1
|
Rotake DR, Anjankar SC, Singh SG. Multi-technique-based electrochemical sensing of lipoarabinomannan (LAM) antigen as a biomarker for early-stage tuberculosis diagnosis. NANOTECHNOLOGY 2025; 36:155501. [PMID: 39970481 DOI: 10.1088/1361-6528/adb7ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Tuberculosis (TB) remains a pressing global health challenge, necessitating precise and reliable biomarkers for early detection. Lipoarabinomannan (LAM), an FDA-approved biomarker (Monoclonal Antibody-MBS320597), holds significant potential due to its association with theMycobacterium tuberculosiscell wall. This study systematically evaluates LAM concentrations ranging from 1 pg ml-1to 6 ng ml-1using square wave voltammetry analysis, achieving an exceptional limit of detection of 0.077 pg ml-1. A comprehensive review of current diagnostics highlights critical gaps, including limitations in speed and accuracy, underscoring the urgency for advanced methodologies. In this study, LAM's performance is assessed by analyzing spiked urine samples, demonstrating its high sensitivity, specificity, and reliability as an early-stage TB biomarker. By comparing findings with existing diagnostic tools and addressing identified limitations, this study emphasizes LAM's potential to transform TB diagnostic strategies. These results contribute to global efforts to improve early detection, enhance patient outcomes, and pave the way for future advancements in TB diagnostics.
Collapse
Affiliation(s)
- Dinesh R Rotake
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Shubham C Anjankar
- Department of Electronics Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Epanchintseva AV, Gorbunova EA, Nekrasov MD, Poletaeva JE, Pyshnaya IA. An Approach to Identifying Single-Nucleotide Mutations Using Noncovalent Associates of Gold Nanoparticles with Fluorescently Labeled Oligonucleotides. Int J Mol Sci 2024; 25:13230. [PMID: 39768995 PMCID: PMC11675405 DOI: 10.3390/ijms252413230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Globally, widespread tuberculosis is one of the acute problems of healthcare. Drug-resistant forms of tuberculosis require a personalized approach to treatment. Currently, rapid methods for detecting drug resistance of Mycobacterium tuberculosis (MTB) to some antituberculosis drugs are often used and involve optical, electrochemical, or PCR-based assays. Despite the large number of these assays, it is necessary to develop new tests (for drug-resistant MTB strains) that are structurally simple and do not require specialized equipment. Colorimetric assays involving a colloidal solution of gold nanoparticles (AuNPs) have good potential for the development of the needed diagnostic tools. Here, conditions were found for the formation of tandem duplexes between DNA probes and DNA targets, representing a part of MTB gene gyrA, either wildtype or containing a single-nucleotide polymorphism associated with fluoroquinolone resistance of MTB. Adsorption of the duplexes on AuNPs allowed to distinguish the two targets owing to the formation of nano-constructs of different structures. Interaction of DNA with AuNPs was analyzed by optical spectroscopy, dynamic light scattering, and transmission electron microscopy. A scheme is proposed for direct colorimetric detection of the fluoroquinolone-resistance-associated single-nucleotide polymorphism at a 2 nM concentration in a liquid system based on a shift of AuNPs' optical absorption maximum.
Collapse
Affiliation(s)
- Anna V. Epanchintseva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; (E.A.G.); (M.D.N.); (J.E.P.)
| | | | | | | | - Inna A. Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; (E.A.G.); (M.D.N.); (J.E.P.)
| |
Collapse
|
3
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
4
|
Brasiunas B, Popov A, Lisyte V, Kausaite-Minkstimiene A, Ramanaviciene A. ZnO nanostructures: A promising frontier in immunosensor development. Biosens Bioelectron 2024; 246:115848. [PMID: 38042053 DOI: 10.1016/j.bios.2023.115848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
This review addresses the design of immunosensors, which employ ZnO nanostructures. Various methods of modifying ZnO nanostructures with antibodies or antigens are discussed, including covalent and non-covalent approaches and cross-linking techniques. Immunosensors based on different properties of ZnO nanomaterials are described and compared. This article provides a comprehensive review of electrochemical immunosensors based on ZnO nanostructures and various detection techniques, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), photoelectrochemical (PEC) detection, electrochemical impedance spectroscopy (EIS), and other electrochemical methods. In addition, this review article examines the application of optical detection techniques, including photoluminescence (PL) and electrochemiluminescence (ECL), in the development of immunosensors based on ZnO nanostructures.
