1
|
Yong J, Hakobyan K, Xu J, Mellick AS, Whitelock J, Liang K. Comparison of protein quantification methods for protein encapsulation with ZIF-8 metal-organic frameworks. Biotechnol J 2023; 18:e2300015. [PMID: 37436154 DOI: 10.1002/biot.202300015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
The use of metal-organic frameworks (MOFs) as delivery systems for biologically functional macromolecules has been explored widely in recent years due to their ability to protect their payload from a wide range of harsh conditions. Given the wide usage and diversity of potential applications, optimising the encapsulation efficiency by MOFs for different biological is of particular importance. Here, several protein quantitation methods and report were compared on the accuracy, practicality, limitations, and sensitivity of these methods to assess the encapsulation efficiency of zeolitic imidazolate frameworks (ZIF)-8 MOFs for two common biologicals commonly used in nanomedicine, bovine serum albumin (BSA), and the enzyme catalase (CAT). Using these methods, ZIF-8 encapsulation of BSA and CAT was confirmed to enrich for high molecular weight and glycosylated protein forms. However, contrary to most reports, a high degree of variance was observed across all methods assessed, with fluorometric quantitation providing the most consistent results with the lowest background and greatest dynamic range. While bicinchoninic acid (BCA) assay has showed greater detection range than the Bradford (Coomassie) assay, BCA and Bradford assays were found to be susceptible to background from the organic "MOF" linker 2-methylimidazole, reducing their overall sensitivity. Finally, while very sensitive and useful for assessing protein quality SDS-PAGE is also susceptible to confounding artifacts and background. Given the increasing use of enzyme delivery using MOFs, and the diversity of potential uses in biomedicine, identifying a rapid and efficient method of assessing biomolecule encapsulation is key to their wider acceptance.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Karen Hakobyan
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jiangtao Xu
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
2
|
Yan S, Luo B, Cheng J, Yu L, Lan F, Wu Y. Two-dimensional magnetic bimetallic organic framework nanosheets for highly efficient enrichment of phosphopeptides. J Mater Chem B 2022; 10:9671-9681. [PMID: 36382513 DOI: 10.1039/d2tb00970f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly selective enrichment and sensitive detection of phosphopeptides is pivotal for comprehensive phosphoproteomics analysis; however, it also poses a long-standing challenge. Here, a novel two-dimensional (2D) magnetic bimetallic organic framework (MOF) nanosheet with Zr-O clusters and Ti-O clusters (denoted as the Fe3O4@Zr-Ti BPDC nanosheet) is prepared via a solvothermal method and in situ deposition of Fe3O4 nanoparticles for the first time. Taking advantage of the abundant dual affinities of Zr-O and Ti-O clusters for phosphopeptides, large surface area and high chemical stability, the Fe3O4@Zr-Ti BPDC nanosheets exhibit excellent enrichment performance for phosphopeptides. Within the framework of density functional theory, the interaction between Zr-O clusters, Ti-O clusters and phosphorylated molecules was studied to find the possible reason behind the superior adsorption performance of the bimetallic MOF nanosheets. We found that electrons would migrate from Ti to Zr spontaneously after doping Ti element and enhance the electrostatic traction between Zr species and phosphorylated molecules, demonstrating that the synergistic effect of Zr-Ti was helpful to improve the enrichment efficiency for phosphopeptides. Furthermore, the Fe3O4@Zr-Ti BPDC nanosheets showed good enrichment performance in complex bio-samples, including nonfat milk, human saliva, and a breast cancer cell lysate, indicating their tremendous potential in the analysis of trace phosphorylated biomolecules in complex bio-samples.
