1
|
Yang L, Yang S, Zhang T, Zhao L, Fa H, Wang Y, Huo D, Hou C, Yang M. Point-of-care testing of methotrexate using a controlled release sensor based on a personal glucose meter. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1345-1353. [PMID: 39835381 DOI: 10.1039/d4ay02038c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Methotrexate (MTX), a widely administered medication for treating an array of tumors and autoimmune disorders, necessitates stringent monitoring due to the potential for severe adverse effects associated with its high dosage. Nevertheless, the existing methods for monitoring MTX are often intricate, time-consuming and incur significant costs. In this work, we constructed a controlled release sensor, harnessing the versatility of a personal glucose meter (PGM), which had been devised for the swift detection of MTX. This innovative approach employed HP-UiO-66-NH2 as a nanoscale reservoir for glucose encapsulation, with aptamer-conjugated gold nanoparticles (AuNPs@Apt) serving as molecular gates, sealing the pores of the nano-container. Upon the introduction of MTX into the solution, a specific recognition event occurred between the aptamer and MTX, leading to the formation of a stable AuNPs@Apt-MTX complex. This interaction triggered the release of AuNPs@Apt from the surface of HP-UiO-66-NH2, allowing glucose to escape, which was then detected by the PGM. This method demonstrated a robust linear response to MTX concentrations spanning from 0.1 μM to 20 μM, with a remarkable detection limit of 0.1 μM. Extensive experiments underscored the platform's exceptional selectivity for MTX detection, coupled with excellent reproducibility and stability, with a detection time of only 30 minutes. Importantly, it had been successfully applied to the analysis of MTX in diluted human serum with satisfactory recoveries. Given its portability and cost-effectiveness, this platform paved a novel avenue for monitoring MTX blood drug levels, offering significant potential for clinical applications and drug monitoring strategies.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Ting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Langyi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
2
|
Jiao T, Dong C, Zhu A, Ahmad W, Peng L, Wu X, Chen Q, Wei J, Chen X, Qin O, Chen Q. AFB1-responsive mesoporous silica nanoparticles for AFB1 quantification based on aptamer-regulated release of SERS reporter. Food Chem 2025; 463:141417. [PMID: 39388875 DOI: 10.1016/j.foodchem.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/14/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
In this study, we propose a novel surface-enhanced Raman scattering (SERS) method for quantifying aflatoxin B1 (AFB1). This method relies on the target-triggered release of a SERS reporter from aptamer-sealed aminated mesoporous silica nanoparticles (MSNs). These MSNs were synthesized to accommodate 4-mercaptophenylboronic acid (4-MPBA) within their well-defined micropores, which were subsequently sealed with AFB1 aptamers. Upon specific binding of AFB1 to its aptamer, the conformational change in the aptamer is regulated by the presence of the target. Consequently, a positive linear relationship between the AFB1 concentration and the 4-MPBA SERS signal was observed. Under optimal conditions, the method exhibited a good linear relationship over the range of 0.1 to 5 ng/mL AFB1, with a limit of detection (LOD) of 0.03 ng/mL. This strategy was validated using wheat samples, yielding results comparable to high performance liquid chromatography-fluorescence detector (P > 0.05), confirming its reliability for detecting AFB1 in complex food matrices.
Collapse
Affiliation(s)
- Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Chenggang Dong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaoxiao Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Ouyang Qin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Du B, Chen T, Huang A, Chen H, Liu W. Portable Detection of Copper Ion Using Personal Glucose Meter. SENSORS (BASEL, SWITZERLAND) 2024; 24:7002. [PMID: 39517898 PMCID: PMC11548145 DOI: 10.3390/s24217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
A simple and sensitive method for Cu2+ detection was developed using the Cu+-catalyzed alkyne-azide cycloaddition reaction, Fe3O4 magnetic nanoparticles (MNPs) as the reaction platform, and a portable blood glucose meter (PGM) as the detection method. Gold nanoparticles (AuNPs) were labeled with glucose oxidase (GOx) and alkyne-functionalized, terminally thiolated ssDNA (C2). In the presence of Cu2+ and ascorbate, the functionalized AuNPs were captured onto MNPs modified with azide-functionalized ssDNA (C1) via the Cu+-catalyzed alkyne-azide cycloaddition reaction. The GOx on the AuNPs' surface oxidized glucose (Glu) into gluconic acid and H2O2, reducing the Glu content in the reaction solution, which was quantitatively detected by the PGM. Under optimal conditions, the PGM response of the system showed a good linear relationship with the logarithm of Cu2+ concentration in the range of 0.05 to 10.00 μmol/L, with a detection limit of 0.03 μmol/L (3σ). In actual tap water samples, the spiked recovery rate of Cu2+ was between 92.30% and 113.33%, and the relative standard deviation was between 0.14% and 0.34%, meeting the detection requirements for Cu2+ in real water samples.