Collapse
Affiliation(s)
- Benediktas Brasiunas
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Anton Popov
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Viktorija Lisyte
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Asta Kausaite-Minkstimiene
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania.
| |
Collapse
|
5
|
Pornprom T, Phusi N, Thongdee P, Pakamwong B, Sangswan J, Kamsri P, Punkvang A, Suttisintong K, Leanpolchareanchai J, Hongmanee P, Lumjiaktase P, Jampasa S, Chailapakul O, Pungpo P. Toward the early diagnosis of tuberculosis: A gold particle-decorated graphene-modified paper-based electrochemical biosensor for Hsp16.3 detection. Talanta 2024; 267:125210. [PMID: 37717539 DOI: 10.1016/j.talanta.2023.125210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Tuberculosis (TB) currently remains a major life-threatening disease as it can be fatal if not treated properly or in a timely manner. Herein, we first describe a disposable and cost-effective paper-based electrochemical biosensor based on a gold particle-decorated carboxyl graphene (AuPs/GCOOH)-modified electrode for detecting heat shock protein (Hsp16.3), which is a specific biomarker indicating the onset of TB infection. The device pattern was first engineered to facilitate detection procedures and printed on low-cost filter paper to create hydrophobic and hydrophilic regions using a wax printing technique. Immunoassays proceeded in a half-sandwich format because it is a reagent-less approach and requires no labeling step. The fabrication of the immunosensor began with GCOOH drop casting, the electrochemical deposition of AuPs, and the establishment of a biorecognition layer against Hsp16.3 utilizing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-sulfo standard chemistry. The appearance of Hsp16.3 resulted in a substantial decrease in the electrochemical signal response of the redox probe employed [Fe (CN)6]3-/4- due to the created immunocomplexes that possess insulation properties. GCOOH enables direct antibody immobilization, and AuPs enhance the electrochemical properties of the sensor. This proposed immunosensor, while requiring only a miniscule sample volume (5 μL), achieved superior performance in terms of the limit of detection, measuring at 0.01 ng/mL. Our platform was confirmed to be highly specific to Hsp16.3 and can rapidly detect TB-infected sera without necessitating any pre-enrichment (20 min), making it an alternative and particularly suitable for the early diagnosis of TB in resource-scarce countries.
Collapse
Affiliation(s)
- Thimpika Pornprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Naruedon Phusi
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bongkochawan Pakamwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Jidapa Sangswan
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, 12120, Thailand
| | | | - Poonpilas Hongmanee
- Division of Clinical Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Putthapoom Lumjiaktase
- Division of Clinical Immunology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Pornpan Pungpo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
6
|
Gopinath SCB, Ramanathan S, More M, Patil K, Patil SJ, Patil N, Mahajan M, Madhavi V. A Review on Graphene Analytical Sensors for Biomarker-based Detection of Cancer. Curr Med Chem 2024; 31:1464-1484. [PMID: 37702170 DOI: 10.2174/0929867331666230912101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
The engineering of nanoscale materials has broadened the scope of nanotechnology in a restricted functional system. Today, significant priority is given to immediate health diagnosis and monitoring tools for point-of-care testing and patient care. Graphene, as a one-atom carbon compound, has the potential to detect cancer biomarkers and its derivatives. The atom-wide graphene layer specialises in physicochemical characteristics, such as improved electrical and thermal conductivity, optical transparency, and increased chemical and mechanical strength, thus making it the best material for cancer biomarker detection. The outstanding mechanical, electrical, electrochemical, and optical properties of two-dimensional graphene can fulfil the scientific goal of any biosensor development, which is to develop a more compact and portable point-of-care device for quick and early cancer diagnosis. The bio-functionalisation of recognised biomarkers can be improved by oxygenated graphene layers and their composites. The significance of graphene that gleans its missing data for its high expertise to be evaluated, including the variety in surface modification and analytical reports. This review provides critical insights into graphene to inspire research that would address the current and remaining hurdles in cancer diagnosis.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Santheraleka Ramanathan
- Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mahesh More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, India
| | - Ketan Patil
- Department of Pharmaceutics, Ahinsa Institute of Pharmacy, Dondaicha, India
| | | | - Narendra Patil
- Department of Pharmacology, Dr. A.P.J. Abdul Kalam University, Indore, India
| | - Mahendra Mahajan
- Department of Pharmaceutical Chemistry, H.R. Patel Institute of Pharmacy, Shirpur, India
| | - Vemula Madhavi
- BVRIT Hyderabad college of Engineering for Women, Hyderabad, India
| |
Collapse
|
7
|
Zhao L, Wu L, Xu W, Wei J, Niu X, Liu G, Yu L, Wu Y, Zhou Q, Liu L. Diagnostic techniques for critical respiratory infections: Update on current methods. Heliyon 2023; 9:e18957. [PMID: 37600408 PMCID: PMC10432708 DOI: 10.1016/j.heliyon.2023.e18957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Respiratory infections, whether chronic or acute, are frequent in both children and adults and result in an economic burden in health care systems. In particular, for an immunocompromised patient, respiratory infection leads to acute hypoxemic respiratory failure, a leading cause of intensive care unit (ICU) admission. Most respiratory infections are caused by bacteria, viruses, parasites, smoking, or air pollution. Over the last two decades, considerable improvements have been made in understanding and identifying respiratory infections. Various biosensing techniques have been developed with a range of targets to identify the infection at earlier stages. Recently, nanomaterials have been effectively applied to improve biosensors and their analytical performances. This review discusses recent biosensor developments for identifying respiratory infections caused by viruses and bacteria assisted by different types of nanomaterials and target molecules.