Collapse
Affiliation(s)
- Shuang Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Jia Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Lingzhu Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
3
|
Firuzabadi FD, Alavi MA, Zarekarizi F, Tehrani AA, Morsali A. A pillared metal-organic framework with rich π-electron linkers as a novel fluorescence probe for the highly selective and sensitive detection of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Qi H, Li Z, Zheng H, Jia Q. Carnosine functionalized magnetic metal-organic framework nanocomposites for synergistic enrichment of phosphopeptides. Anal Chim Acta 2021; 1157:338383. [PMID: 33832591 DOI: 10.1016/j.aca.2021.338383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Protein phosphorylation regulates the conformations and function of proteins, which plays an important part in organisms. However, systematic and in-depth analysis of phosphorylation often hinders on account of the low abundance and suppressed ionization of phosphopeptides. Various materials based on single enrichment mechanism show potential in phosphopeptides enrichment, but the enrichment performance is typically not satisfactory. Herein, we developed a carnosine (Car) functionalized magnetic metal organic framework designed as Fe3O4@NH2@ZIF-90@Car. Benefiting from the multiple recognition groups of Car and massive metal ions site of ZIF-90, the as-fabricated Fe3O4@NH2@ZIF-90@Car was utilized as a multifunctional material with synergistic effect for phosphopeptides enrichment. On the basis of combined immobilized metal ion affinity chromatography (IMAC) and amine-based affinity enrichment mechanism, Fe3O4@NH2@ZIF-90@Car exhibited higher enrichment performance of phosphopeptides compared with Fe3O4@NH2@ZIF-90 (single IMAC mechanism). Besides, the feasibility of Fe3O4@NH2@ZIF-90@Car nanocomposites in complicated samples was further verified by enriching phosphopeptides from nonfat milk, human fluids such as serum and saliva, demonstrating its bright application prospects in phosphoproteomics analysis.
Collapse
Affiliation(s)
- He Qi
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Zhao Y, Zhang L, Cao L, Zhang L, Zhang W. A metal oxide affinity probe derived from MIL-125 for selective enrichment of endogenous phosphopeptides. Analyst 2021; 146:2255-2263. [PMID: 33599631 DOI: 10.1039/d0an02174a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Highly effective enrichment of endogenous phosphopeptides from complex biological samples is an essential and crucial theme in the analysis of phosphopeptidomics. Herein, an ordered mesoporous TiO2/C composite (denoted as Ti-MCM) was prepared by the pyrolysis of MIL-125 under a N2 atmosphere. The obtained Ti-MCM possesses a high specific surface area (165 m2 g-1), a uniform pore size (3.75 nm), and a large amount of Ti (46%). By utilizing the selective chelation between Ti-MCM and phosphopeptides, 25 phosphopeptides were detected in α-casein digest after enrichment. The material shows good selectivity even in the presence of 2000-fold excess of interference peptides. It was also used to enrich endogenous phosphopeptides from the complex samples of human serum and saliva and showed a good performance.
Collapse
Affiliation(s)
- Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Tannert N, Sun Y, Hastürk E, Nießing S, Janiak C. A Series of new Urea‐MOFs Obtained
via
Post‐synthetic Modification of NH
2
‐MIL‐101(Cr): SO
2
, CO
2
and H
2
O Sorption. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Niels Tannert
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine Universität Düsseldorf 40204 Düsseldorf Germany
| | - Yangyang Sun
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine Universität Düsseldorf 40204 Düsseldorf Germany
| | - Emrah Hastürk
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine Universität Düsseldorf 40204 Düsseldorf Germany
| | - Sandra Nießing
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine Universität Düsseldorf 40204 Düsseldorf Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine Universität Düsseldorf 40204 Düsseldorf Germany
| |
Collapse
|
7
|
Ti 4+-immobilized hierarchically porous zirconium-organic frameworks for highly efficient enrichment of phosphopeptides. Mikrochim Acta 2021; 188:150. [PMID: 33813605 DOI: 10.1007/s00604-021-04760-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Ti4+-immobilized hierarchically porous zirconium-organic frameworks (denoted as THZr-MOFs) was prepared for phosphopeptide enrichment. The THZr-MOFs showed high specific surface area of 185.28 m2 g-1, wide pore-size distribution of 3 ~ 20 nm, good chemical stability and excellent hydrophilicity. Introduction of hierarchical pores in MOFs not only facilitated the accessibility of phosphopeptides to the internal metal affinity sites and reduce their mass transfer resistance, but also increased the exposure sites of metal affinity interaction and binding energies of Zr and Ti elements. Benefited from these advantages, the THZr-MOFs showed high adsorption capacity (79.8 μg mg-1) towards standard phosphopeptide. A low detection limit (0.05 fmol μL-1) and high enrichment selectivity (β-casein/BSA with a molar ratio of 1:5000) were also obtained by MALDI-TOF MS. The THZr-MOFs were applied to analyze complex samples including nonfat milk, human serum, and HeLa cell lysate. In total, 1432 phosphopeptides derived from 762 phosphoproteins were identified from human HeLa cell lysate. Schematic representation of the application of Ti4+-immobilized hierarchically porous zirconium-organic frameworks (denoted as THZr-MOFs) in high-efficiency and selective enrichment of low-abundance phosphopeptides from the tryptic digest of human HeLa cell lysate.
