1
|
Kumar D, Bhatt D, Garg D, Kumar V, Sachdev A, Matai I. An electrochemical microfluidic sensor based on a Cu 2O-GNP nanocomposite integrated hydrogel for nitrite detection in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:4124-4137. [PMID: 40297897 DOI: 10.1039/d5ay00144g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The integration of a nanocomposite composed of cuprous oxide-graphene nanoplatelet hydrogel (Cu2O-GNP hydrogel) has been investigated as an electrochemical interface for nitrite (NO2-) detection. The nanocomposite hydrogel was prepared through the sonochemical technique and characterized by Field Emission Scanning Electron Microscopy (FE-SEM), EDX (energy dispersive X-ray analysis), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Electrochemical performance was further evaluated using Electrochemical Impedance Spectroscopy (EIS), Cyclic Voltammetry (CV), and Differential Pulse Voltammetry (DPV). Cu2O provides a catalytic active site that lower the activation energy for NO2- oxidation, while GNPs enhance the electrode conductivity and increase the surface area for superior electron transfer. Additionally, a PDMS-based microfluidic device was developed and integrated with an electrochemical detection system, enabling continuous and real-time monitoring of NO2-. A syringe pump was used to maintain a stable NO2- solution flow through the microfluidic channels at a 10 μL per min flow rate, ensuring sufficient diffusion of NO2- ions to the electrode surface, and preventing excess analyte accumulation that could lead to signal distortion. The integrated microfluidic sensor exhibited excellent electrochemical performance, achieving a high sensitivity of 13.97 μA μM-1 cm-2 and a low detection limit (LOD) of 0.56 μM, with a linear range of 5-130 μM. Cu2O-GNP hydrogel/SPCE exhibited excellent selectivity and reproducibility for NO2- sensing. The developed sensor demonstrated good recovery percentages in sausages, pickled vegetables, and water samples, confirming its suitability for the food industry.
Collapse
Affiliation(s)
- Deepak Kumar
- Materials Science & Sensor Applications Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh-160030, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
- University Centre for Research and Development, Chandigarh University, Punjab-140413, India
| | - Deepanshu Bhatt
- Materials Science & Sensor Applications Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh-160030, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Deepa Garg
- Materials Science & Sensor Applications Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh-160030, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Vijayesh Kumar
- Materials Science & Sensor Applications Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh-160030, India.
| | - Abhay Sachdev
- Materials Science & Sensor Applications Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh-160030, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Ishita Matai
- Department of Biotechnology, Amity University Punjab, Mohali 140306, India.
| |
Collapse
|
2
|
Raucci A, Miglione A, Cimmino W, Cioffi A, Singh S, Spinelli M, Amoresano A, Musile G, Cinti S. Technical Evaluation of a Paper-Based Electrochemical Strip to Measure Nitrite Ions in the Forensic Field. ACS MEASUREMENT SCIENCE AU 2024; 4:136-143. [PMID: 38404486 PMCID: PMC10885323 DOI: 10.1021/acsmeasuresciau.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
Nitrite is a compound used as a food additive for its preservative action and coloring capability, as well as an industrial agent for its antifreezing action and for preventing corrosion, and it is also used as a pharmaceutical in cyanide detoxification therapy. However, even recently, because of its high toxicity, it has been used as a murder and suicidal agent due to its affordability and ready availability. In this technical report, we describe an electrochemical paper-based device for selectively determining nitrite in complex biofluids, such as blood, cadaveric blood, vitreous humor, serum, plasma, and urine. The approach was validated in terms of the linearity of response, selectivity, and sensitivity, and the accuracy of the determination was verified by comparing the results with a chromatographic instrumental method. A linear response was observed in the micromolar range; the sensitivity of the method expressed as the limit of detection was 0.4 μM in buffer measurements. The simplicity of use, the portability of the device, and the performance shown make the approach suitable for detecting nitrite in complex biofluids, including contexts of forensic interest, such as murders or suicides in which nitrite is used as a toxic agent. Limits of detection of ca. 1, 2, 4, 5, 3, and 4 μM were obtained in vitreous humor, urine, serum and plasma, blood, and cadaveric blood, also highlighting a satisfactory accuracy comprised between 91 and 112%.