Collapse
Affiliation(s)
| | | | | | - Jing Wei
- Chaoyang District of the Third Hospital, 1268 Jiuzhou Street, Xihu District, Nanchang City, Jiangxi Province, China
| | - Xiaorong Niu
- Chaoyang District of the Third Hospital, 1268 Jiuzhou Street, Xihu District, Nanchang City, Jiangxi Province, China
| | - GuoYin Liu
- Chaoyang District of the Third Hospital, 1268 Jiuzhou Street, Xihu District, Nanchang City, Jiangxi Province, China
| | - Li Yu
- Chaoyang District of the Third Hospital, 1268 Jiuzhou Street, Xihu District, Nanchang City, Jiangxi Province, China
| | - Ying Wu
- Chaoyang District of the Third Hospital, 1268 Jiuzhou Street, Xihu District, Nanchang City, Jiangxi Province, China
| | - Qiang Zhou
- Chaoyang District of the Third Hospital, 1268 Jiuzhou Street, Xihu District, Nanchang City, Jiangxi Province, China
| | - Lu Liu
- Chaoyang District of the Third Hospital, 1268 Jiuzhou Street, Xihu District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
8
|
Picogram level electrochemical impedimetric immunosensor for monitoring Mycobacterium tuberculosis based on specific and sensitive ESAT-6 monoclonal antibody. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Li Z, Wan X, Li M, He Q, Yang H, Zhang W, Yang X. Evaluating glioma-associated microRNA by complementation on a biological nanosensor. Biotechnol Appl Biochem 2022; 70:518-525. [PMID: 35696757 DOI: 10.1002/bab.2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/19/2022] [Indexed: 11/07/2022]
Abstract
Glioma is a tumor in the brain and spinal cord originating in the glial cells that surround the nerve cells. Among several microRNAs reported, miRNA-363 is associated with human glioma. Based on miRNA-363 levels, the development and progression of glioma can be monitored. The current study used an interdigitated electrode sensor to monitor microRNA-363 levels, which indeed reflects the severity of glioma. The interdigitated electrode was generated using a photolithography technique followed by surface chemical modification carried out to insert miRNA-363 complementary oligo as the probe complexed with gold nanoparticles. The proposed sensor works based on the dipole moment between two electrodes, and when molecular immobilization or interaction occurs, the response by the signal output changes. The changes in the target microRNA-363 sequence were standardized to identify glioma. The limit of detection of miRNA-363 was 10 fM with an R2 value of 0.996 on the linear coefficient regression ranges between 1 fM and 100 pM. Furthermore, unrelated sequences failed to increase the response of the current with the complementary probe, indicating specific miRNA-363 detection on interdigitated electrode. This study demonstrates the platform to be used for determining the presence of microRNA-363 in glioma and as the basis for other biomarker analyses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zizhuo Li
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University Harbin city, Heilongjiang, province, 150001, China
| | - Xin Wan
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University Harbin city, Heilongjiang, province, 150001, China
| | - Mingming Li
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University Harbin city, Heilongjiang, province, 150001, China
| | - Qiuxia He
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University Harbin city, Heilongjiang, province, 150001, China
| | - Haichao Yang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University Harbin city, Heilongjiang, province, 150001, China
| | - Wei Zhang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University Harbin city, Heilongjiang, province, 150001, China
| | - Xiuhua Yang
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Harbin Medical University Harbin city, Heilongjiang, province, 150001, China
| |
Collapse
|
10
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R. Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Crit Rev Microbiol 2022; 48:784-812. [PMID: 35196464 DOI: 10.1080/1040841x.2022.2035314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tuberculosis (TB) infection is one of the leading causes of death in the world. According to WHO reports 2019, the average rate of decrease in global TB incidences was only 1.6% per year from 2000 to 2018, besides that the global decline in TB deaths was just 11%. Therefore, the dire need for early detection of the pathogen for the successful diagnosis of TB seems justified. Mycobacterium tuberculosis secretory proteins have gained more attention as TB biomarkers, for the early diagnosis and treatment of TB. Here in this review, we elaborate on the recent advancements made in the field of piezoelectric, magnetic, optical, and electrochemical biosensors, in addition to listing their merits and setbacks. Additionally, this review also discusses the construction of biosensors through modern integrated technologies, such as combinations of analytical chemistry, molecular biology, and nanotechnology. Integrated technologies enhance the detection for perceiving highly selective, specific, and sensitive signals to detect M. tuberculosis. Furthermore, this review highlights the recent challenges and scope of improvement in numerous biosensors developed for rapid, specific, selective, and sensitive detection of tuberculosis to reduce the TB burden and successful treatment.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Amity University of Rajasthan, Jaipur, India