Collapse
|
8
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
9
|
|
10
|
Yi L, Yan Y, Tang K, Ding CF. Facile preparation of polymer-grafted ZIF-8-modified magnetic nanospheres for effective identification and capture of phosphorylated and glycosylated peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4657-4664. [PMID: 32909572 DOI: 10.1039/d0ay01412e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a member of MOFs, Zn-MOFs (ZIF-8) are seldom used in phosphopeptide enrichment because ZIF-8 is soluble in acid solutions. Therefore, properly designing a novel strategy to overcome the defect of ZIF-8 is necessary. In this study, a novel multifunctional nanoprobe was designed by uniting magnetic core, titania shell and hydrophilic metal-organic frameworks (named as Fe3O4@PDA@mTiO2@PEI-g-ZIF-8). Integrating the strategies of hydrophilic interaction affinity chromatography (HILIC), immobilized metal ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC), the Fe3O4@PDA@mTiO2@PEI-g-ZIF-8 mesoporous microspheres can enrich phosphorylated peptides and glycosylated peptides simultaneously. Fe3O4@PDA@mTiO2@PEI-g-ZIF-8 has high selectivity (maximum molar ratio β-casein/HRP : BSA = 1 : 1000), low detection limit (2 fmol) towards phosphopeptides and glycopeptides. Besides, the Fe3O4@PDA@mTiO2@PEI-g-ZIF-8 also exhibited a fine performance in the actual sample detection. In the experiment, taking saliva as a sample, 16 phosphorylated peptides were identified, and from a human serum sample, 4 phosphorylated peptides were selectively identified. All in all, the materials show great potential in the future study of phosphoproteomics and glycoproteomics.
Collapse
Affiliation(s)
- Linhua Yi
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| | | | | | | |
Collapse
|
11
|
Pérez-Cejuela HM, Herrero-Martínez JM, Simó-Alfonso EF. Recent Advances in Affinity MOF-Based Sorbents with Sample Preparation Purposes. Molecules 2020; 25:E4216. [PMID: 32938010 PMCID: PMC7571043 DOI: 10.3390/molecules25184216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the recent advances concerning metal-organic frameworks (MOFs) modified with several biomolecules (e.g., amino acids, nucleobases, proteins, antibodies, aptamers, etc.) as ligands to prepare affinity-based sorbents for application in the sample preparation field. The preparation and incorporation strategies of these MOF-based affinity materials were described. Additionally, the different types of ligands that can be employed for the synthesis of these biocomposites and their application as sorbents for the selective extraction of molecules and clean-up of complex real samples is reported. The most important features of the developed biocomposites will be discussed throughout the text in different sections, and several examples will be also commented on in detail.
Collapse
Affiliation(s)
| | | | - Ernesto F. Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain; (H.M.P.-C.); (J.M.H.-M.)
