1
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Novel (CH6N3+, NH3+)-functionalized and nitrogen doped Co3O4 thin film electrochemical sensor for nanomolar detection of nitrite in neutral pH. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
4
|
Barathi P, Devaraj A, Subramania A. Mesoporous Carbon/α-Fe 2O 3 Nanoleaf Composites for Disposable Nitrite Sensors and Energy Storage Applications. ACS OMEGA 2020; 5:32160-32170. [PMID: 33376854 PMCID: PMC7758890 DOI: 10.1021/acsomega.0c02594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/05/2020] [Indexed: 05/24/2023]
Abstract
In this work, we report a novel hydrothermal synthesis of α-Fe2O3 nanoleaf-incorporated mesoporous carbon-chitosan (α-Fe2O3@MPC-chit) as a versatile disposable sensor for selective electrochemical detection of nitrite and for supercapacitor applications. The newly synthesized α-Fe2O3@MPC-chit nanocomposite was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, UV, and Raman spectroscopy. The extensive physicochemical characterization reveals the strong immobilization of α-Fe2O3 nanoleaves within the MPC-chit composite. The electrochemical characterization with cyclic voltammetry and impedance spectroscopy using [Fe(CN)6)]3-/4- as a redox probe concludes good electron conductivity and efficient electron transfer behavior of α-Fe2O3@MPC-chit. The α-Fe2O3@MPC-chit modified electrode exhibits excellent electrocatalytic activity toward nitrite oxidation. The amperometric method of nitrite detection showed a linear range of up to 200 μmol L-1 . The current sensitivity and detection limit were found to be 0.913 μA μM-1 and 31 nM cm-2, respectively. The improved catalytic activity of the proposed electrode was endorsed by the synergistic effect of α-Fe2O3 with the MPC-chit composite. The ability of the proposed electrode was demonstrated by the successful detection of nitrite present in tap water, river water, and industrial samples with extensive recovery values. Furthermore, the α-Fe2O3@MPC-chit modified stainless-steel electrode showed high-performance supercapacitor application and exhibited a large specific capacitance of 380 F g-1 at 1 A g-1.
Collapse
Affiliation(s)
- Palani Barathi
- Electrochemical
Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605014, India
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anthonisamy Devaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Angaiah Subramania
- Electrochemical
Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
5
|
Sall ML, Fall B, Diédhiou I, Dièye EH, Lo M, Diaw AKD, Gningue-Sall D, Raouafi N, Fall M. Toxicity and Electrochemical Detection of Lead, Cadmium and Nitrite Ions by Organic Conducting Polymers: A Review. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s42250-020-00157-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Sensitive and reliable electrochemical detection of nitrite and H2O2 embellish-CoPc coupled with appliance of composite MWCNTs. Anal Chim Acta 2020; 1108:98-107. [DOI: 10.1016/j.aca.2020.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
|
7
|
Zhang Y, Zhang Y, Li L, Chen J, Li P, Huang W. One-step in situ growth of high-density POMOFs films on carbon cloth for the electrochemical detection of bromate. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Han Y, Zhang R, Dong C, Cheng F, Guo Y. Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosens Bioelectron 2019; 142:111529. [DOI: 10.1016/j.bios.2019.111529] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022]
|
9
|
Bibi S, Zaman MI, Niaz A, Rahim A, Nawaz M, Bilal Arian M. Voltammetric determination of nitrite by using a multiwalled carbon nanotube paste electrode modified with chitosan-functionalized silver nanoparticles. Mikrochim Acta 2019; 186:595. [DOI: 10.1007/s00604-019-3699-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023]
|
10
|
Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Ghanei-Motlagh M, Taher MA. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron 2018; 109:279-285. [DOI: 10.1016/j.bios.2018.02.057] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 02/01/2023]
|
12
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
13
|
Ranjani B, Kalaiyarasi J, Pavithra L, Devasena T, Pandian K, Gopinath SCB. Amperometric determination of nitrite using natural fibers as template for titanium dioxide nanotubes with immobilized hemin as electron transfer mediator. Mikrochim Acta 2018; 185:194. [DOI: 10.1007/s00604-018-2715-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/26/2018] [Indexed: 02/06/2023]
|
14
|
Wang G, Morrin A, Li M, Liu N, Luo X. Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. J Mater Chem B 2018; 6:4173-4190. [DOI: 10.1039/c8tb00817e] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes recent advances in the development of electrochemical sensors and biosensors based on nanomaterial doped conducting polymers.
Collapse
Affiliation(s)
- Guixiang Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Aoife Morrin
- School of Chemical Sciences
- National Centre for Sensor Research
- INSIGHT Centre for Data Analytics
- Dublin City University
- Dublin 9
| | - Mengru Li
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Nianzu Liu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
15
|
A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2513-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|