1
|
Kayani KF, Ghafoor D, Mohammed SJ, Shatery OBA. Carbon dots: synthesis, sensing mechanisms, and potential applications as promising materials for glucose sensors. NANOSCALE ADVANCES 2024; 7:42-59. [PMID: 39583130 PMCID: PMC11583430 DOI: 10.1039/d4na00763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The disruption of glucose (Glu) metabolism in the human body can lead to conditions such as diabetes and hyperglycemia. Therefore, accurately determining Glu levels is crucial for clinical diagnosis and other applications. Carbon dots (CDs) are a novel category of carbon nanomaterials that exhibit outstanding optical properties, excellent biocompatibility, high water solubility, low production costs, and straightforward synthesis. Recently, researchers have developed various carbon dot sensors for fast and real-time Glu monitoring. In this context, we provide a comprehensive introduction to Glu and CDs for the first time. We categorize the synthetic methods for CDs and the sensing mechanisms, further classifying the applications of carbon dot probes into single-probe sensing, ratiometric sensing, and visual detection. Finally, we discuss the future development needs for CD-based Glu sensors. This review aims to offer insights into advancing Glu sensors and modern medical treatments.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, Charmo University Peshawa Street, Chamchamal Sulaimani City 46023 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| | - Dlzar Ghafoor
- College of Science, Department of Medical Laboratory Sciences, Komar University of Science and Technology Sulaymaniyah 46001 Iraq
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| | - Sewara J Mohammed
- Department of Anesthesia, College of Health Sciences, Cihan University Sulaimaniya Sulaymaniyah City Kurdistan Iraq
- Research and Development Center, University of Sulaimani, Kurdistan Regional Government Qlyasan Street Sulaymaniyah 46001 Iraq
| | - Omer B A Shatery
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St Sulaimani City Kurdistan Region 46002 Iraq
| |
Collapse
|
2
|
Mohiuddin I, Singh R, Kaur V. A Review of Sensing Applications of Molecularly Imprinted Fluorescent Carbon Dots for Food and Biological Sample Analysis. Crit Rev Anal Chem 2023; 54:3212-3233. [PMID: 37467171 DOI: 10.1080/10408347.2023.2236215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Molecularly imprinted fluorescent carbon dots (MI-FCDs) find numerous applications in analytical chemistry due to their outstanding photoluminescent properties and having specific pockets for the recognition of target molecules. Despite significant advances, practical applications of MI-FCDs-based fluorescent sensors are still in their initial stages. Therefore, the topical developments in the synthesis, working, and application of MI-FCDs for sensing various target species (e.g., pharmaceuticals, biomolecules, pesticides, food additives, and miscellaneous species) in food and biological media have been highlighted. Moreover, a careful evaluation has been made to select the best methods based on their performance in terms of analytical parameters. To expand the horizons of this field, important challenges and future directions for developing MI-FCDs for practical use are also presented. This review will highlight important aspects of MI-FCDs-based fluorescent sensors for their applicability in food science, material science, environmental science, nanoscience, and biotechnology.
Collapse
Affiliation(s)
| | | | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers for optosensing of pyrraline in fatty foods. Mikrochim Acta 2023; 190:88. [PMID: 36773114 DOI: 10.1007/s00604-023-05669-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
A novel and facile method was proposed for preparation of red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers (RNCDs@MIPs) using a one-pot room-temperature reverse microemulsion polymerization. RNCDs used citric acid and urea as carbon and nitrogen sources by one-step solvothermal synthesis with the optimum emission of 620 nm. Unique optical properties of RNCDs coupled with high selective MIPs make the RNCDs@MIPs conjugate capable to adsorb specific targets of pyrraline (PRL), such a binding event was then transduced to quench fluorescence response signal of the RNCDs. RNCDs@MIPs for PRL showed linearity from 0.1 to 40 μg/L, with a detection limit of 65 ng/L. The RNCDs@MIPs exhibited a good reproducibility of 4.67% obtained from four times of rebinding for PRL. The optosensing probe was successfully applied to the detection of PRL in fatty foods with the spiked recovery of 85.93-106.96%.
Collapse
|
4
|
Progress in the pretreatment and analysis of carbohydrates in food: An update since 2013. J Chromatogr A 2021; 1655:462496. [PMID: 34492577 DOI: 10.1016/j.chroma.2021.462496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
Carbohydrates in foods and other matrices plays vital roles in their diverse biological functions. Carbohydrates serve not only as functional substances but also as structural materials, such as components of membranes, and participate in cellular recognition. The fact that carbohydrates are indispensable has contributed to the need for pretreatment and analytical methods to be developed for their characterization. The aim of this review is to provide a comprehensive overview of carbohydrate pretreatment and determination methods in various matrices. The pretreatment methods include simple and more developed approaches (e.g., solid phase extraction, supercritical fluid extraction, and different microextraction methods, among others). The analytical methods include those by liquid chromatography (including high-performance anion-exchange chromatography), capillary electrophoresis, gas chromatography and supercritical fluid chromatography, and others. Different pretreatment methods and determination approaches are updated, compared, and discussed. Moreover, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospects.