| |
Collapse
|
12
|
Hussain D, Musharraf SG, Fatima B, Saeed A, Jabeen F, Ashiq MN, Najam-ul-Haq M. Magnetite nanoparticles coated with chitosan and polyethylenimine as anion exchanger for sorptive enrichment of phosphopeptides. Mikrochim Acta 2019; 186:852. [DOI: 10.1007/s00604-019-3971-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/25/2019] [Indexed: 11/28/2022]
|
13
|
Zheng H, Wang J, Gao M, Zhang X. Titanium(IV)-functionalized zirconium-organic frameworks as dual-metal affinity probe for recognition of endogenous phosphopeptides prior to mass spectrometric quantification. Mikrochim Acta 2019; 186:829. [PMID: 31754799 DOI: 10.1007/s00604-019-3962-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022]
Abstract
A zirconium-organic framework was modified with titanium(IV) ions to obtain a modified framework that is shown to be a viable sorbent for selective capture of phosphopeptides. This dual-metal affinity probe exhibits 0.1 fM limits of detection and excellent size-exclusion effect (the mass ratio of β-casein digests/BSA/intact β-casein is 1:1000:1000). This is attributed to abundant Ti(IV) and Zr(IV) coordination sites and high porosity. The performance of the sorbent for extracting endogenous phosphopeptides from human serum and saliva was investigated. Especially, 105 endogenous phosphopeptides from saliva were captured specifically. In addition, the amino acid frequency of the enriched phosphopeptides was analyzed. Conservation of sequence around the identified phosphorylated sites from saliva confirmed that phosphorylation took place in the proline-directed motifs. Graphical abstractSchematic representation of a method for the specific enrichment of phosphopeptides by a modified metal-organic framework. Following size-exclusion elution, the phosphopeptides are quantified by mass spectrometry.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
14
|
|
15
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
16
|
Yang SS, Shi MY, Tao ZR, Wang C, Gu ZY. Recent applications of metal–organic frameworks in matrix-assisted laser desorption/ionization mass spectrometry. Anal Bioanal Chem 2019; 411:4509-4522. [DOI: 10.1007/s00216-019-01876-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/13/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
|
17
|
Wang J, Wang Z, Sun N, Deng C. Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides. Mikrochim Acta 2019; 186:236. [PMID: 30868259 DOI: 10.1007/s00604-019-3346-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 11/25/2022]
Abstract
The authors are presenting a novel strategy for global phosphoproteome recognition in practical samples. It integrates metal oxide affinity chromatography (MOAC) and immobilization metal ion affinity chromatography (IMAC). This resulted in a kind of titanium dioxide/ion-based multifunctional probe (dubbed T2M). The T2M combines the features of MOAC and IMAC including their recognition preferences towards mono- and multi-phosphorylated peptides. Hence, they exhibit an outstanding recognition capability towards global phosphoproteome, high sensitivity (the limit of detection of which is merely 10 fmol) and excellent specificity in MALDI-TOF MS detection. Their performance is further demonstrated by the identification of the phosphoproteome in non-fat milk and human saliva. By combining T2M with nano LC-MS/MS, remarkable results are obtained in the tryptic digestion of healthy eye lens and cataract lens phosphoproteomes. A total of 658 and 162 phosphopeptides, respectively, were identified. This indicates that phosphorylation and the appearance of cataract can be related to each other. Graphical abstract Schematic presentation of the preparation of titanium dioxide/ion-based multifunctional magnetic nanomaterials (T2M). The T2M based enrichment protocol exhibits outstanding recognition capability towards global phosphoproteome. This protocol shows great prospect for clarifying mechanism of phosphorylation-related diseases via further information acquisition.
Collapse
Affiliation(s)
- Jiawen Wang
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Zidan Wang
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Nianrong Sun
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China.
| | - Chunhui Deng
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China.