Collapse
Affiliation(s)
- Ada Raucci
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Antonella Miglione
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Wanda Cimmino
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Alessia Cioffi
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Sima Singh
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Michele Spinelli
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Naples, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Naples, Italy
| | - Giacomo Musile
- Department
of Diagnostics and Public Health, University
of Verona, P.le Scuro 10, 37134 Verona, Italy
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- BAT
Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Naples “Federico
II”, 80055 Naples, Italy
| |
Collapse
|
3
|
Tiwari MS, Thorat RG, Popatkar BB, Borge VV, Kadu AK. Voltammetric determination of doxycycline in feedstock using modified carbon screen-printed electrode. ANAL SCI 2023; 39:1889-1899. [PMID: 37495926 DOI: 10.1007/s44211-023-00395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In this work, we describe the development of an electrochemical sensing platform that employs electrochemically reduced graphene oxide (ErGO) and gold (Au) deposited on a screen-printed carbon electrode (SPCE) to synthesize Au/ErGO/SPCE for the determination of the antibiotic drug doxycycline (DC). A modified Hummer's approach was adopted to initially prepare graphene oxide, which was then characterized by using powder XRD, FTIR, and UV spectroscopy before being utilized for modification on SPCE. Cyclic voltammetry was performed to form ErGO on SPCE to give ErGO/SPCE followed by electrodeposition of gold to get a final modified electrode Au/ErGO/SPCE. The effect of experimental conditions, like scan rate and pH on the electrochemical behavior of DC for Au/ErGO/SPCE, was evaluated. Square wave voltammetry (SWV) and cyclic voltammetry (CV) measurements were used to assess the electro-oxidation of DC on Au/ErGO/SPCE, and the electrochemical reaction conditions were also optimized. Furthermore, Au/ErGO/SPCE-based electrochemical sensors showed good recovery and high accuracy for DC determination in the complex food matrix and blood serum. The limit of detection (LOD), the limit of quantification (LOQ), and the linear calibration range of DC on Au/ErGO/SPCE under optimum experimental conditions were 0.124 µm, 0.415 µm, and 1-100 µm respectively, with high sensitivity of 0.194 μA μM-1 cm-2. Finally, the proposed electrochemical sensing platform was effectively used to determine low DC concentrations in real samples such as chicken flesh and blood serum, indicating its wide range of applications in quality control.
Collapse
Affiliation(s)
- M S Tiwari
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - R G Thorat
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - B B Popatkar
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - V V Borge
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - A K Kadu
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India.
| |
Collapse
|
4
|
Pogăcean F, Varodi C, Măgeruşan L, Pruneanu S. Highly Sensitive Graphene-Based Electrochemical Sensor for Nitrite Assay in Waters. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091468. [PMID: 37177012 PMCID: PMC10179868 DOI: 10.3390/nano13091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
The importance of nitrite ions has long been recognized due to their extensive use in environmental chemistry and public health. The growing use of nitrogen fertilizers and additives containing nitrite in processed food items has increased exposure and, as a result, generated concerns about potential harmful health consequences. This work presents the development of an electrochemical sensor based on graphene/glassy carbon electrode (EGr/GC) with applicability in trace level detection of nitrite in water samples. According to the structural characterization of the exfoliated material, it appears as a mixture of graphene oxide (GO; 21.53%), few-layers graphene (FLG; 73.25%) and multi-layers graphene (MLG; 5.22%) and exhibits remarkable enhanced sensing response towards nitrite compared to the bare electrode (three orders of magnitude higher). The EGr/GC sensor demonstrated a linear range between 3 × 10-7 and 10-3 M for square wave voltammetry (SWV) and between 3 × 10-7 and 4 × 10-4 M for amperometry (AMP), with a low limit of detection LOD (9.9 × 10-8 M). Excellent operational stability, repeatability and interference-capability were displayed by the modified electrode. Furthermore, the practical applicability of the sensor was tested in commercially available waters with excellent results.
Collapse
Affiliation(s)
- Florina Pogăcean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Codruţa Varodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Lidia Măgeruşan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Chang F, Ren K, Li S, Su Q, Peng J, Tan J. A voltammetric sensor for bisphenol A using gold nanochains and carbon nanotubes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114588. [PMID: 36724711 DOI: 10.1016/j.ecoenv.2023.114588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Gold nanochains (AuNCs) were prepared, and this novel material was combined with carboxylated multi-walled carbon nanotubes (cMWCNTs) to be a nanocomposite for the first time. The transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and UV-Vis spectra were used to characterize the successful preparation of AuNCs and AuNC-cMWCNT composite. Based on this hybrid material, a voltammetric sensor of bisphenol A (BPA) was established. The proposed sensor displayed excellent performance for the measurement of BPA by obvious decreased anodic peak potential and enlarged peak current. Using the optimized conditions, BPA was detected using linear sweep voltammetry, and the linear range showed as wide as 0.5 μM to 2000 μM with the detection limit estimated to be 12 nM (S/N = 3). The as-proposed sensor also exhibited satisfactory performance in determining BPA of actual plastic samples.
