Designing Contemporarily Features for Emerging Biomedical Diagnosis and Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E97. [PMID: 30642128 PMCID: PMC6358957 DOI: 10.3390/nano9010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/28/2022]
Abstract
Magnetic-plasmonic heterodimer nanostructures synergistically present excellent magnetic and plasmonic characteristics in a unique platform as a multipurpose medium for recently invented biomedical applications, such as magnetic hyperthermia, photothermal therapy, drug delivery, bioimaging, and biosensing. In this review, we briefly outline the less-known aspects of heterodimers, including electronic composition, interfacial morphology, critical properties, and present concrete examples of recent progress in synthesis and applications. With a focus on emerging features and performance of heterodimers in biomedical applications, this review provides a comprehensive perspective of novel achievements and suggests a fruitful framework for future research.
Collapse
Affiliation(s)
- S Fatemeh Shams
- Peter-Grünberg-Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Mohammad Reza Ghazanfari
- Department of Materials Science and Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | | |
Collapse
|
4
|
Essousi H, Barhoumi H. Electroanalytical application of molecular imprinted polyaniline matrix for dapsone determination in real pharmaceutical samples. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Khan I, Nagarjuna R, Ray Dutta J, Ganesan R. Towards single crystalline, highly monodisperse and catalytically active gold nanoparticles capped with probiotic Lactobacillus plantarum derived lipase. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0735-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
An antibacterial microfluidic system with fish gill structure for the detection of Staphylococcus via enzymatic reaction on a chromatic polydiacetylene material caused by lysostaphin. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2517-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Krismastuti FSH, Dewi MR, Prieto-Simon B, Nann T, Voelcker NH. Disperse-and-Collect Approach for the Type-Selective Detection of Matrix Metalloproteinases in Porous Silicon Resonant Microcavities. ACS Sens 2017; 2:203-209. [PMID: 28723141 DOI: 10.1021/acssensors.6b00442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report on the design and testing of photonic biosensors for the type-selective detection of different types of matrix metalloproteinases (MMPs). The ability to detect a panel of different MMP types has important implications for prognosis of wound healing. We combine the immunocapture of MMPs on dispersed magnetic nanoparticles modified with antibodies specific for target MMPs (immuno-magNPs) with subsequent MMP detection upon fluorogenic peptide cleavage in porous silicon resonant microcavity (pSiRM) architectures. We report fast, sensitive, and type-selective detection of MMPs directly in wound fluid. This study sets the scene for downstream developments of multiparametric biosensors as point-of-care (POC) prognostic tools that may step-change chronic wound management.
Collapse
Affiliation(s)
- Fransiska S. H. Krismastuti
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
- Research
Centre for Chemistry, Indonesian Institute of Sciences, PUSPIPTEK, Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Melissa R. Dewi
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Beatriz Prieto-Simon
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Thomas Nann
- MacDiarmid
Institute, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Nicolas H. Voelcker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| |
Collapse
|
8
|
Mayence A, Wéry M, Tran DT, Wetterskog E, Svedlindh P, Tai CW, Bergström L. Interfacial strain and defects in asymmetric Fe-Mn oxide hybrid nanoparticles. NANOSCALE 2016; 8:14171-14177. [PMID: 27385323 DOI: 10.1039/c6nr01373b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Asymmetric Fe-Mn oxide hybrid nanoparticles have been obtained by a seed-mediated thermal decomposition-based synthesis route. The use of benzyl ether as the solvent was found to promote the orientational growth of Mn1-xO onto the iron oxide nanocube seeds yielding mainly dimers and trimers whereas 1-octadecene yields large nanoparticles. HRTEM imaging and HAADF-STEM tomography performed on dimers show that the growth of Mn1-xO occurs preferentially along the edges of iron oxide nanocubes where both oxides share a common crystallographic orientation. Fourier filtering and geometric phase analysis of dimers reveal a lattice mismatch of 5% and a large interfacial strain together with a significant concentration of defects. The saturation magnetization is lower and the coercivity is higher for the Fe-Mn oxide hybrid nanoparticles compared to the iron oxide nanocube seeds.
Collapse
Affiliation(s)
- Arnaud Mayence
- Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu M, Fang L, Li Y, Gong M, Xu A, Deng Z. "Flash" preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag + soldering: toward effective plasmonic tuning of solution-assembled nanomaterials. Chem Sci 2016; 7:5435-5440. [PMID: 30034682 PMCID: PMC6021751 DOI: 10.1039/c6sc01407k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/01/2016] [Indexed: 01/09/2023] Open
Abstract
Noble metal nanoparticle oligomers are important in applications including plasmonics, catalysis, and molecular sensing. These nanostructural units featuring abundant inter-particle junctions are helpful for a physical/chemical understanding of structure-activity relationships of self-assembled metamaterials. A simple, rapid, and potentially general strategy for the preparation of monodisperse nanoparticle clusters in a homogeneous solution is highly desired for fundamental research toward liquid metamaterials and chemical/biological applications, but this is however very challenging. Here we report an Ag+ soldering strategy to prepare strongly coupled plasmonic (Au) and catalytic (Pt, Au@Pd (Au core with a Pd shell)) nanoparticle clusters almost instantly (<1 min) in a solution without special synthetic efforts, complicated surface decorations, or structure-directing templates. The resulting clusters are isolatable by agarose gel electrophoresis, resulting in mechanically stable products in high purity. The optical extinctions of Au nanodimers (the simplest and most basic form of a coupled structure) exhibit prominent longitudinal plasmonic coupling for nanoparticles down to 13.3 nm in diameter. Theoretical simulations attribute the strong coupling to the existence of a sub-nm gap (c.a. 0.76 nm) between soldered particles, suggesting an ideal (stable, soluble, monodisperse, and weakly passivated) substrate for surface enhanced Raman scattering (SERS) applications.
Collapse
Affiliation(s)
- Miao Liu
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Lingling Fang
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Yulin Li
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Ming Gong
- Engineering and Materials Science Experiment Center , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|