Collapse
Affiliation(s)
- Bin Du
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Taoying Chen
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Anqi Huang
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Haijun Chen
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
5
|
Liu J, Wen C, Hu M, Leng N, Lin XC. Mechanism underlying the effect of MnO 2 nanosheets for A549 cell chemodynamic therapy. Mikrochim Acta 2023; 190:381. [PMID: 37697041 DOI: 10.1007/s00604-023-05974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
MnO2 nanosheets (MnO2NSs) were synthesized by one-step method, and MnO2NSs were applied to A549 cell chemodynamic Therapy (CDT). The cytotoxicity, redox ability, and reactive oxygen species production of MnO2NSs have been investigated, and differences in cell metabolism during CDT were determined using liquid chromatography-mass spectrometry (LC-MS/MS). In addition, the metabolites of A549 lung cancer cells affected by MnO2NSs treatment are identified; metabolite differences were identified by PCA, PLS-DA, orthogonal PLS-DA, and other methods; and these differences were analyzed using non-targeted metabolomics. We found that A549 cells which were treated by MnO2NSs have 17 different metabolites and 9 metabolic pathways that varied markedly. Owing to their unique composition, structure, and physicochemical properties, MnO2NSs and their composites have become a favored type of nanomaterial used for CDT in cancer therapy. This work provides insights into the mechanism underlying the effects of MnO2NSs on the tumor microenvironment of A549 lung cancer cells, effectively making up for the deficiency of the study on cellular mechanism of CDT-induced apoptosis of cancer cells. It could aid the development of cancer CDT treatment strategies and help improve the use of nanomaterials in the clinical field.
Collapse
Affiliation(s)
- Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Miaomiao Hu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Nan Leng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
6
|
Liu J, Wen C, Hu M, Long J, Zhang J, Li M, Lin XC. Metabolomics analysis of MnO 2 nanosheets CDT for breast cancer cells and mechanism of cytotoxic action. RSC Adv 2023; 13:26630-26639. [PMID: 37681048 PMCID: PMC10481133 DOI: 10.1039/d3ra03992g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Chemodynamic therapy (CDT) has received more and more attention as an emerging therapeutic strategy, especially transition metals with Fenton or Fenton-like activity have good effects in CDT research, manganese dioxide nanosheets (MnO2 NSs) and their complexes have become one of the most favored nanomaterials in CDT of tumors. CDT is mainly based on the role of reactive oxygen species (ROS) in tumor treatment, which have clear chemical properties and produce clear chemical reactions. However, their mechanism of interaction with cells has not been fully elucidated. Here, we performed CDT on mouse breast cancer cells (4T1) based on MnO2 NSs, extracted the metabolites from the 4T1 cells during the treatment, and analyzed the differences in metabolites by using high-resolution liquid chromatography-mass spectrometry (LC-MS). Untargeted metabolomics studies were conducted using the relevant data. This study mainly explored the changes in MnO2 NSs on the metabolite profile of 4T1 cells and their potential impact on tumor therapy, in order to determine the mechanism of action of MnO2 NSs in the treatment of breast cancer. The results of the study showed the presence of 11 different metabolites in MnO2 NSs CDT for 4T1 tumor cells, including phosphoserine, sphingine, phosphocholine, and stearoylcarnitine. These findings provide a deeper understanding of breast cancer treatment, and are beneficial for the further research and clinical application of CDT.