Collapse
Affiliation(s)
- Fengxia Chang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China.
| | - Kai Ren
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Sijing Li
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Qianqian Su
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Jiangping Peng
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Jiong Tan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| |
Collapse
|
6
|
Shao B, Ai Y, Yan L, Wang B, Huang Y, Zou Q, Fu H, Niu X, Sun W. Wireless electrochemical sensor for the detection of phytoregulator indole-3-acetic acid using gold nanoparticles and three-dimensional reduced graphene oxide modified screen printed carbon electrode. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Manriquez JM, Venugopala Reddy KR, Shilpa KG, Nagaraja BM. Electrochemical, Ultrasensitive, and Selective Detection of Nitrite and H 2O 2: Novel Macrostructured Phthalocyanine with Composite MWCNTs on a Modified GCE. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1665-1676. [PMID: 36645767 DOI: 10.1021/acs.langmuir.2c03202] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the current study, the synthesis of tetra-4-(2-methoxyphenoxy) carboxamide cobalt(II) amide-bridged phthalocyanine (CoTMePhCAPc) is described, as well as its characterization by Fourier transform infrared (FT-IR), UV-visible, and mass spectroscopy; powder X-ray diffraction (PXRD); thermogravimetric analysis (TGA); scanning electron microscopy (SEM); and electrochemistry. Sensing of nitrite (NO2-) and hydrogen peroxide (H2O2) simultaneously was done on CoTMePhCAPc with the composite multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (CoTMePhCAPc/MWCNT/GCE) in the range of linear absorption (NO2- and H2O2: CV 50-750, differential pulse voltammetry (DPV) 50-750, CA 50-500 nmol L-1), lower detection limit (NO2- and H2O2: CV 10.5 and 12.5, DPV 10.5 and 11.2, CA 6.0 and 5.5 nmol L-1), and sensitivity (NO2- and H2O2: CV 0.379 and 0.529, DPV 0.043 and 0.049, CA 0.033 and 0.040 μA nM-1 cm-2). The composite electrode exhibits improved electrocatalytic behavior compared to modified electrodes for nitrite and H2O2. The CoTMePhCAPc/MWCNT/GCE sensor displays good selectivity even in the presence of an excess of interfering metal ions and biomolecules at the applied potentials of +400 mV (nitrite) and -400 mV (H2O2). Moreover, the fabricated sensor was studied with various phosphate-buffered saline (PBS) (pH 5-9) electrolyte solutions. The unknown H2O2 concentration in blood samples and apple juice and nitrite concentration in drinking water and butter leaf lettuce were all measured using the usual addition method. Docking analysis clearly indicates that the ligand shows excellent inhibition activity toward the three subjected protein molecules.
Collapse
Affiliation(s)
- Juan M Manriquez
- Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Avenida Vicuña Mackenna, Macul4860, Santiago, Chile
| | - K R Venugopala Reddy
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari583105, Karnataka, India
| | - K G Shilpa
- Department of Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari583105, Karnataka, India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Science (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore562112, India
| |
Collapse
|
8
|
Saha P, Akter R, Shah SS, Mahfoz W, Aziz MA, Ahammad AJS. Gold Nanomaterials and their Composites as Electrochemical Sensing Platforms for Nitrite Detection. Chem Asian J 2022; 17:e202200823. [PMID: 36039466 DOI: 10.1002/asia.202200823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Indexed: 02/01/2023]
Abstract
Nitrite is one of the abundant toxic components existing in the environment and is likely to have a great potential to affect human health badly. For that reason, it has become crucial to build a reliable nitrite detection method. In recent years, several nitrite monitoring systems have been proposed. Compared with traditional analytical strategies, the electrochemical approach has a bunch of advantages, including low cost, rapid response, easy operation, simplicity, etc. In this case, noble metal nanomaterials, especially Au-based nanomaterials, have attracted attention in electrode modification because of higher catalytic activity, facile mass transfer, and broad active area for determining nitrite. This review is based on the state-of-the-art, which includes a variety of nanomaterials that have been coupled with AuNPs for the creation of nanocomposites, and the construction as well as development of electrochemical sensors for nitrite detection over the last few years (2016-2022). A background study on synthesizing different morphological AuNPs and nanocomposites has also been introduced. The fabrication methods and sensing capabilities of modified electrodes are given special consideration.
