1
|
Zhang AP, Fan YX, Wang N, Yu H. A sensitive bromate sensor based on a gold nanoparticle-poly(diallyldimethylammonium chloride)-reduced graphene oxide nanocomposite modified glassy carbon electrode. Mikrochim Acta 2024; 192:43. [PMID: 39738938 DOI: 10.1007/s00604-024-06871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/30/2024] [Indexed: 01/02/2025]
Abstract
A nanocomposite consisting of gold nanoparticles (AuNPs), poly(diallyldimethylammonium chloride) (PDDA), and reduced graphene oxide (rGO) was fabricated by a two-step chemical reduction method. Firstly, a PDDA-rGO composite was prepared by using hydrazine hydrate as a reducing agent. Subsequently, the AuNP-PDDA-rGO composite was prepared in ethylene glycol with PDDA-rGO and HAuCl4 as raw materials using sodium citrate as a reduction agent. The resulting composite was characterized using X-ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and electrochemical methods. This composite was then modified on a glassy carbon electrode (GCE) by the dropping method. The electrochemical behavior of bromate on this modified electrode was investigated. The results showed that PDDA-rGO can be used as a good carrier to obtain AuNPs with small particle sizes and good dispersion. The AuNPs and PDDA-rGO in composite enhanced the electrochemical activity of the electrode. Under the synergistic action of each component, the resulting electrode exhibited high activity for the electrochemical reduction of bromate. Based on this, an amperometric bromate sensor was fabricated in N2-saturated 0.10 mol/L HCl with attractive features including a wide linear range of 1.0 × 10-7-1.7 × 10-3 mol/L, a low detection limit (3sb) of 3.2 × 10-8 mol/L, and a high sensitivity of 2317 µA/mM/cm2. The sensor was successively used for the determination of bromate in drinking water.
Collapse
Affiliation(s)
- Ai-Ping Zhang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yi-Xuan Fan
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Hao Yu
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
2
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
3
|
Silva M, Simoes R, Leao A, Lapa R, Rascon J, Cesarino I. Competitive host‐guest electrochemical detection of ivermectin drug using a β‐cyclodextrin/graphene‐based electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Electrochemical Sensors for Determination of Bromate in Water and Food Samples-Review. BIOSENSORS-BASEL 2021; 11:bios11060172. [PMID: 34072226 PMCID: PMC8230011 DOI: 10.3390/bios11060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
The application of potassium bromate in the baking industry is used in most parts of the world to avert the human health compromise that characterizes bromates carcinogenic effect. Herein, various methods of its analysis, especially the electrochemical methods of bromate detection, were extensively discussed. Amperometry (AP), cyclic voltammetry (CV), square wave voltammetry (SWV), electrochemiluminescence (ECL), differential pulse voltammetry and electrochemical impedance spectroscopy (EIS) are the techniques that have been deployed for bromate detection in the last two decades, with 50%, 23%, 7.7%, 7.7%, 7.7% and 3.9% application, respectively. Despite the unique electrocatalytic activity of metal phthalocyanine (MP) and carbon quantum dots (CQDs), only few sensors based on MP and CQDs are available compared to the conducting polymers, carbon nanotubes (CNTs), metal (oxide) and graphene-based sensors. This review emboldens the underutilization of CQDs and metal phthalocyanines as sensing materials and briefly discusses the future perspective on MP and CQDs application in bromate detection via EIS.
Collapse
|
5
|
Chang M, Song T, Liu X, Lin Q, He B, Ren J. Cellulose-based Biosensor for Bio-molecules Detection in Medical Diagnosis: A Mini-Review. Curr Med Chem 2020; 27:4593-4612. [DOI: 10.2174/0929867327666200221145543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Background::
Biosensors are widely applied for the detection of bio-molecules in blood
glucose , cholesterol, and gene. Cellulose as the most dominating natural polymer has attracted
more and more interest, especially in the field of medicine such as advanced medical diagnosis.
Cellulose could endow biosensors with improved biocompatibility, biodegradability and nontoxicity,
which could help in medical diagnosis. This mini-review summarizes the current development
of cellulose-based biosensors as well as their applications in medical diagnosis in recent
years.
Methods:
After reviewing recent years’ publications we can say that, there are several kinds of
cellulose used in biosensors including different cellulose derivatives, bacterial cellulose and nanocellulose.
Different types of cellulose-based biosensors, such as membrane, nano-cellulose and
others were briefly described in addition to the detection principle. Cellulose-based biosensors
were summarized as in the previous papers. The description of various methods used for preparing
cellulose-based biosensors was also provided.
Results:
Cellulose and its derivatives with their unique chemical structure proved to be versatile
materials providing a good platform for achieving immobilizing bioactive molecules in biosensors.
These cellulose-based biosensors possess various desirable properties such as accuracy, sensitivity,
convenience, low cost and fast response. Among them, cellulose paper-based biosensors
have the advantages of low cost and easy operation. Nano-cellulose has unique properties such as
a large aspect ratio, good dispersing ability and high absorption capacity.