Collapse
Affiliation(s)
- Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University Guilin 541004 China +86-773-2535678
| | - Miaomiao Hu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Juan Long
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Jing Zhang
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Minzhe Li
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology Guilin 541004 China
| |
Collapse
|
7
|
Aghayan M, Mahmoudi A, Sazegar MR, Jahanafarin A, Nazari O, Hamidi P, Poorhasan Z, Sadat Shafaei B. The development of a novel copper-loaded mesoporous silica nanoparticle as a peroxidase mimetic for colorimetric biosensing and its application in H 2O 2 and GSH assay. ANAL SCI 2023:10.1007/s44211-023-00339-z. [PMID: 37067770 DOI: 10.1007/s44211-023-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
In recent years, the development of nanomaterials-based peroxidase mimics as enzyme sensors has been attracting considerable interest due to their outstanding features, including potent stability, and cost-effectiveness toward natural enzymes. In this work, mesoporous silica nanoparticles functionalized by copper (Cu-MSN) were prepared as a new artificial enzyme for the first time through the sol-gel procedure. A comprehensive investigation of the catalytic activity of Cu-MSN was done through the oxidation of chromogenic peroxidase substrates, 3,3',5,5'-tetramethylbenzidine (TMB), and (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), in the presence of H2O2. The results indicate that the peroxidase-like activity of the as-prepared sample is significantly higher than other nanoparticles. Additionally, for the study, a facile and rapid sensing method based on the enzyme-like activity of Cu-MSN to detect H2O2 and glutathione (GSH) was developed to examine the potency of the proposed biosensor. Preliminary analysis revealed that the limit of detection (LOD) of H2O2 and GSH is 0.2 and 0.0126 μM, in the range of 0.9-100 and 0.042-1 μM, respectively. These findings support the claims for the efficiency of the sensor in detection fields. Also, human serum was utilized as the real sample to obtain additional evidence.
Collapse
Affiliation(s)
- Morvarid Aghayan
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ali Mahmoudi
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Mohammad Reza Sazegar
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Alireza Jahanafarin
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Omid Nazari
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Parisa Hamidi
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Zeynab Poorhasan
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Batoul Sadat Shafaei
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
8
|
Dadi S, Temur N, Gul OT, Yilmaz V, Ocsoy I. In Situ Synthesis of Horseradish Peroxidase Nanoflower@Carbon Nanotube Hybrid Nanobiocatalysts with Greatly Enhanced Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4819-4828. [PMID: 36944167 PMCID: PMC10077815 DOI: 10.1021/acs.langmuir.3c00260] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Organic-inorganic hybrid nanoflowers (NFs) consisting of horseradish peroxidase (HRP) and copper II (Cu2+) are successfully synthesized with the involvement of carbon nanotubes (CNTs) by in situ and post-modification methods. Catalytic activities of in situ synthesized HRP-NF@CNT (HRP-NF@CNT-Is) and post-modification-synthesized HRP-NF@CNTs (HRP-NF@CNT-Pm) are systematically examined. The 30 mg CNTs incorporated HRP-NF@CNT-Is (HRP-NF@CNT-30Is) exhibits greatly increased catalytic activity and stability toward 3,3',5,5'-tetramethylbenzidine (TMB), thanks to the synergistic effect between HRP-NF and CNTs and the peroxidase-like activity of CNTs in the presence of hydrogen peroxide (H2O2). While HRP-NF@CNT-30Is retains almost 85% of its initial activity even after 10 cycles, HRP-NF (without CNTs) loses half of its initial activity at the same experimental conditions. We study how two experimental parameters, the pH values and temperatures, influence the catalytic activity of HRP-NF@CNT-30Is, in addition to the fact that HRP-NF@CNT-30Is is employed to detect the presence of H2O2 and glutathione (GSH) with colorimetric and spectrophotometric readouts. For instance, HRP-NF@CNT-30Is is used to sensitively detect H2O2 in the range of 20 to 300 μM with an LOD of 2.26 μM. The catalytic activity of HRP-NF@CNT-30Is is suppressed in the presence of GSH, and then an obvious color change from blue to nearly colorless is observed. Using this strategy, GSH is also sensitively determined in the range of 20-200 μM with an LOD of 11.2 μM. We expect that HRP-NF@CNTs can be used as a promising and novel nanobiocatalyst for various biomedical and industrial applications in the near future.