Collapse
|
5
|
Li S, Zhang Z. Recent advances in the construction and analytical applications of carbon dots-based optical nanoassembly. Talanta 2021; 223:121691. [PMID: 33303144 DOI: 10.1016/j.talanta.2020.121691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022]
Abstract
Recently, more and more attention has been focused on the construction and analytical applications of optical nanoassembly through combining carbon dots (CDs) with various other functional nanomaterials. The rational design and manufacture of CDs-based optical nanoassembly will be critical to meeting the needs of analytical science. The last decade has witnessed the immense potential of CDs-based optical nanoassembly in multiple sensing applications owing to their controlled optical properties, adjustable surface chemistry and microscopic morphology. This feature article collects the recent advances in the research and development of CDs-based optical nanoassembly and their applications in analytical sensors, aiming to provide vital insights and suggestions to inspire their broad sensing applications.
Collapse
Affiliation(s)
- Siqiao Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Colorimetric and fluorometric nanoprobe for selective and sensitive recognition of hazardous colorant indigo carmine in beverages based on ion pairing with nitrogen doped carbon dots. Food Chem 2021; 349:129160. [PMID: 33550018 DOI: 10.1016/j.foodchem.2021.129160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Indigo carmine (IC) dye is hazardous and allergenic for humans even though it has been excessively used in a wide range of industries. Therefore, the quantitative determination of IC is still challenging. Herein, for the first time, we have developed fluorometric and colorimetric dual-mode nanoprobe derived from the ion-pair association complex between the negatively charged IC and positively charged N@C-dots in pH = 3.0. Consequently, the binding between N@C-dots and IC resulted in cyan blue and quenching of N@C-dots fluorescence. The dependence of the fluorescence response on IC concentrations was linear over the range of 0.73-10.0 µM (R2 = 0.9989) with LOD of 0.24 µM. On the other hand, the linearity of the colorimetric method ranged from 9.97 to 80.0 µM (R2 = 0.9986) with LOD of 3.3 µM. The sensor was applied for estimation of IC in fruit juice and soft drink without the need for exhaustive extraction steps.
Collapse
|
7
|
Ghani SM, Rezaei B, Jamei HR, Ensafi AA. Novel synthesis of a dual fluorimetric sensor for the simultaneous analysis of levodopa and pyridoxine. Anal Bioanal Chem 2020; 413:377-387. [PMID: 33106947 DOI: 10.1007/s00216-020-03005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Herein, a fluorimetric sensor was fabricated based on molecularly imprinted polymers (MIPs) with two types of carbon dots as fluorophores. The MIPs produced had similar excitation wavelengths (400 nm) and different emission wavelengths (445 and 545 nm). They were used for the simultaneous analysis of levodopa and pyridoxine. First, two types of carbon dots, i.e. nitrogen-doped carbon dots (NCDs) with a quantum yield of 43%, and carbon dots from o-phenylenediamine (O-CDs) with a quantum yield of 17%, were prepared using the hydrothermal method. Their surfaces were then covered with MIPs through the reverse microemulsion method. Finally, a mixture of powdered NCD@MIP and O-CD@MIP nanocomposites was used for the simultaneous fluorescence measurement of levodopa and pyridoxine. Under optimal conditions using response surface methodology and Design-Expert software, a linear dynamic range of 38 to 369 nM and 53 to 457 nM, and detection limits of 13 nM and 25 nM were obtained for levodopa and pyridoxine, respectively. The capability of the proposed fluorimetric sensor was investigated in human blood serum and urine samples. Graphical Abstract Schematic representation of nitrogen-doped carbon dots (NCDs), carbon dots from o-phenylenediamine (O-CDs), NCDs coated with imprinted polymers (NCD@MIPs), and O-CDs coated with imprinted polymers (O-CD@MIPs) in the presence and absence of levodopa and pyridoxine.