Conclusion:
Cellulose displays a promising application in biosensors which could be used to detect
different bio-molecules such as glucose, lactate, urea, gene, cell, amino acid, cholesterol, protein
and hydroquinone. In future, the attention will be focused on designing miniaturized, multifunctional,
intelligent and integrated biosensors. Creation of low cost and environmentally
friendly biosensors is also very important.
Collapse
Affiliation(s)
- Minmin Chang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bei He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Xie H, Luo G, Niu Y, Weng W, Zhao Y, Ling Z, Ruan C, Li G, Sun W. Synthesis and utilization of Co 3O 4 doped carbon nanofiber for fabrication of hemoglobin-based electrochemical sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110209. [PMID: 31761232 DOI: 10.1016/j.msec.2019.110209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022]
Abstract
In this paper cobalt oxide (Co3O4) nanoparticles were mixed with polyacrylonitrile to prepare Co3O4 doped carbon nanofiber (CNF) composite by electrospinning and carbonization, which was further used to modify on carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on Co3O4-CNF/CILE surface with Nafion acted as the protective film to fabricate an electrochemical biosensor (Nafion/Hb/Co3O4-CNF/CILE). Electrochemical behavior of Hb on the electrode was investigated with a pair of quasi-reversible redox peak appeared on cyclic voltammogram and electrochemical parameters were calculated. Moreover, this biosensor had good analytical capabilities for electrocatalytic reduction of different substrates including trichloroacetic acid, potassium bromate and sodium nitrite with wider detection range from 40.0 to 260.0 mmol L-1, 0.1 to 48.0 mmol L-1 and 1.0 to 12.0 mmol L-1 by cyclic voltammetry, respectively. The proposed method showed excellent anti-interferences ability with good selectivity and was successful used for quantitative detection of real samples, which displayed the potential applications to develop into a new analytical device.
Collapse
Affiliation(s)
- Hui Xie
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Guiling Luo
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Yanyan Niu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Wenju Weng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yixing Zhao
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Zhiqiang Ling
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Chengxiang Ruan
- Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Guangjiu Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China.
| |
Collapse
|
7
|
Rationally designed naphthyl substituted amine functionalized ionic liquid platform for covalent immobilization and direct electrochemistry of hemoglobin. Sci Rep 2019; 9:10428. [PMID: 31320717 PMCID: PMC6639313 DOI: 10.1038/s41598-019-46982-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
Herein, we have designed and demonstrated a facile and effective platform for the covalent anchoring of a tetrameric hemoprotein, hemoglobin (Hb). The platform comprises of naphthyl substituted amine functionalized gel type hydrophobic ionic liquid (NpNH2-IL) through which the heme protein was covalently attached over a glassy carbon electrode (Hb-NpNH2-IL/GCE). UV-vis and FT-IR spectral results confirmed that the Hb on NpNH2-IL retains its native structure, even after being covalently immobilized on NpNH2-IL platform. The direct electron transfer of redox protein could be realized at Hb-NpNH2-IL/GCE modified electrode and a well resolved redox peak with a formal potential of −0.30 V and peak separation of 65 mV was observed. This is due to the covalent attachment of highly conducting NpNH2-IL to the Hb, which facilitates rapid shuttling of electrons between the redox site of protein and the electrode. Further, the fabricated biosensor favoured the electrochemical reduction of bromate in neutral pH with linearity ranging from 12 to 228 µM and 0.228 to 4.42 mM with a detection limit and sensitivities of 3 µM, 430.7 µA mM−1 cm−2 and 148.4 µA mM−1 cm−2 respectively. Notably, the fabricated biosensor showed good operational stability under static and dynamic conditions with high selectivity and reproducibility.
Collapse
|
8
|
Palanisamy S, Velusamy V, Chen SW, Yang TCK, Balu S, Banks CE. Enhanced reversible redox activity of hemin on cellulose microfiber integrated reduced graphene oxide for H 2O 2 biosensor applications. Carbohydr Polym 2018; 204:152-160. [PMID: 30366526 DOI: 10.1016/j.carbpol.2018.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
In recent years, the carbohydrate polymers incorporated composite materials have shown significant interest in the bioanalytical chemistry due to their enhanced catalytic performances of various enzymes or mimics. This paper reports the fabrication of novel H2O2 biosensor using a hemin immobilized reduced graphene oxide-cellulose microfiber composite (hemin/RGO-CMF). The RGO-CMF composite was prepared by the reduction of GO-CMF composite using vitamin C as a reducing agent. Various physio-chemical methods have applied for the characterization of RGO-CMF composite. Cyclic voltammetry results revealed that the hemin/RGO-CMF composite shows a better redox electrochemical behavior than hemin/RGO and hemin/GO-CMF. Under optimized conditions, the hemin/RGO-CMF composite exhibit a linear response to H2O2 in the concentration range from 0.06 to 540.6 μM with the lower detection limit of 16 nM. The sensor also can able to detect the H2O2 in commercial contact lens solution and milk samples with functional recovery, which authenticates the potential ability in practical sensors.