Collapse
Affiliation(s)
- Seyma Dadi
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
- Department
of Nanotechnology Engineering, Abdullah
Gül University, Kayseri 38080, Turkey
| | - Nimet Temur
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - O. Tolga Gul
- Department
of Physics, Polatlı Faculty of Science and Letters, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| | - Vedat Yilmaz
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
9
|
Shi Y, Zhou M, Zhang Y, Wang Y, Cheng J. MRI-guided dual-responsive anti-tumor nanostructures for synergistic chemo-photothermal therapy and chemodynamic therapy. Acta Biomater 2023; 158:571-582. [PMID: 36586501 DOI: 10.1016/j.actbio.2022.12.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Image-guided stimulus-responsive theranostics are beneficial for identifying malignant lesions and integrating multiple cell-killing mechanisms to enhance tumor cell clearance. Herein, an intelligent dual-responsive nanostructure (HSPMH-DOX) was developed for magnetic resonance imaging (MRI)-guided synergistic chemo-photothermal therapy (PTT) and chemodynamic therapy (CDT). The core-shell nanostructure was synthesized by layering polydopamine (PDA), manganese oxide (MnO2), and hyaluronic acid (HA) onto drug-loaded hollow mesoporous silica nanoparticles (HS). The constructed nanoagent has both endogenous and external dual responses. The tumor microenvironment (pH/GSH) can trigger the degradation of gatekeeper (MnO2 and PDA), resulting in the release of anti-tumor drugs, whereas external near-infrared light irradiation can accelerate the degradation process and generate local overheating, resulting in PTT. Notably, MnO2 can not only consume intracellular GSH to enhance CDT but also release Mn2+ for precise localization of tumor tissues using MRI. Both in vitro and in vivo experiments showed that the prepared dual-response nanoagent satisfied biocompatibility, targeting, and the great efficiency of MRI-guided combined therapy. In animal models, combining chemo-PTT and CDT can eradicate tumors in less than two weeks. This work could pave the way for a wide range of stimulus-responsive synergistic theranostic applications, including MRI, chemo-photothermal therapy, and chemodynmic therapy. STATEMENT OF SIGNIFICANCE: Low bioavailability and severe side effects remain the major limitations of conventional cancer chemotherapy. Image-guided combination therapy can alleviate these problems and improve tumor-specific therapy. In the present study, the anticancer drug doxorubicin was encapsulated in a core-shell hollow mesoporous silica nanostructure (HSPMH-DOX), enabling MRI-guided targeted release under both endogenous and external dual stimuli. Moreover, the photothermal and nanoenzymatic effects of nanomedicine can cause local overheating in the tumor and amplify the intracellular CDT effect, accelerating tumor eradication. Systematic evaluations in vitro and in vivo confirmed that nanomedicine enables highly effective MRI-guided synergistic chemo-photothermal and chemodynamic therapy. This work offers a promising therapeutic strategy for precise anti-tumor applications.
Collapse
Affiliation(s)
- Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mengyang Zhou
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yifei Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Alam N, Ravikumar CH, Sreeramareddygari M, Somasundrum M, Surareungchai W. Label-free ultra-sensitive colorimetric detection of hepatitis E virus based on oxidase-like activity of MnO 2 nanosheets. Anal Bioanal Chem 2023; 415:703-713. [PMID: 36469053 PMCID: PMC9734815 DOI: 10.1007/s00216-022-04461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is an evolving infectious entity that causes viral hepatitis infections worldwide. Current routine methods of identifying and diagnosing HEV are someway laborious and costly. Based on the biomimicking oxidase-like activity of MnO2 nanosheets, we designed a label-free, highly sensitive colorimetric sensing technique for HEV detection. The prepared MnO2 catalyst displays intrinsic biomimicking oxidase-like catalytic activity and efficiently oxidizes the 3,3',5,5'-tetramethylbenzidine (TMB) substrate from colorless to blue colored oxidized TMB (oxTMB) product which can be measured at 652 nm by UV-visible spectrum. When the HEV-DNA was added, DNA adsorbed easily on MnO2 surface through physical adsorption and electrostatic interaction which hinders the oxidase-like catalytic activity of MnO2. Upon the introduction of target, the HEV target DNA binds with its complementary ssDNA on the surface of MnO2, the hybridized DNA releases from the surface of MnO2, which leads to recovery of oxidase-like catalytic activity of MnO2. This strategy was applied to construct a colorimetric technique for HEV detection. The approach works in the linear range of 1 fM-100 nM DNA concentration with the limit of detection (LOD) of 3.26 fM (S/N = 3) and quantitative limit (LOQ) of 36.08 fM. The TMB-MnO2 platform was highly selective for HEV target DNA detection when compared with potential interferences. Result of serum sample analysis demonstrates that this sensing system can be used for clinical diagnostic applications.