Collapse
Affiliation(s)
- Protity Saha
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Riva Akter
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Syed Shaheen Shah
- King Fahd University of Petroleum & Minerals, Physics Department, Building 6, 31261, Dhahran, SAUDI ARABIA
| | - Wael Mahfoz
- King Fahd University of Petroleum & Minerals, Chemistry, Chemistry Department, 31261, Dhahran, SAUDI ARABIA
| | - Md Abdul Aziz
- King Fahd University of Petroleum & Minerals, Center of Research excellence in Nanotechnology, KFUPM Box # 81, 31261, Dhahran, SAUDI ARABIA
| | - A J Saleh Ahammad
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| |
Collapse
|
9
|
Laser-assisted surface activation for fabrication of flexible non-enzymatic Cu-based sensors. Mikrochim Acta 2022; 189:259. [PMID: 35704127 DOI: 10.1007/s00604-022-05347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
A rapid and effective technique has been develped for the fabrication of sensor-active copper-based materials on the surface of such flexible polymers as terephthalate, polyethylene naphthalate, and polyimide using the method of laser surface modification. For this purpose, we optimized the polymer surface activation parameters using laser sources with a picosecond pulse duration for subsequent selective metallization within the activated region. Furthermore, the fabricated copper structures were modified with gold nanostructures and by electrochemical passivation to produce copper-gold and oxide-containing copper species, respectively. As a result, in comparison with pure copper electrodes, these composite materials exhibit much better electrocatalytic performance concerning the non-enzymatic identification of biologically important disease markers such as glucose, hydrogen peroxide, and dopamine.
Collapse
|
10
|
A novel ZIF-8@ZIF-67/Au core–shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Simple and highly sensitive 2-hydroxy-1,4-naphthoquinone/glassy carbon sensor for the electrochemical detection of [Ni(CN)4]2− in metallurgical industry wastewater. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Cheng Z, Song H, Zhang X, Cheng X, Xu Y, Zhao H, Gao S, Huo L. Non-enzymatic nitrite amperometric sensor fabricated with near-spherical ZnO nanomaterial. Colloids Surf B Biointerfaces 2022; 211:112313. [PMID: 34990880 DOI: 10.1016/j.colsurfb.2021.112313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
A unique near-spherical ZnO nanostructure was synthesized by using mixed solvents composed of polyethylene glycol-400 (PEG-400) and water at the volume ratio of 12:1 via the solvo-thermal method, and it possessed an ideal morphology with higher uniformity, better dispersion and small particle size. Such ZnO was employed to modify glass carbon electrode (GCE) for the construction of electrochemical sensor, i.e. near-spherical ZnO/GCE, whose nitrite sensing performance was evaluated by Chronoamperometry (CA) and Linear Sweep Voltammetry (LSV). In order to emphasis the superior sensing property and extensive suitability for different electrochemical detection techniques, the excellent but not the same nitrite detection performance obtained from CA and LSV was individually given in detail. This sensor based on CA showed broad linearity range of 0.6 μM-0.22 mM and 0.46 mM-5.5 mM, improved sensitivity of 0.785 μA μM-1 cm-2 accompanied with low LOD of 0.39 μM. With regard to LSV, wide linearity response of 1.9 μM-0.8 mM and 1.08 mM-5.9 mM, high sensitivity of 0.646 μA μM-1 cm-2 with LOD of 0.89 μM were obtained. Meanwhile, this sensor displayed outstanding repeatability with RSD of 2.96% (n = 4), high reproducibility with low RSD (1.72%-2.35%, n = 4), strong selectivity towards nitrite with the concentration set at one-tenth of the interfering substances, ideal stability with the peak current intensity above 90% of its initial value after storage for one month and acceptable recovery of 1.72-2.35% to actual samples including ham sausage, pickle and tap water. The near-spherical ZnO nanomaterial may be a preferred candidate for the fabrication of nitrite electrochemical sensor, which may exhibit a fascinating application in terms of food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Zhenyu Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Haiyan Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; College of Chemistry & Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
13
|
Mariyappan V, Chen SM, Murugan K, Jeevika A, Jeyapragasam T, Ramachandran R. Electrochemical sensor based on cobalt ruthenium sulfide nanoparticles embedded on boron nitrogen co-doped reduced graphene oxide for the determination of nitrite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Akbari Z, Montazerozohori M, Bruno G, Moulaee K, Neri G. Development of a novel electrochemical nitrite sensor based on Zn‐Schiff base complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Akbari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Department of Chemistry Yasouj University Yasouj Iran
| | | | - Giuseppe Bruno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Kaveh Moulaee
- Department of Engineering University of Messina Messina Italy
| | - Giovanni Neri
- Department of Engineering University of Messina Messina Italy
| |
Collapse
|
15
|
Feng X, Han G, Cai J, Wang X. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J Colloid Interface Sci 2021; 607:1313-1322. [PMID: 34583036 DOI: 10.1016/j.jcis.2021.09.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.
