1
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
2
|
Li W, Zhou J, Maccaferri N, Krahne R, Wang K, Garoli D. Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects. Anal Chem 2022; 94:503-514. [PMID: 34974704 PMCID: PMC8771637 DOI: 10.1021/acs.analchem.1c04459] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wang Li
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Juan Zhou
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Nicolò Maccaferri
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg, Luxembourg
- Department
of Physics, Umeå University, Linnaeus väg 20, SE-90736 Umeå, Sweden
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Optoelectronics
Research Line, Morego
30, I-16163 Genova, Italy
| | - Kang Wang
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, Optoelectronics
Research Line, Morego
30, I-16163 Genova, Italy
| |
Collapse
|
3
|
Rahman M, Sampad MJN, Hawkins A, Schmidt H. Recent advances in integrated solid-state nanopore sensors. LAB ON A CHIP 2021; 21:3030-3052. [PMID: 34137407 PMCID: PMC8372664 DOI: 10.1039/d1lc00294e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The advent of single-molecule probing techniques has revolutionized the biomedical and life science fields and has spurred the development of a new class of labs-on-chip based on powerful biosensors. Nanopores represent one of the most recent and most promising single molecule sensing paradigms that is seeing increased chip-scale integration for improved convenience and performance. Due to their physical structure, nanopores are highly sensitive, require low sample volume, and offer label-free, amplification-free, high-throughput real-time detection and identification of biomolecules. Over the last 25 years, nanopores have been extensively employed to detect a variety of biomolecules with a growing range of applicatons ranging from nucleic acid sequencing to ultrasensitive diagnostics to single-molecule biophysics. Nanopores, in particular those in solid-state membranes, also have the potential for integration with other technologies such as optics, plasmonics, microfluidics, and optofluidics to perform more complex tasks for an ever-expanding demand. A number of breakthrough results using integrated nanopore platforms have already been reported, and more can be expected as nanopores remain the focus of innovative research and are finding their way into commercial instruments. This review provides an overview of different aspects and challenges of nanopore technology with a focus on chip-scale integration of solid-state nanopores for biosensing and bioanalytical applications.
Collapse
Affiliation(s)
- Mahmudur Rahman
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 USA. and Dhaka University of Engineering & Technology, Gazipur, Bangladesh
| | | | - Aaron Hawkins
- ECEn Department, Brigham Young University, 459 Clyde Building, Provo, UT, 84602 USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064 USA.
| |
Collapse
|
4
|
Chircov C, Bîrcă AC, Grumezescu AM, Andronescu E. Biosensors-on-Chip: An Up-to-Date Review. Molecules 2020; 25:E6013. [PMID: 33353220 PMCID: PMC7765790 DOI: 10.3390/molecules25246013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, biosensors are designed to translate physical, chemical, or biological events into measurable signals, thus offering qualitative and/or quantitative information regarding the target analytes. While the biosensor field has received considerable scientific interest, integrating this technology with microfluidics could further bring significant improvements in terms of sensitivity and specificity, resolution, automation, throughput, reproducibility, reliability, and accuracy. In this manner, biosensors-on-chip (BoC) could represent the bridging gap between diagnostics in central laboratories and diagnostics at the patient bedside, bringing substantial advancements in point-of-care (PoC) diagnostic applications. In this context, the aim of this manuscript is to provide an up-to-date overview of BoC system development and their most recent application towards the diagnosis of cancer, infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| |
Collapse
|
5
|
Arima A, Tsutsui M, Washio T, Baba Y, Kawai T. Solid-State Nanopore Platform Integrated with Machine Learning for Digital Diagnosis of Virus Infection. Anal Chem 2020; 93:215-227. [PMID: 33251802 DOI: 10.1021/acs.analchem.0c04353] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Akihide Arima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
6
|
Walker Z, Wells T, Lay K, Sampad MJN, Schmidt H, Hawkins A. Solid-state membranes formed on natural menisci. NANOTECHNOLOGY 2020; 31:445303. [PMID: 32679580 PMCID: PMC7931637 DOI: 10.1088/1361-6528/aba711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a method to create robust, nanoscale solid-state membranes using the natural shape of a liquid meniscus as a template. A narrow, open channel is etched into a silicon substrate and then a photoresist polymer is introduced into the channel through spontaneous capillary action. The natural concave meniscus formed by the polymer is then covered by a thin chemical vapor deposited membrane. The polymer is removed by sacrificial etching, leaving behind a suspended membrane. Membranes as large as 20 μm by 9 mm can be fabricated with a thickness as low as 50 nm.
Collapse
Affiliation(s)
- Zach Walker
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, United States of America
| | | | | | | | | | | |
Collapse
|
7
|
Houghtaling J, List J, Mayer M. Nanopore-Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802412. [PMID: 30225962 DOI: 10.1002/smll.201802412] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so-called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid-forming protein can exist in different states of assembly, ranging from nanometer-sized monomers to micrometer-long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore-based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles-rapidly, label-free, and in aqueous solution-with regard to their size, shape, and abundance. The article describes the concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single-particle level.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
8
|
|
9
|
Ozcelik D, Cai H, Leake KD, Hawkins AR, Schmidt H. Optofluidic bioanalysis: fundamentals and applications. NANOPHOTONICS 2017; 6:647-661. [PMID: 29201591 PMCID: PMC5708574 DOI: 10.1515/nanoph-2016-0156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Over the past decade, optofluidics has established itself as a new and dynamic research field for exciting developments at the interface of photonics, microfluidics, and the life sciences. The strong desire for developing miniaturized bioanalytic devices and instruments, in particular, has led to novel and powerful approaches to integrating optical elements and biological fluids on the same chip-scale system. Here, we review the state-of-the-art in optofluidic research with emphasis on applications in bioanalysis and a focus on waveguide-based approaches that represent the most advanced level of integration between optics and fluidics. We discuss recent work in photonically reconfigurable devices and various application areas. We show how optofluidic approaches have been pushing the performance limits in bioanalysis, e.g. in terms of sensitivity and portability, satisfying many of the key requirements for point-of-care devices. This illustrates how the requirements for bianalysis instruments are increasingly being met by the symbiotic integration of novel photonic capabilities in a miniaturized system.
Collapse
Affiliation(s)
- Damla Ozcelik
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Hong Cai
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Kaelyn D. Leake
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Aaron R. Hawkins
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602, USA
| | - Holger Schmidt
- Corresponding author: Holger Schmidt, School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA,
| |
Collapse
|
10
|
Pfeiffer SA, Borisov SM, Nagl S. In-line monitoring of pH and oxygen during enzymatic reactions in off-the-shelf all-glass microreactors using integrated luminescent microsensors. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2021-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang H, Xu A, Wang S, Chughtai S. Cross domain adaptation by learning partially shared classifiers and weighting source data points in the shared subspaces. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2541-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|