Collapse
Affiliation(s)
- Selvakumar Palanisamy
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom; Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC.
| | - Vijayalakshmi Velusamy
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom.
| | - Shih-Wen Chen
- Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC
| | - Thomas C K Yang
- Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC.
| | - Sridharan Balu
- Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC
| | - Craig E Banks
- School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| |
Collapse
|
9
|
Boron-doped Graphene quantum dots modified electrode for electrochemistry and electrocatalysis of hemoglobin. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Kasprzak A, Poplawska M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun (Camb) 2018; 54:8547-8562. [PMID: 29972382 DOI: 10.1039/c8cc04120b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of cyclodextrin species to graphene-family materials (GFMs) constitutes an important area of research, especially in terms of the development of applied nanoscience. The chemistry of cyclodextrins is the so-called host-guest chemistry, which has impacted on many fields of research, including catalysis, electrochemistry and nanomedicine. Cyclodextrins are water-soluble and biocompatible supramolecules, and therefore they may introduce new interesting properties to GFMs and may enhance the physicochemical/biological features of native GFMs. The reported methods for the conjugation of cyclodextrins to GFMs utilize either covalent or non-covalent approaches. The recent progress in the applications of GFMs functionalized with cyclodextrins, with the respect to the chemistry and features of these conjugates, is discussed. Special consideration is also given to the recent developments in (i) nanomedicine, (ii) electrochemistry, (iii) adsorption and (iv) catalysis. Examples of these materials are discussed in this work, together with the future outlook on the impact of GFM-cyclodextrin conjugates in the development of applied nanoscience.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
11
|
Niu X, Mo Z, Yang X, Sun M, Zhao P, Li Z, Ouyang M, Liu Z, Gao H, Guo R, Liu N. Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Mikrochim Acta 2018; 185:328. [DOI: 10.1007/s00604-018-2859-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
|
12
|
Li L, Lai X, Xu X, Li J, Yuan P, Feng J, Wei L, Cheng X. Determination of bromate via the chemiluminescence generated in the sulfite and carbon quantum dot system. Mikrochim Acta 2018; 185:136. [PMID: 29594442 DOI: 10.1007/s00604-017-2653-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
Abstract
The authors describe a chemiluminescence (CL)-based assay for the determination of bromate. The method is based on the use of a solution of carbon quantum dots (CQDs) and sulfite. Strong CL (peak at 490 nm) is observed when bromate is injected into the solution. The CL increases linearly in the 0.3 to 10 μmol L-1 bromate concentration range, giving a 0.1 μmol L-1 limit of detection (at an S/N ratio of 3). A possible CL mechanism is suggested that involves a redox reaction between the CQDs, bromate and sulfite in the acidic medium. This leads to the formation of hole-injected and electron-injected CQDs. Radiative recombination of oxidant-injected holes and electrons in the CQDs accounts for the occurrence of CL. This mechanism contradicts the previous assumption that the transfer of energy occurs from SO2* to the CQDs. Although nitrite may interfere in the determination of bromate, its effect can be eliminated by adding sulfamic acid. The assay is sensitive and represents a new tool for the determination of bromate, which is a carcinogen. Graphical abstract Under acidic condition, carbon quantum dots (CQDs) can react with sulfite and bromate transforming to hole-injected CQDs (CQDs•-) and electron-injected CQDs (CQDs•+), respectively. Thereafter, strong chemiluminescence (490 nm) aroused from the radiative electron-hole annihilation between CQDs•- and CQDs•+.
Collapse
Affiliation(s)
- Liping Li
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Xiaojing Lai
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Xin Xu
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Jie Li
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Ping Yuan
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Jiangao Feng
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China
| | - Lijun Wei
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China. .,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China.
| | - Xianglei Cheng
- Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China. .,School of Public Health, Nanchang University, 461 Bayi Road, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
13
|
Palanisamy S, Kokulnathan T, Chen SM, Velusamy V, Ramaraj SK. Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Qian D, Li W, Chen F, Huang Y, Bao N, Gu H, Yu C. Voltammetric sensor for trichloroacetic acid using a glassy carbon electrode modified with Au@Ag nanorods and hemoglobin. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2175-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Palanisamy S, Ramaraj SK, Chen SM, Yang TCK, Yi-Fan P, Chen TW, Velusamy V, Selvam S. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol. Sci Rep 2017; 7:41214. [PMID: 28117357 PMCID: PMC5259700 DOI: 10.1038/srep41214] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022] Open
Abstract
In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuII for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA−1 cm−2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea.
Collapse
Affiliation(s)
- Selvakumar Palanisamy
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG &Research department of Chemistry, Thiagarajar College, Madurai-09, Tamilnadu, India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan, ROC
| | - Thomas C K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan
| | - Pan Yi-Fan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan, ROC
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan, ROC
| | - Vijayalakshmi Velusamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan.,Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Sonadevi Selvam
- PG &Research department of Chemistry, Thiagarajar College, Madurai-09, Tamilnadu, India
| |
Collapse
|
16
|
Voltammetric determination of the anti-cancer drug nilutamide using a screen-printed carbon electrode modified with a composite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2037-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2007-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|