Collapse
Affiliation(s)
- Naveed Alam
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10150 Thailand
| | - Chandan Hunsur Ravikumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Ramangaram Dist, Karnataka 562112 India
| | | | - Mithran Somasundrum
- Biosciences and System Biology Team, Biochemical Engineering and System Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at KMUTT (Bangkhuntien Campus), Bangkok, 10150 Thailand
| | - Werasak Surareungchai
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10150 Thailand ,Nanoscience & Nanotechnology Graduate Programme, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand ,Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
11
|
Bai X, Wang Z, Li W, Xiao F, Xu H. Portable sensor based on magnetic separation and enzyme-mediated immune nanomaterials for point-of-care testing of Listeria monocytogenes in food. Anal Chim Acta 2022; 1236:340576. [PMID: 36396231 DOI: 10.1016/j.aca.2022.340576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Listeria monocytogenes (L. monocytogenes), a typical foodborne pathogen, poses a serious threat to public health safety. This stimulates to develop a point-of-care testing (POCT) method to achieve rapid, sensitive detection of L. monocytogenes. In this study, polyethylene glycol (PEG) mediated ampicillin functionalized magnetic beads (Amp-PEG-MBs) was prepared successfully and it achieved high efficiency (>90%) and rapid (5 min) capture for L. monocytogenes at room temperature. The innovative combination of antibody (Ab), glucose oxidase (GOD) and graphene oxide (GO) prepared Ab@GO@GOD for the specific recognition of L. monocytogenes. Finally, Amp-PEG-MBs and Ab@GO@GOD were successfully assembled into Amp-PEG-MBs@L. monocytogenes-Ab@GO@GOD sandwich structure which could catalyze the glucose, and the final detection results were recorded by a blood glucose meter (BGM). Magnetic separation (MS) combined with enzyme-catalyzed sensor (MS-Ab@GO@GOD-BGM) was successfully established to achieve the detection of L. monocytogenes in artificially contaminated juice within 66 min with the limit of detection was 101 CFU/mL. This sensor has potential for other pathogens detection by modifying specific antibodies.
Collapse
Affiliation(s)
- Xuekun Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhengzheng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
12
|
Wen C, Guo X, Gao C, Zhu Z, Meng N, Shen XC, Liang H. NIR-II-responsive AuNRs@SiO 2-RB@MnO 2 nanotheranostic for multimodal imaging-guided CDT/PTT synergistic cancer therapy. J Mater Chem B 2022; 10:4274-4284. [PMID: 35583909 DOI: 10.1039/d1tb02807c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific tumor-responsive capabilities and efficient synergistic therapeutic performance are the keys to effective tumor treatment. Herein, AuNRs@SiO2-RB@MnO2 was developed as a new type of tumor-responsive nanotheranostic for multimodal imaging and synergistic chemodynamic/photothermal therapy. In AuNRs@SiO2-RB@MnO2, the SiO2 layer wraps the AuNRs, providing light absorption in the second near-infrared (NIR-II) region. The SiO2 layer also adsorbs the MnO2 nanosheets, which have Fenton-like activity, resulting in a fluorescent sensing platform based on the fluorescence quenching properties of MnO2 for rhodamine B dye. The fluorescence can be recovered by the consumption of MnO2 by glutathione, which simultaneously produces Mn2+ in the tumor region. The recovery of fluorescence reflects the consumption of glutathione and the increase in Mn2+, which produces hydroxyl radicals via Fenton-like reaction in the tumor microenvironment to realize chemodynamic therapy. Meanwhile, the AuNRs are a good photothermal reagent that can effectively absorb NIR-II light and convert it into heat energy to kill tumor cells via photothermal therapy. The NIR-II absorption performance of the AuNRs provides good photoacoustic imaging and deep photothermal performance, which is favorable for efficient NIR-II photoacoustic imaging-guided photothermal therapy. As a result, the AuNRs@SiO2-RB@MnO2 nanotheranostic exhibits outstanding imaging and synergistic chemodynamic/photothermal therapeutic performance for tumor imaging and treatment.