Collapse
Affiliation(s)
- Seyed Mohammad Ghani
- Department of Chemistry, Isfahan University of Technology, Emam Boulevard, Isfahan, 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Emam Boulevard, Isfahan, 84156-83111, Iran.
| | - Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Emam Boulevard, Isfahan, 84156-83111, Iran
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Emam Boulevard, Isfahan, 84156-83111, Iran
| |
Collapse
|
8
|
Shirani MP, Rezaei B, Ensafi AA, Ramezani M. Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chem 2020; 339:127920. [PMID: 32877812 DOI: 10.1016/j.foodchem.2020.127920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/29/2022]
Abstract
Rapid and efficient detection of indoxacarb (IXC), a common chemical contaminant, in environmental and biological samples is necessary. In this work, a modern optical sensor was developed for IXC, based on environmentally friendly molecularly imprinted polymer (MIP) coated on silica-carbon quantum dots (SiCQDs). A hydrothermal method was used to prepare highly fluorescence SiCQDs and, subsequently, MIP formed on surface (MIP@SiCQDs) using a sol-gel method. A linear relationship between the fluorescence quenching effect and increased IXC concentration was found for the range of 4-102 nM, under the optimal conditions, with a 1 nM detection limit. Precisions was of 4.5 and 2.3% for five replicate detections at 21 and 60 nM IXC, respectively. Applicability of the sensor for IXC quantification in environmental and biological samples was verified with recoveries in the range 95-106% with a relative standard deviation of <6.0%.
Collapse
Affiliation(s)
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhang Y, Li S, Ma XT, He XW, Li WY, Zhang YK. Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor. Mikrochim Acta 2020; 187:228. [PMID: 32170469 DOI: 10.1007/s00604-020-4198-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
A carbon dots-embedded epitope imprinted polymer (C-MIP) was fabricated for targeted fluorescence imaging of cervical cancer by specifically recognizing the epidermal growth factor receptor (EGFR). The core-shell C-MIP was prepared by a reverse microemulsion polymerization method. This method used silica nanoparticles embedded with carbon dots as carriers, acrylamide as the main functional monomer, and N-terminal nonapeptides of EGFR modified by palmitic acid as templates. A series of characterizations (transmission electron microscope, dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, zeta potential, and energy dispersive X-ray spectroscopy) prove the successful synthesis of C-MIP. The fluorescence of C-MIP is quenched by the epitopes of EGFR due to the specific recognition of epitopes of EGFR through their imprinted cavities (analytical excitation/emission wavelengths, 540 nm/610 nm). The linear range of fluorescence quenching is 2.0 to 15.0 μg mL-1 and the determination limit is 0.73 μg mL-1. The targeted imaging capabilities of C-MIP are demonstrated through in vitro and in vivo experiments. The laser confocal imaging results indicate that HeLa cells (over-expression EGFR) incubated with C-MIP show stronger fluorescence than that of MCF-7 cells (low-expression EGFR), revealing that C-MIP can target tumor cells overexpressing EGFR. The results of imaging experiments in tumor-bearing mice exhibit that C-MIP has a better imaging effect than C-NIP, which further proves the targeted imaging ability of C-MIP in vivo. Graphical abstract An oriented epitope imprinted polymer embedded with carbon dots was prepared for the determination of the epitopes of epidermal growth factor receptor and targeted fluorescence imaging of cervical cancer.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Si Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xiao-Tong Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
10
|
Ke CB, Lu TL, Chen JL. Fluorometric determination of amifostine and alkaline phosphatase on amphiprotic molecularly imprinted silica crosslinked with binary functional silanes and carbon dots. Biosens Bioelectron 2020; 151:111965. [DOI: 10.1016/j.bios.2019.111965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/22/2023]
|
11
|
Alizadeh N, Salimi A, Hallaj R. A strategy for visual optical determination of glucose based on a smartphone device using fluorescent boron-doped carbon nanoparticles as a light-up probe. Mikrochim Acta 2019; 187:14. [PMID: 31802283 DOI: 10.1007/s00604-019-3871-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
Abstract
Boronic acid-doped carbon nanoparticles were prepared and are shown to undergo aggregation induced emission (AIE). The nanoparticle composite is a viable fluorescent probe for glucose determination by using the RGB technique and a smartphone. The structure and the chemical composition of the doped carbon nanoparticles were confirmed by SEM, TEM, FTIR and UV-vis spectroscopy. The combination of 4-carboxyphenylboronic acid with o-phenylenediamine and rhodamine B endowed the hybrid with high fluorescence intensity (quantum yield 46%). Compared with conventional two-step preparation of boronic acid-based fluorescent probes for glucose, the present one step synthesis strategy is simpler and more effective. The addition of glucose causes the formation of covalent bonds between the cis-diols group of glucose molecules and boronic acid moiety. Fluorescent intensity can be quantified using dual wavelengths simultaneously, where both increases, as the target analytes bind to the bronic acid. These variations was monitored by the smartphone camera, and the green channel intensities of the colored images were processed by using the RGB option of a smartphone. The assay works in the 32 μM to 2 mM glucose concentration range and has an 8 μM detection limit. The method was successfully used for the assay of glucose in diluted human serum. Graphical abstractThe fluorometric method was developed for determination of glucose using boron doped carbon nanoparticles (BCNBs). The BCNPs aggregate after covalent binding between the cis-diols of glucose and boronic acid. The green channel of the images is recorded by a smartphone camera.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran. .,Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, Sanandaj, 66177-15175, Iran.,Research Center for Nanotechnology, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
