1
|
Gu X, Wang K, Tian S, Shao X, Li J, Deng A. A SERS/electrochemical dual-signal readout immunosensor using highly-ordered Au/Ag bimetallic cavity array as the substrate for simultaneous detection of three β-adrenergic agonists. Talanta 2023; 254:124159. [PMID: 36470022 DOI: 10.1016/j.talanta.2022.124159] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
A surface-enhanced Raman scattering (SERS)/electrochemical dual-signal readout immunosensor was developed for simultaneous detection of β-adrenergic agonists salbutamol (SAL), ractopamine (RAC) and phenylethanolamine A (PA). The highly-ordered gold/silver bimetallic cavity array (BMCA) was prepared by electrodepositing Au/Ag nanoparticles to the interstice of highly ordered close-packed polystyrene templates. After electrochemical and SERS characterization, the BMCA was used as the substrate for constructing SERS/electrochemical dual-signal readout immunosensor. 3,3',5,5'-tetramethylbenzidine (TMB), methylene blue (MB) and Nile blue (NB) were selected as the dual-signal reporters, and hybridization chain reaction (HCR) was used as the signal amplifier. The immunoprobe was prepared by absorption of the antibody (Ab) and constructing HCR system embedded with electro/SERS reporter on Au nanoparticles (NPs). After competitive immuno-reaction between coating antigen and analyte for limited Ab on immunoprobe, the SERS/electrochemical dual-signals on BMCA were measured for quantitatively detecting SAL, RAC and PA simultaneously. SAL, RAC and PA were detected in concentration range of 1 pg mL-1 to 100 ng mL-1 with LOD of 0.8, 0.4, and 1.3 pg mL-1, respectively. The applicability of the proposed immunosensor in spiked pork liver samples was verified by the recovery of 95.0%-108.5% with RSD of 6.9%-10.7%. It was proven that the immunosensor was able to detect multiple β-adrenergic agonists with high sensitivity, specificity, accuracy and precision. The immunosensor can be used as a platform for the determination of other small molecular compounds in biological, food and environmental analytical fields.
Collapse
Affiliation(s)
- Xuefang Gu
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China; School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China
| | - Kaiyue Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China
| | - Shu Tian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China.
| | - Xinyi Shao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Kholafazad kordasht H, Mirzaie A, Seidi F, Hasanzadeh M. Low fouling and ultra-sensitive electrochemical screening of ractopamine using mixed self-assembly of PEG and aptamer immobilized on the interface of poly (dopamine)/GCE: A new apta-platform towards point of care (POC) analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Sadinejad K, Mirzaie A, Pashazadeh-Panahi P, Hasanzadeh M. Sensitive recognition of ractopamine using GQDs-DPA as organic fluorescent probe. J Mol Recognit 2021; 34:e2903. [PMID: 33970548 DOI: 10.1002/jmr.2903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/11/2023]
Abstract
A novel spectrofluorimetric sensing platform was designed for Ractopamine measurement in aqueous and plasma samples. d-penicillamine functionalized graphene quantum dots (DPA-GQDs) was utilized as a fluorescence probe, which was synthesized through the pyrolysis of citric acid in the presence of DPA. This one-pot down-top strategy causes to high-yield controllable synthesis method. The reaction time and probe concentration were optimized. Then, the fluorescence intensity of aqueous samples containing different Ractopamine concentrations and 500 ppm DPA-GQDs were measured at 25°C with an excitation wavelength of 274 nm. The sensing platform was also applied to detect Ractopamine in untreated plasma samples. The fluorescence spectroscopy technique responses indicated a linear relationship between the peak fluorescence intensity and ractopamine concentration in the range of 0.25-15 ppm with low limit of quantification of 0.25 ppm was for aqueous and plasma samples, respectively.