- Institutes of Biomedical Sciences and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Metal–organic framework-based affinity materials in proteomics. Anal Bioanal Chem 2019; 411:1745-1759. [DOI: 10.1007/s00216-019-01610-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
|
19
|
Zhang K, Hu D, Deng S, Han M, Wang X, Liu H, Liu Y, Xie M. Phytic acid functionalized Fe3O4 nanoparticles loaded with Ti(IV) ions for phosphopeptide enrichment in mass spectrometric analysis. Mikrochim Acta 2019; 186:68. [DOI: 10.1007/s00604-018-3177-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023]
|
20
|
Recent advances in metal-organic frameworks for separation and enrichment in proteomics analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Ma W, Li X, Bai Y, Liu H. Applications of metal-organic frameworks as advanced sorbents in biomacromolecules sample preparation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Lin H, Chen H, Shao X, Deng C. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Mikrochim Acta 2018; 185:562. [PMID: 30488348 DOI: 10.1007/s00604-018-3109-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023]
Abstract
A zirconium(IV)-based metal organic framework (Zr-MOF) was deposited on polydopamine-coated silica microspheres to form microspheres of type SiO2@PDA@Zr-MOF. These were packed into capillary columns for enrichment of phosphopeptides. The column was off-line coupled to both matrix-assisted laser desorption/ionization time of flight mass spectrometry and LC-ESI-MS/MS. The method has a detection limit as low as 4 fmol of β-casein digest and a selectivity as high as 1:1000 (molar ratio of β-casein and BSA digest). It was applied to the analysis of human saliva. In total, 240 endogenous phosphopeptides were identified in only 25 μL human saliva. Graphical abstract A zirconium-based metal organic framework (Zr-MOF) was modified outside of polydopamine-coated silica microspheres to form microspheres named SiO2@PDA@Zr-MOF. Then they were packed in capillary columns for selective enrichment of phosphopeptides via interaction between Zr-O clusters and phosphate groups. The pre-concentration resulted in a better detection of phosphopeptides by mass spectrometry. Tris: Tris(hydroxymethyl)aminomethane; DMF: Dimethyl Formamide; Zr-MOF: Zirconium(IV)-organic framework; MOAC: Metal oxide affinity chromatography.
Collapse
Affiliation(s)
- Haizhu Lin
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Hemei Chen
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Xi Shao
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Chemistry, and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Metal–organic frameworks in proteomics/peptidomics-A review. Anal Chim Acta 2018; 1027:9-21. [DOI: 10.1016/j.aca.2018.04.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022]
|
24
|
ZrO2 doped magnetic mesoporous polyimide for the efficient enrichment of phosphopeptides. Talanta 2018; 188:385-392. [DOI: 10.1016/j.talanta.2018.05.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 11/23/2022]
|
25
|
Chen YS, Ding J, He XM, Xu J, Feng YQ. Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Mikrochim Acta 2018; 185:368. [PMID: 29987637 DOI: 10.1007/s00604-018-2882-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/25/2018] [Indexed: 01/05/2023]
Abstract
Two-dimensional tellurium nanosheets were prepared by a hydrothermal method and characterized by scanning electron microscopy, powder X-ray diffractometry, and UV-vis spectroscopy. The nanosheets were explored as a novel matrix for desorption/ionization of small molecules including nucleobases, fatty acids and amino acids by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. The results show that the tellurium nanosheets have good UV light absorption, cause low matrix ion interference in the low-molecule-mass region, and have high desorption/ionization efficiency in the negative ion mode. Hence, they are a viable matrix for negative ion desorption/ionization in MALDI-TOF MS of small molecules. In order to investigate the desorption/ionization mechanisms, benzylpyridinium salt and bisphenol A were adopted as probes. The results show that both of the electronic transitions mechanism and laser-induced thermal mechanism play important roles in desorption/ionization process. Graphical abstract Two-dimensional tellurium (Te) nanosheet was synthesized by a hydrothermal method and explored as a novel matrix for desorption/ionization of small molecules by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
Collapse
Affiliation(s)
- Ya-Shun Chen
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jun Ding
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiao-Mei He
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jing Xu
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yu-Qi Feng
- Department of Chemistry, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
26
|
Tan S, Wang J, Han Q, Liang Q, Ding M. A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Mikrochim Acta 2018; 185:316. [PMID: 29876662 DOI: 10.1007/s00604-018-2846-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
Abstract
A novel polydopamine coated three-dimensional porous graphene aerogel sorbent carrying immobilized titanium(IV) ions (denoted as Ti4+@PDA@GA) was fabricated without using an organic solvent. The material is shown to be a viable carbon foam type of monolithic sorbent for selective lab-in-syringe enrichment of phosphoproteins and phosphopeptides. The phosphoproteins can be separated from a sample by aspiration and then bind to the sorbent. The analytes then can be dispensed within 5 min. The weight percent of titanium in the monolith typically is 14%, and the absorption capacities for the model proteins β-casein and κ-casein are 1300 and 1345 mg g-1, respectively. The absorption capacities for nonphosphoproteins are much smaller, typically 160 mg g-1 for β-lactoglobulin, 125 mg g-1 for bovine serum, and 4.8 mg g-1 for lysozyme. The results demonstrate that the selectivity for phosphoproteins was excellent on multiple biological samples including standard protein mixtures, spiked human blood serum, and drinking milk. The selective enrichment of phosphopeptides also makes the method a promising tool in phosphoproteomics. Graphical abstract Schematic of a polydopamine coated three-dimensional porous graphene aerogel for immobilization of titanium(IV) ions. The material served as a monolithic sorbent for selective enrichment of phosphopeptides and phosphoproteins from biological samples. The enrichment process can be carried out conveniently using a lab-in-syringe way.