| |
Collapse
|
11
|
Liu B, Dai Q, Liu P, Gopinath SC, Zhang L. Nanostructure-mediated glucose oxidase biofunctionalization for monitoring gestational diabetes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
|
13
|
Ozana V, Hruška K. Instrumental analytical tools for mycobacteria characterisation. CZECH JOURNAL OF FOOD SCIENCES 2021; 39:235-264. [DOI: 10.17221/69/2021-cjfs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Shu H, Zhao L, Li X, Gong J, Yin G, Chen H. Silica nanoparticle-modified microcomb electrode for voltammetry detection of osteopontin with high sensitivity. Biotechnol Appl Biochem 2021; 69:1733-1740. [PMID: 34423464 DOI: 10.1002/bab.2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Osteosarcoma is a commonly occurring bone malignancy, and it is the second most common cause of cancer deaths in adolescents and children. A sensitive silica nanoparticle (Si-NP) modified current-volt sensor was introduced to identify the osteopontin antigen, a well-known biomarker for osteosarcoma. Si-NP was extracted from the rice husk ash and utilized for the surface functionalization on the interdigitated microelectrode sensing surface. Extracted Si-NP has a spherical shape with uniform distribution, and it is confirmed by field emission scanning electron microscopy and field-emission transmission electron microscopy. Si-NP was layered on the electrode surface through a (3-aminopropyl)triethoxysilane amine linker, and the antibody was immobilized on Si-NP through a glutaraldehyde linker. Osteopontin was effectively detected on the antibody-attached surface, and the determination limit was 0.6 ng/mL. The regression was determined as y = 0.9366x - 1.1113 and the R2 value was 0.9331 and the detection limit of osteopontin was 0.6 ng/mL in the range between 0.3 and 5 ng/mL. In addition, control performance with nonimmune antibodies and albumin did not change the current volt, showing the specific osteopontin identification. This research work brings out the easy and cost-effective method to diagnose osteosarcoma and its etiology.
Collapse
Affiliation(s)
- Hexi Shu
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Liangliang Zhao
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Xiaoxia Li
- Department of Respiratory Medicine, Dezhou Municipal Hospital, Dezhou City, China
| | - Jinpeng Gong
- The First Department of Trauma, Eastern Hospital, Yantaishan Hospital, Yantai City, China
| | - Guorui Yin
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| | - Hulin Chen
- Hand and Foot Reconstructive Surgery (Orthopedic Surgery), Dezhou People's Hospital, Dezhou City, China
| |
Collapse
|
15
|
Ma J, Du M, Wang C, Xie X, Wang H, Zhang Q. Advances in airborne microorganisms detection using biosensors: A critical review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:47. [PMID: 33842019 PMCID: PMC8023783 DOI: 10.1007/s11783-021-1420-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- National Bio-Protection Engineering Center, Tianjin, 300161 China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222 China
| | - Qian Zhang
- School of Mechanical Engineering and Safety Engineering, Institute of Particle Technology, University of Wuppertal, Wuppertal, D-42119 Germany
| |
Collapse
|
16
|
Shabani E, Abdekhodaie MJ, Mousavi SA, Taghipour F. ZnO nanoparticle/nanorod-based label-free electrochemical immunoassay for rapid detection of MMP-9 biomarker. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Tan P, Li H, Wang J, Gopinath SCB. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol Appl Biochem 2020; 68:1236-1242. [PMID: 33043496 DOI: 10.1002/bab.2045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Recent developments in nanotechnology promoted the production of nanomaterials with various shapes and sizes by utilizing interdisciplinary researches of biology, chemistry, and material science toward the clinical perspectives. In particular, gold and silver (Ag) are noble metals that exhibit tunable and unique plasmonic properties for the downstream applications. Ag exhibits higher thermal and electrical conductivities, and more efficient in the electron transfer than gold with sharper extinction bands. In addition, modified Ag nanoparticle is more stable in water and air. With all these above features, Ag is an attractive tool in various fields, including diagnosis, drug delivery, environmental, electronics, and as antimicrobial agent. In particular, applications of Ag nanoparticle in the fields of biosensor and imaging are prominent in recent days. Enhancing the specific detection of clinical markers with Ag nanoparticle has been proved by several studies. This review discussed the constructive application of Ag nanoparticle in biosensor and bioimaging for the detection of small molecule to larger whole cell in the perspectives of diagnosing diseases.