Collapse
Affiliation(s)
- Xiwen Feng
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Guangda Han
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
16
|
Microbial Fuel Cell as a Bioelectrochemical Sensor of Nitrite Ions. Processes (Basel) 2021. [DOI: 10.3390/pr9081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The deteriorating environmental quality requires a rapid in situ real-time monitoring of toxic compounds in environment including water and wastewater. One of the most toxic nitrogen-containing ions is nitrite ion, therefore, it is particularly important to ensure that nitrite ions are completely absent in surface and ground waters as well as in wastewater or, at least, their concentration does not exceed permissible levels. However, no selective ion electrode, which would enable continuous measurement of nitrite ion concentration in wastewater by bioelectrochemical sensor, is available. Microbial fuel cell (MFC)-based biosensor offers a sustainable low-cost alternative to the monitoring by periodic sampling for laboratory testing. It has been determined, that at low (0.01–0.1 mg·L−1) and moderate (1.0–10 mg·L−1) concentration of nitrite ions in anolyte-model wastewater, the voltage drop in MFC linearly depends on the logarithm of nitrite ion concentration of proving the potential of the application of MFC-based biosensor for the quantitative monitoring of nitrite ion concentration in wastewater and other surface water. Higher concentrations (100–1000 mg·L−1) of nitrite ions in anolyte-model wastewater could not be accurately quantified due to a significant drop in MFC voltage. In this case MFC can potentially serve as a bioelectrochemical early warning device for extremely high nitrite pollution.
Collapse
|
17
|
Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:4131. [PMID: 34208587 PMCID: PMC8233775 DOI: 10.3390/s21124131] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Salem Nasraoui
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Malak Talbi
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Amina Brahem
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| | - Evgeniya Sheremet
- Research School of Physics, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Raul D. Rodriguez
- Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Mounir Ben Ali
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse B.P. 334, Sahloul, Sousse 4034, Tunisia;
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, 4003 Tunisia of Sousse, GREENS-ISSAT, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (S.N.); (M.T.); (A.B.); (A.A.); (A.A.-H.)
| |
Collapse
|
18
|
Yang Z, Zhou X, Yin Y, Fang W. Determination of Nitrite by Noble Metal Nanomaterial-Based Electrochemical Sensors: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhengfei Yang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyong Zhou
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongqi Yin
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
19
|
Ding Q, Cao L, Liu M, Lin H, Yang DP. Au nanoparticle-loaded eggshell for electrochemical detection of nitrite. RSC Adv 2021; 11:4112-4117. [PMID: 35424357 PMCID: PMC8694358 DOI: 10.1039/d0ra09892b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
Eggshell is an extremely large source of domestic waste and has a huge scientific research potential because of its unique porous hierarchical structure. By converting eggshell waste into valuable functional materials, it can be recycled in many fields. Herein, we envisioned an economical and environmentally friendly conversion method for synthesizing Au nanoparticle loaded eggshell nanocomposites (defined as Au/CaCO3 nanocomposites) for the detection of trace amounts of nitrite in oolong tea. Compared with bare electrodes, the prepared Au/CaCO3 nanocomposite-based electrodes have obvious electrochemical enhancement behavior. A wide linear response range of 0.01 to 1.00 mM and a relatively low detection limit of 11.55 nM have been obtained in this study. The "turning waste into treasure" transformation strategy not only provides a practical and low-cost method for comprehensive utilization of eggshells as valuable functional materials, but also provides a new approach for sensitive detection of pollutants.