Collapse
Affiliation(s)
- Siyuan Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jundong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Jiang J, Sun X, She X, Li J, Li Y, Deng C, Duan G. Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides. Mikrochim Acta 2018; 185:309. [PMID: 29802452 DOI: 10.1007/s00604-018-2837-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/06/2018] [Indexed: 01/04/2023]
Abstract
Magnetic microspheres (Fe3O4) were coated with polydopamine (PDA) and loaded with the metal ions Ti(IV) and Nb(V) to give a material of type Fe3O4@PDA-Ti/Nb. It is shown to be useful for affinity chromatography and for enrichment of phosphopeptides from both standard protein solutions and real samples. For comparison, such microspheres loaded with single metal ions only (Fe3O4@PDA-Ti and Fe3O4@PDA-Nb) and their physical mixtures were also investigated under identical conditions. The binary metal ion-loaded magnetic microspheres display better enrichment efficiency than the single metal ion-loaded microspheres and their physical mixture. Both multiphosphopeptides and monophosphopeptides can be extracted. The Fe3O4@PDA-Ti/Nb microspheres exhibit ultra-high sensitivity (the lowest detection amount being 2 fmol) and selectivity at a low mass ratio such as in case of β-casein/BSA (1:1000). Graphical abstract Magnetic microspheres (Fe3O4) were coated with polydopamine (PDA) and loaded with the metal ions Ti(IV) and Nb(V) to give a material of type Fe3O4@PDA-Ti/Nb. Results showed its great potential as an affinity probe in phosphoproteome research due to rapid magnetic separation of phosphopeptides, ultrahigh sensitivity and selectivity, and remarkable reusability.
Collapse
Affiliation(s)
- Jiebing Jiang
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xueni Sun
- Institute of Functional Genomics, University of Regensburg, Am BioPark 9, 93053, Regensburg, Germany
| | - Xiaojian She
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiajia Li
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Li
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Gengli Duan
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
28
|
Feng D, Xia Y. Comparisons of glyphosate adsorption properties of different functional Cr-based metal-organic frameworks. J Sep Sci 2017; 41:732-739. [DOI: 10.1002/jssc.201700886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Feng
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition; College of Chemistry; Nankai University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin China
| | - Yan Xia
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition; College of Chemistry; Nankai University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin China
| |
Collapse
|
29
|
+Facile extraction of azide in sartan drugs using magnetized anion-exchange metal-organic frameworks prior to ion chromatography. J Chromatogr A 2017; 1514:29-35. [DOI: 10.1016/j.chroma.2017.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 11/17/2022]
|
30
|
A zinc(II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2382-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Magnetic solid phase extraction of non-steroidal anti-inflammatory drugs from water samples using a metal organic framework of type Fe3O4/MIL-101(Cr), and their quantitation by UPLC-MS/MS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2319-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks. Talanta 2017; 167:392-397. [DOI: 10.1016/j.talanta.2017.02.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/12/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
|
33
|
Amino-functionalized MIL-101(Fe) metal-organic framework as a viable fluorescent probe for nitroaromatic compounds. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2215-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Polymeric sorbents modified with gold and silver nanoparticles for solid-phase extraction of proteins followed by MALDI-TOF analysis. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2168-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|