Collapse
Affiliation(s)
- Peng Tan
- Ultrasound Diagnosis Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang City, Jiangxi Province, People's Republic of China
| | - HeSheng Li
- General Surgery, Leping people's Hospital, Phoenix Avenue, Leping, Jiangxi Province, People's Republic of China
| | - Jian Wang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of traditional Chinese Medicine, Nanchang City, Jiangxi Province, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
18
|
Divalent ion-induced aggregation of gold nanoparticles for voltammetry Immunosensing: comparison of transducer signals in an assay for the squamous cell carcinoma antigen. Mikrochim Acta 2020; 187:128. [DOI: 10.1007/s00604-020-4115-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/03/2020] [Indexed: 01/24/2023]
|
19
|
Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F, Behravan J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 2019; 39:1056-1077. [DOI: 10.1080/07388551.2019.1668348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aref Farokhi-Fard
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Faal Maleki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Vaziri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
20
|
Lv Q, Wang Y, Su C, Lakshmipriya T, Gopinath SC, Pandian K, Perumal V, Liu Y. Human papilloma virus DNA-biomarker analysis for cervical cancer: Signal enhancement by gold nanoparticle-coupled tetravalent streptavidin-biotin strategy. Int J Biol Macromol 2019; 134:354-360. [DOI: 10.1016/j.ijbiomac.2019.05.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
|
21
|
Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework. Mikrochim Acta 2018; 185:543. [PMID: 30421038 DOI: 10.1007/s00604-018-3081-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
Abstract
An ultrasensitive aptasensor is described for the voltammetric determination of the Mycobacterium tuberculosis antigen MPT64 in human serum. Firstly, an amino-modified Zr(IV) based metal-organic framework (MOF; type UiO-66-NH2; made up from Zr6O32 units and 2-amino-terephthalate linkers) with a high specific surface was synthesized and used as the carrier of the gold nanoparticles and the aptamers. Then the signalling nanoprobe was fabricated after the horseradish peroxidase was cast on the nanomaterials. The two aptamers with synergistic effect on binding MPT64 were anchored on the gold electrode. Differential pulse voltammetry indicated that the peak current is highest if the ratio of the two aptamers is 1:1. The assay has a wide linear response range (0.02 to 1000 pg·mL-1 of MPT64) and a 10 fg·mL-1 detection limit at a working potential of around -96 mV (vs Ag/AgCl). The results show this biosensor to be a viable tool for detection of tuberculosis at an early stage. Graphical abstract Schematic presentation of the construction of the nanoprobe and biosensor. Firstly, the surface of UiO-66-NH2 was anchored to gold nanoparticles (AuNPs). A dual-aptamer and HRP were added to form the signalling nanoprobe (Aptamer/HRP/AuNPs/UiO-66-NH2). Then, the aptamers I and II were attached on the surface of gold electrode and 6-mercapto-1-hexanol was used to block the uncovered active site of the gold electrode. Finally, after incubation with MPT64, the signalling nanoprobe was dropped on the modified electrode and the DPV measurements was used for the analysis of Mycobacterium tuberculosis antigen MPT64. (PVP: poly(vinyl pyrrolidone); HRP: horseradish peroxidase; MCH: 6-Mercapto-1-hexanol; HQ: hydroquinone; BQ: benzoquinone).