Collapse
Affiliation(s)
- Qi Ding
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou Fujian 362000 China
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Liping Cao
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Minghuan Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou Fujian 362000 China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou Fujian 362000 China
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| |
Collapse
|
20
|
Lavanya AL, Kumari KGB, Prasad KRS, Brahman PK. Development of Pen‐type Portable Electrochemical Sensor Based on Au‐W Bimetallic Nanoparticles Decorated Graphene‐chitosan Nanocomposite Film for the Detection of Nitrite in Water, Milk and Fruit Juices. ELECTROANAL 2021. [DOI: 10.1002/elan.202060524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Akkaraboyina Lakshmi Lavanya
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Andhra Pradesh 522502 India
| | - K. Gowri Bala Kumari
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Andhra Pradesh 522502 India
- Department of Chemistry Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522502 India
| | - K. R. S. Prasad
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Andhra Pradesh 522502 India
| | - Pradeep Kumar Brahman
- Electroanalytical Lab Department of Chemistry Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Andhra Pradesh 522502 India
| |
Collapse
|
21
|
Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets. Talanta 2020; 221:121605. [PMID: 33076135 DOI: 10.1016/j.talanta.2020.121605] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
An ultrasensitive and high-performance electrochemical nitrite sensing platform based on gold nanoparticles deposited on poly (dimethyl diallyl ammonium chloride)-decorated MXene (Ti3C2Tx) (AuNPs/Ti3C2Tx-PDDA) was constructed. AuNPs/Ti3C2Tx-PDDA on the surface of electrode displayed synergetic catalytic effect for oxidizing NO2‾ originating from especially catalytic activity of AuNPs, large area and excellent conductivity of Ti3C2Tx, as well as electrostatic interaction of PDDA. The amperometry technique was employed for quantitative determination of nitrite, in which the AuNPs/Ti3C2Tx-PDDA/GCE sensing platform showed outstanding linear relationship in 0.1-2490 μM and 2490-13490 μM for nitrite, meanwhile the detection limit of 0.059 μM. Besides, the prepared sensor possessed high sensitivity of 250 μA mM-1 cm-2 yet excellent selectivity, stability and reproducibility. Furthermore, this platform also exhibited satisfactory feasibility of nitrite sensing in running water and ham sausage sample. This work would broaden a facile approach to construct high sensitivity electrochemical sensing platform via two-dimension materials and its nanocomposites.
Collapse
|
22
|
Au-Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron modified electrode for electrochemical determination of quercetin. Mikrochim Acta 2020; 187:546. [PMID: 32886168 DOI: 10.1007/s00604-020-04531-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
A core-shell ZIF-8@ZIF-67 was synthesized and pyrolyzed to get a Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron (Co@NCNHP). Then Au nanoparticles were formed on the surface and core of Co@NCNHP to obtain an Au-Co bimetal decorated NCNHP (Au-Co@NCNHP). The resultant nanocomposite was characterized by various methods including transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The Au-Co@NCNHP-based electrochemical sensor displayed an obviously high electrocatalytic response to the oxidation of quercetin, which was attributed to the synergistic effects of Au-Co bimetal nanoparticles and N-doped carbon nanotube with hollow polyhedron. Under the optimal conditions, the oxidation peak currents exhibited a wide linear dynamic range for quercetin concentration from 0.050 to 35.00 μmol/L, and the detection limit was 0.023 ± 0.002 μmol/L (S/N = 3). The analytical applications of the proposed electrochemical sensor were checked by determining the content of quercetin in medical and onion samples with satisfactory results. Grapical abstract.
Collapse
|
23
|
Evaluation of human macrophage functional state by voltammetric monitoring of nitrite ions. Anal Bioanal Chem 2020; 412:5097-5104. [PMID: 31993724 DOI: 10.1007/s00216-020-02399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/28/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
The method for assessing the level of nitric oxide (II) (NO) by voltammetric monitoring of nitrite ions was carried out on models M1 and M2 of polarized macrophages induced from monocytes of human peripheral blood with the addition of lipopolysaccharide (LPS) and interleukin-4 (IL-4), respectively. The model of induction of M1 and M2 macrophages was used in the work to achieve the corresponding shifts in the functional status of studied cells. Ethyl nitrite (EtONO) was used as a standard compound of nitrite ions for electrochemical measurements. Electrochemical determination of nitrite ions was performed by anodic linear sweep voltammetry in the first-order derivative mode (ALSV FOD) in Britton-Robinson (BR) buffer with pH 4.02 on carbon ink modified graphite electrode. EtONO calibrations were linear over a concentration range from 2 to 9 μmol L-1 with corresponding regression equation y = 0.768c - 0.048. Limit of detection (LOD) (S/N = 3) was 0.38 μmol L-1. The results of the study showed the fundamental possibility of using voltammetry to assess indirectly the production of nitric oxide by cells in supernatants of the monocytic macrophage lineage. The level of nitric oxide metabolites (nitrite ions) in supernatants was associated with the functional state of macrophages.