12
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Mello GPC, Simões EFC, Crista DMA, Leitão JMM, Pinto da Silva L, Esteves da Silva JCG. Glucose Sensing by Fluorescent Nanomaterials. Crit Rev Anal Chem 2019; 49:542-552. [DOI: 10.1080/10408347.2019.1565984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guilherme P. C. Mello
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
| | - Eliana F. C. Simões
- Chemistry Research Unit (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Polo das Ciências da Saúde, Coimbra, Portugal
| | - Diana M. A. Crista
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
| | - João M. M. Leitão
- Chemistry Research Unit (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Polo das Ciências da Saúde, Coimbra, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
- LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto, Porto, Portugal
| | - Joaquim C. G. Esteves da Silva
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
- LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Cheng W, Xu J, Guo Z, Yang D, Chen X, Yan W, Miao P. Hydrothermal synthesis of N,S co-doped carbon nanodots for highly selective detection of living cancer cells. J Mater Chem B 2018; 6:5775-5780. [PMID: 32254984 DOI: 10.1039/c8tb01271g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study presents a facile synthesis method for the preparation of positively charged N,S co-doped carbon nanodots with excellent optical properties, and it develops a selective method for fluorescent detection of living cancer cells. The specific recognition is due to the application of an aptamer sequence, which shows high affinity and specificity to target cells. The aptamer is firstly labeled with BHQ and wraps around the carbon nanodots, then it finally quenches the fluorescence emission of the carbon nanodots. For the sensitive and selective analysis of target cells, the cells are simply mixed with the carbon nanodot-aptamer nanoconjugates, which are then centrifuged at a low speed. The recognition reaction between aptamer and target cells releases the quencher from the surface of the carbon nanodots and the centrifugation process enables the recovery of fluorescence intensity of the suspension, which reflects the level of initial cancer cells. The developed method is simple, highly selective and cost-effective, thus, it may be further exploited in clinical applications in the future.
Collapse
Affiliation(s)
- Wenbo Cheng
- State Key Lab of Optical Technologies on Nano-fabrication and Micro-engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Li H, Zhao L, Xu Y, Zhou T, Liu H, Huang N, Ding J, Li Y, Ding L. Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta 2018; 185:542-549. [DOI: 10.1016/j.talanta.2018.04.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 12/18/2022]
|
16
|
Gao XX, Zhou X, Ma YF, Wang CP, Chu FX. A fluorometric and colorimetric dual-mode sensor based on nitrogen and iron co-doped graphene quantum dots for detection of ferric ions in biological fluids and cellular imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj01805g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A dual-mode sensing strategy based on N, Fe-GQDs for effective and selective detecting of Fe3+ and cellular imaging was developed.
Collapse
Affiliation(s)
- Xue Xia Gao
- Institute of Chemical Industry of Forestry Products
- Chinese Academy of Forestry
- Key Lab. of Biomass Energy and Material of Jiangsu Province, Key and Open Lab. of Forestry Chemical Engineering
- State Forestry Administration
- National Engineering Lab. for Biomass Chemical Utilization
| | - Xi Zhou
- Institute of Chemical Industry of Forestry Products
- Chinese Academy of Forestry
- Key Lab. of Biomass Energy and Material of Jiangsu Province, Key and Open Lab. of Forestry Chemical Engineering
- State Forestry Administration
- National Engineering Lab. for Biomass Chemical Utilization
| | - Yu Feng Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Chun Peng Wang
- Institute of Chemical Industry of Forestry Products
- Chinese Academy of Forestry
- Key Lab. of Biomass Energy and Material of Jiangsu Province, Key and Open Lab. of Forestry Chemical Engineering
- State Forestry Administration
- National Engineering Lab. for Biomass Chemical Utilization
| | - Fu Xiang Chu
- Institute of Chemical Industry of Forestry Products
- Chinese Academy of Forestry
- Key Lab. of Biomass Energy and Material of Jiangsu Province, Key and Open Lab. of Forestry Chemical Engineering
- State Forestry Administration
- National Engineering Lab. for Biomass Chemical Utilization
| |
Collapse
|
17
|
S,N-doped carbon dots as a fluorescent probe for bilirubin. Mikrochim Acta 2017; 185:11. [DOI: 10.1007/s00604-017-2574-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023]
|