Collapse
Affiliation(s)
- Kosar Sadinejad
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Mirzaie
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Dai Y, Zhang Y, Liao W, Wang W, Wu L. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118406. [PMID: 32387918 DOI: 10.1016/j.saa.2020.118406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
A label-free fluorescence aptasensor was developed for the rapid detection of tetracycline (TET) based on G-quadruplex structure of TET aptamers and G-quadruplex specific dye Thioflavin T (ThT). The fluorescence of free ThT is essentially weak in aqueous solution, whereas it selectively identifies the G-quadruplex of aptamers to form the G-quadruplex/ThT conjugates, resulting in an enormous increase of the fluorescence intensity. However, the fluorescence intensity of G-quadruplex/ThT conjugates was drastically suppressed due to the release of free ThT from G-quadruplex/ThT conjugates after the addition of TET via specific binding with TET aptamers. The key factors affecting sensitivity and selectivity including the reaction medium, binding time of ThT to TET aptamers, incubation time between TET aptamers and TET, concentration of ThT and TET aptamers were investigated in detail. The optimal conditions were as follows: ultrapure water as reaction medium, binding time of 5 min, incubation time of 1 min, 9.0 μmol/L ThT and 0.03 μmol/L aptamers. A good linear relationship (correlation coefficient of 0.9973) was obtained between the fluorescence quenching efficiency (F0 - F) / F0 and the logarithm of TET concentration in the range of 0.01-1.0 μmol/L. The limit of detection was 0.001 μmol/L (S/N = 3). The proposed assay was applied for the detection of TET in the spiked honey and milk samples with recoveries ranging from 93.5% to 106.9%. The developed label-free fluorescence aptasensor showed advantages of high specificity, low cost and short time-consuming, illustrating potential application for on-site detection of TET in foodstuffs.
Collapse
Affiliation(s)
- Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wanliang Liao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liang Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Abnous K. A DNA triangular prism-based fluorescent aptasensor for ultrasensitive detection of prostate-specific antigen. Anal Chim Acta 2020; 1120:36-42. [DOI: 10.1016/j.aca.2020.04.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/05/2023]
|
6
|
Selection and Identification of Novel Aptamers Specific for Clenbuterol Based on ssDNA Library Immobilized SELEX and Gold Nanoparticles Biosensor. Molecules 2018; 23:molecules23092337. [PMID: 30216975 PMCID: PMC6225122 DOI: 10.3390/molecules23092337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022] Open
Abstract
We describe a multiple combined strategy to discover novel aptamers specific for clenbuterol (CBL). An immobilized ssDNA library was used for the selection of specific aptamers using the systematic evolution of ligands by exponential enrichment (SELEX). Progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing. Candidate aptamers were picked and preliminarily identified using a gold nanoparticles (AuNPs) biosensor. Bioactive aptamers were characterized for affinity, circular dichroism (CD), specificity and sensitivity. The Q-PCR amplification curve increased and the retention rate was about 1% at the eighth round. Use of the AuNPs biosensor and CD analyses determined that six aptamers had binding activity. Affinity analysis showed that aptamer 47 had the highest affinity (Kd = 42.17 ± 8.98 nM) with no cross reactivity to CBL analogs. Indirect competitive enzyme linked aptamer assay (IC-ELAA) based on a 5′-biotin aptamer 47 indicated the limit of detection (LOD) was 0.18 ± 0.02 ng/L (n = 3), and it was used to detect pork samples with a mean recovery of 83.33–97.03%. This is the first report of a universal strategy including library fixation, Q-PCR monitoring, high-throughput sequencing, and AuNPs biosensor identification to select aptamers specific for small molecules.
Collapse
|
7
|
Zhang J, Oueslati R, Cheng C, Zhao L, Chen J, Almeida R, Wu J. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor. Biosens Bioelectron 2018; 112:48-53. [PMID: 29698808 DOI: 10.1016/j.bios.2018.04.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023]
Abstract
Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 102 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis.
Collapse
Affiliation(s)
- Jian Zhang
- School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China; Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Rania Oueslati
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Cheng Cheng
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| | - Raul Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
8
|
Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Mikrochim Acta 2018; 185:210. [DOI: 10.1007/s00604-018-2736-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 01/21/2023]
|
9
|
Ye H, Duan N, Wu S, Tan G, Gu H, Li J, Wang H, Wang Z. Orientation selection of broad-spectrum aptamers against lipopolysaccharides based on capture-SELEX by using magnetic nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2453-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Yan M, Zhu C, Huang Y, Yan J, Chen A. Ultrasensitive detection of lead(II) using a turn-on probe based on the use of an aptamer and a water-soluble fluorescent perylene probe. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2292-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|