Collapse
|
24
|
Fluorometric determination of nitrite through its catalytic effect on the oxidation of iodide and subsequent etching of gold nanoclusters by free iodine. Mikrochim Acta 2019; 186:619. [PMID: 31410575 DOI: 10.1007/s00604-019-3729-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
A method for sensitive detection of nitrite is presented. It is found that the red fluorescence of gold nanoclusters (with excitation/emission maxima at 365/635 nm) is quenched by traces of iodine via etching. Free iodide is formed by oxidation of iodide by bromate anion under the catalytic effect of nitrite. This catalytic process provides a sensitive means for nitrite detection. Under the optimal conditions, fluorescence linearly dropos in the 10 nM to 0.8 μM nitrite concentration range. The limit of detection is 1.1 nM. This is a few orders of magnitude lower than the maximum concentration allowed by authorities. Graphical abstract Schematic representation of a method for detection of nitrite via a redox reaction. Iodine was produced in the reaction and subsequently quenched the fluorescence from gold nanoclusters by etching their metallic cores, and a sensitive assay for nitrite down to 1.1 nM was developed.
Collapse
|
25
|
Cui X, Yue C, Zhu R, Fang W, Wang J, Zhao H, Li Z. Nitrogen-doped-carbon-coated hexagonal cobalt oxyhydroxide/reduced graphene oxide nanocomposite for sensitive and selective detection of nitrite in human hepatoma cells. NANOTECHNOLOGY 2019; 30:265502. [PMID: 30802895 DOI: 10.1088/1361-6528/ab0a48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selective and sensitive determination of nitrite is of great importance in practical application. In the present work, a novel nitrite sensing platform was built based on the fabrication of nitrogen-doped-carbon-coated hexagonal cobalt oxyhydroxide (CN@CoOOH) on reduced graphene oxide (RGO) using zeolitic imidazolate framework (ZIF)-67 as a precursor. The CN@CoOOH/RGO nanocomposite was confirmed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectrum, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. We applied the nanocomposite to detect nitrite selectively and sensitively through amperometry for the first time. The anodic current values increased with the addition of nitrite. Therefore, the concentrations of nitrite were quantitatively detected using a CN@CoOOH/RGO based sensor. A wider linear range of 0.1 to 7000 μM was obtained with a lower detection limit of 10 nM (S/N = 3). The proposed method was also applied to detect nitrite released from normal liver cells and human hepatoma cells.
Collapse
|
26
|
A screen printed carbon electrode modified with a lamellar nanocomposite containing dendritic silver nanostructures, reduced graphene oxide, and β-cyclodextrin for voltammetric sensing of nitrite. Mikrochim Acta 2019; 186:319. [PMID: 31049713 DOI: 10.1007/s00604-019-3414-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/05/2019] [Indexed: 10/26/2022]
Abstract
A disposable sensor is described for the determination of nitrite. A screen printed carbon electrode (SPCE) was modified with a 3D lamellar nanocomposite prepared by one-step electrodeposition from dendritic silver nanostructures, reduced graphene oxide, and β-cyclodextrin. The modified SPCE exhibits high electrocatalytic activity toward nitrite oxidation, typically at a working potential at around 0.76 V (vs. Ag/AgCl). Sensitive and selective voltammetric detection of nitrite is demonstrated. The linear range extends from 1 to 2000 μM, the detection limit is 0.24 μM, and the sensitivity is 585.7 μA mM-1 cm-2. The method was applied to the determination of nitrite in (spiked) pickles. Graphical abstract Schematic presentation of fabrication of a screen printed carbon electrode modified with a lamellar nanocomposite containing dendritic silver nanostructures, reduced graphene oxide, and β-cyclodextrin. Graphical abstract contains poor quality of text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have provided the original format of graphical abstract in the attachment.
Collapse
|
27
|
Zhang J, Zhang Y, Zhou J, Wang L. Construction of a highly sensitive non-enzymatic nitrite sensor using electrochemically reduced holey graphene. Anal Chim Acta 2018; 1043:28-34. [DOI: 10.1016/j.aca.2018.08.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
28
|
Amperometric sensor based on carbon dots decorated self-assembled 3D flower-like β-Ni(OH)2 nanosheet arrays for the determination of nitrite. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Electrochemical Determination of Nitrite by Au Nanoparticle/Graphene-Chitosan Modified Electrode. SENSORS 2018; 18:s18071986. [PMID: 29933603 PMCID: PMC6068842 DOI: 10.3390/s18071986] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
A highly sensitive nitrite (NO2−) electrochemical sensor is fabricated using glassy carbon electrode modified with Au nanoparticle and grapheme oxide. Briefly, this electrochemical sensor was prepared by drop-coating graphene oxide-chitosan mixed film on the surface of the electrode and then electrodepositing a layer of Au nanoparticle using cyclic voltammetry. The electrochemical behavior of NO2− on the sensor was investigated by cyclic voltammetry and amperometric i-t curve. The results showed that the sensor exhibited better electrocatalytic activity for NO2− in 0.1 mol/L phosphate buffer solution (PBS) (pH 5.0). The oxidation peak current was positively correlated with NO2− concentration in the ranges of 0.9 µM to 18.9 µM. The detection limit was estimated to be 0.3 µM. In addition, the interference of some common ions (e.g., NO3−, CO32−, SO42−, Cl−, Ca2+ and Mg2+) and oxidizable compound including sodium sulfite and ascorbic acid in the detection of nitrite was also studied. The results show that this sensor is more sensitive and selective to NO2−. Therefore, this electrochemical sensor provided an effective tool for the detection of NO2−.