Collapse
Affiliation(s)
- Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Cunji Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Zhongkai Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Nianqi Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| |
Collapse
|
13
|
Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles. Polymers (Basel) 2022; 14:polym14091813. [PMID: 35566982 PMCID: PMC9102585 DOI: 10.3390/polym14091813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Multifunctional theranostic nanomaterial represents one type of emerging agent with the potential to offer both sensitive diagnosis and effective therapy. Herein, we report a novel drug/siRNA co-delivery nanocarrier, which is based on fluorescent mesoporous core-shell silica nanoparticles coated by cross-linked polyethylenimine. The fluorescent mesoporous core-shell silica nanoparticles can provide numerous pores for drug loading and negative charged surface to assemble cross-linked polyethylenimine via electrostatic interaction. Disulfide cross-linked polyethylenimine can be absorbed on the surface of silica nanoparticles which provide the feasibility to bind with negatively charged siRNA and release drug "on-demand". In addition, the hybrid nanoparticles can be easily internalized into cells to realize drug/siRNA co-delivery and therapeutic effect imaging. This work would stimulate interest in the use of self-assembled cross-linked polyethylenimine with fluorescent mesoporous core-shell silica nanoparticles to construct multifunctional nanocomposites for tumor therapy.
Collapse
|
14
|
Mesoporous Silica Nanoparticles in Chemical Detection: From Small Species to Large Bio-Molecules. SENSORS 2021; 22:s22010261. [PMID: 35009801 PMCID: PMC8749741 DOI: 10.3390/s22010261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
A recompilation of applications of mesoporous silica nanoparticles in sensing from the last five years is presented. Its high potential, especially as hybrid materials combined with organic or bio-molecules, is shown. Adding to the multiplying effect of loading high amounts of the transducer into the pores, the selectivity attained by the interaction of the analyte with the layer decorating the material is described. Examples of the different methodologies are presented.
Collapse
|
15
|
Zhu A, Jiao T, Ali S, Xu Y, Ouyang Q, Chen Q. SERS Sensors Based on Aptamer-Gated Mesoporous Silica Nanoparticles for Quantitative Detection of Staphylococcus aureus with Signal Molecular Release. Anal Chem 2021; 93:9788-9796. [PMID: 34236177 DOI: 10.1021/acs.analchem.1c01280] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work describes a simple and novel biosensor for the quantitative determination of Staphylococcus aureus (S. aureus) based on target-induced release of signal molecules from aptamer-gated aminated mesoporous silica nanoparticles (MSNs) coupled with surface-enhanced Raman scattering (SERS) technology. MSNs were synthesized and then modified with amino groups by (3-aminopropyl) triethoxysilane to make them positively charged. Next, signal molecules (4-aminothiophenol, 4-ATP) were loaded into the pores of MSNs. Then, negatively charged aptamers of S. aureus were assembled on the surface of MSNs through electrostatic interactions. Upon the addition of S. aureus, the assembled aptamers were specifically bound to the bacteria. Consequently, the "gates" were opened, resulting in the release of 4-ATP from the pores of MSNs. The released molecules were measured by a Raman spectrometer, and the intensity of 4-ATP at 1071 cm-1 was linearly related to the S. aureus concentration. A silver nanoflower silica core-shell structure (Ag NFs@SiO2) was prepared and it served as a SERS substrate. Under optimized experimental conditions, a good linear relationship (y = 2107.93 + 1536.30x, R2 = 0.9956) in the range from 4.7 × 10 to 4.7 × 108 cfu/mL was observed with a limit of detection of 17 cfu/mL. The method was successfully applied for the analysis of S. aureus in fish samples and the recovery rate was 91.3-109%.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
16
|
Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. BIOSENSORS 2021; 11:190. [PMID: 34207580 PMCID: PMC8227973 DOI: 10.3390/bios11060190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Foodborne disease caused by foodborne pathogens is a very important issue in food safety. Therefore, the rapid screening and sensitive detection of foodborne pathogens is of great significance for ensuring food safety. At present, many research works have reported the application of biosensors and signal amplification technologies to achieve the rapid and sensitive detection of pathogenic bacteria. Thus, this review summarized the use of biosensors coupled with signal amplification technology for the detection of pathogenic bacteria, including (1) the development, concept, and principle of biosensors; (2) types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and so on; and (3) different kinds of signal amplification technologies applied in biosensors, such as enzyme catalysis, nucleic acid chain reaction, biotin-streptavidin, click chemistry, cascade reaction, nanomaterials, and so on. In addition, the challenges and future trends for pathogenic bacteria based on biosensor and signal amplification technology were also discussed and summarized.