Collapse
|
22
|
Voltammetric immunoassay for Mycobacterium tuberculosis secretory protein MPT64 based on a synergistic amplification strategy using rolling circle amplification and a gold electrode modified with graphene oxide, Fe3O4 and Pt nanoparticles. Mikrochim Acta 2018; 185:436. [DOI: 10.1007/s00604-018-2972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
|
23
|
Perumal V, Saheed MSM, Mohamed NM, Saheed MSM, Murthe SS, Gopinath SCB, Chiu JM. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosens Bioelectron 2018; 116:116-122. [PMID: 29879537 DOI: 10.1016/j.bios.2018.05.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
Abstract
Tuberculosis (TB) is a chronic and infectious airborne disease which requires a diagnosing system with high sensitivity and specificity. However, the traditional gold standard method for TB detection remains unreliable with low specificity and sensitivity. Nanostructured composite materials coupled with impedimetric sensing utilised in this study offered a feasible solution. Herein, novel gold (Au) nanorods were synthesized on 3D graphene grown by chemical vapour deposition. The irregularly spaced and rippled morphology of 3D graphene provided a path for Au nanoparticles to self-assemble and form rod-like structures on the surface of the 3D graphene. The formation of Au nanorods were showcased through scanning electron microscopy which revealed the evolution of Au nanoparticle into Au islets. Eventually, it formed nanorods possessing lengths of ~ 150 nm and diameters of ~ 30 nm. The X-ray diffractogram displayed appropriate peaks suitable to defect-free and high crystalline graphene with face centered cubic Au. The strong optical interrelation between Au nanorod and 3D graphene was elucidated by Raman spectroscopy analysis. Furthermore, the anchored Au nanorods on 3D graphene nanocomposite enables feasible bio-capturing on the exposed Au surface on defect free graphene. The impedimetric sensing of DNA sequence from TB on 3D graphene/Au nanocomposite revealed a remarkable wide detection linear range from 10 fM to 0.1 µM, displays the capability of detecting femtomolar DNA concentration. Overall, the novel 3D graphene/Au nanocomposite demonstrated here offers high-performance bio-sensing and opens a new avenue for TB detection.
Collapse
Affiliation(s)
- Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Mohamed Shuaib Mohamed Saheed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Norani Muti Mohamed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Mohamed Salleh Mohamed Saheed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Satisvar Sundera Murthe
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Jian-Ming Chiu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
24
|
Ansari N, Ghazvini K, Ramezani M, Shahdordizadeh M, Yazdian-Robati R, Abnous K, Taghdisi SM. Selection of DNA aptamers against Mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay. Mikrochim Acta 2017; 185:21. [PMID: 29594592 DOI: 10.1007/s00604-017-2550-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
The Mycobacterium Ag85 complex is the major secretory protein of M. tuberculosis. It is a potential marker for early diagnosis of tuberculosis (TB). The authors have identified specific aptamers for Ag85A (FbpA) via protein SELEX using magnetic beads. After twelve rounds of selection, two aptamers (Apt8 and Apt22) were chosen from different groups, and their binding constants were determined by flow cytometry. Apt22 (labeled with Atto 647N) binds to FbpA with high affinity (Kd = 63 nM) and specificity. A rapid, sensitive, and low-cost fluorescent assay was designed based on the use of Apt22 and graphene oxide, with a limit of detection of 1.5 nM and an analytical range from 5 to 200 nM of FbpA. Graphical abstract Schematic illustration of graphene oxide-based aptasensor for fluorometric determination of FbpA.
Collapse
Affiliation(s)
- Najmeh Ansari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Buali Research Institute, Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Mahin Shahdordizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran.
| |
Collapse
|
25
|
Foo ME, Gopinath SC. Feasibility of graphene in biomedical applications. Biomed Pharmacother 2017; 94:354-361. [DOI: 10.1016/j.biopha.2017.07.122] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/17/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
|
26
|
A needle-like Cu2CdSnS4 alloy nanostructure-based integrated electrochemical biosensor for detecting the DNA of Dengue serotype 2. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2249-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Kalaiyarasi J, Meenakshi S, Pandian K, Gopinath SCB. Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2161-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Thakur H, Kaur N, Sabherwal P, Sareen D, Prabhakar N. Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2174-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017. [DOI: 10.1002/celc.201600805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susana Campuzano
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - Paloma Yáñez-Sedeño
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - José Manuel Pingarrón
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| |
Collapse
|
30
|
Gold nanoparticle mediated method for spatially resolved deposition of DNA on nano-gapped interdigitated electrodes, and its application to the detection of the human Papillomavirus. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1954-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|