Collapse
|
30
|
|
31
|
Liu MT, Chen LX, Li DN, Wang AJ, Zhang QL, Feng JJ. One-pot controlled synthesis of AuPd@Pd core-shell nanocrystals with enhanced electrocatalytic performances for formic acid oxidation and glycerol oxidation. J Colloid Interface Sci 2017; 508:551-558. [DOI: 10.1016/j.jcis.2017.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
|
32
|
Ali A, Zhang Y, Jamal R, Abdiryim T. Solid-State Heating Synthesis of Poly (3,4-Ethylenedioxythiophene)/Gold/Graphene Composite and Its Application for Amperometric Determination of Nitrite and Iodate. NANOSCALE RESEARCH LETTERS 2017; 12:568. [PMID: 29043509 PMCID: PMC5645265 DOI: 10.1186/s11671-017-2338-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
A ternary composite of poly (3,4-ethylenedioxythiophene)/gold/graphene (PEDOT/Au/GO) for promising electrochemical sensor was synthesized by solid-state heating method. The interaction between the PEDOT, Au, and GO explored for detection of nitrite and iodate. It was found that the PEDOT/Au/GO composite had shale-like morphology with a uniform distribution of gold nanoparticles. Electrochemical experiments showed that the PEDOT/Au/GO composite modified electrode exhibited good electrocatalytic activity toward determination of iodate. The amperometric experiments at the PEDOT/Au/GO/GCE revealed that a good linear relationship existed between peak current and the concentration in the range of 100-1000 μM with the detection of 0.53 and 0.62 μM (S/N = 3) for nitrite and iodate, respectively. Moreover, the current response of PEDOT/Au/GO/GCE for nitrite and iodate at 10 μM was up to 9.59 and 11.47 μA, respectively. Mechanisms of the direct electron transfer between ion(nitrite or iodate)and the PEDOT/Au/GO composite.
Collapse
Affiliation(s)
- Ahmat Ali
- Key Laboratory of Petroleum and Gas Fine Chemicals, Educational Ministry of China, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China
- Key Laboratory of Functional Polymers, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Petroleum and Gas Fine Chemicals, Educational Ministry of China, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China
- Key Laboratory of Functional Polymers, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Ruxangul Jamal
- Key Laboratory of Petroleum and Gas Fine Chemicals, Educational Ministry of China, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China.
- Key Laboratory of Functional Polymers, Xinjiang University, Urumqi, 830046, People's Republic of China.
| | - Tursun Abdiryim
- Key Laboratory of Petroleum and Gas Fine Chemicals, Educational Ministry of China, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China.
- Key Laboratory of Functional Polymers, Xinjiang University, Urumqi, 830046, People's Republic of China.
| |
Collapse
|
33
|
A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2513-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Huang H, Lv L, Xu F, Liao J, Liu S, Wen HR. PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2446-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Muthumariappan A, Govindasamy M, Chen SM, Sakthivel K, Mani V. Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2379-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Simple synthesis of hierarchical AuPt alloy nanochains for construction of highly sensitive hydrazine and nitrite sensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1317-1325. [DOI: 10.1016/j.msec.2017.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
|
37
|
A glassy carbon electrode modified with gold nanoparticle-encapsulated graphene oxide hollow microspheres for voltammetric sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2264-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
A nanocomposite consisting of flower-like cobalt nanostructures, graphene oxide and polypyrrole for amperometric sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2247-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Chen SS, Shi YC, Wang AJ, Lin XX, Feng JJ. Free-standing Pt nanowire networks with clean surfaces: Highly sensitive electrochemical detection of nitrite. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Shen Y, Rao D, Bai W, Sheng Q, Zheng J. Preparation of high-quality palladium nanocubes heavily deposited on nitrogen-doped graphene nanocomposites and their application for enhanced electrochemical sensing. Talanta 2017; 165:304-312. [DOI: 10.1016/j.talanta.2016.12.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/12/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
|
41
|
A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2180-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Rabti A, Ben Aoun S, Raouafi N. A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1959-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Zhuang Z, Lin H, Zhang X, Qiu F, Yang H. A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1931-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1842-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|