Collapse
Affiliation(s)
- Fengchun Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Yingchao Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Jianhan Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| |
Collapse
|
17
|
Wang HB, Mao AL, Gan T, Liu YM. A turn-on fluorescence strategy for cellular glutathione determination based on the aggregation-induced emission enhancement of self-assembled copper nanoclusters. Analyst 2021; 145:7009-7017. [PMID: 32870185 DOI: 10.1039/d0an01247e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a class of ideal fluorescent nanomaterials, self-assembled copper nanoclusters (CuNCs) have attracted increasing interest. Unfortunately, most of these CuNCs only possessed bright luminescence in acidic solution, which limited their practical applications in a physiological environment. Retaining the strong fluorescence of these CuNCs in neutral or alkaline solution is still a challenging task. In this strategy, self-assembled CuNCs were prepared by using 4-methylthiophenol as the protecting ligand. The self-assembled CuNCs display stable and bright luminescence with excitation/emission maxima at 330/605 nm even in neutral and alkaline environments. Interestingly, with the addition of glutathione (GSH), the fluorescence intensity of CuNCs is enhanced strongly through the GSH-controlled aggregation-induced emission enhancement of self-assembled CuNCs. The turn-on fluorescence strategy can determine the GSH concentration in the range from 1 to 100 μM with a limit of detection of 300 nM. In addition, the method is employed for the determination of GSH levels in cells. Therefore, the turn-on fluorescence strategy is reliable, sensitive and suitable for the determination of cellular GSH levels.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China.
| | | | | | | |
Collapse
|
18
|
Zhang G, Xiang M, Kong RM, Qu F. Fluorescent and colorimetric determination of glutathione based on the inner filter effect between silica nanoparticle-gold nanocluster nanocomposites and oxidized 3,3',5,5'-tetramethylbenzidine. Analyst 2021; 145:6254-6261. [PMID: 32985630 DOI: 10.1039/d0an01392g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Determination of glutathione (GSH) is closely related to the clinical diagnosis of many diseases. Thus, a fluorescent and colorimetric dual-readout strategy for the sensitive determination of glutathione was proposed. The mesoporous silica nanoparticle-gold nanocluster (MSN-AuNC) nanocomposites with significantly enhanced emission and effectively improved photostability characteristics were used as fluorescent probes. Based on the inner filter effect (IFE), the fluorescence of MSN-AuNCs at 570 nm can be effectively quenched by oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) with absorption in the wavelength ranges of 330-470 nm and 500-750 nm. However, the addition of GSH could cause the reduction of blue oxTMB to colorless TMB, resulting in the inhibition of IFE and the recovery of the fluorescence of MSN-AuNCs. Therefore, using oxTMB as both quencher and color indicator, a dual-readout oxTMB/MSN-AuNC sensing system for the sensitive determination of GSH was constructed. As signal amplification is caused by the fluorescence enhancement of MSN-AuNCs, the detection limits as low as 0.12 μM and 0.34 μM can be obtained for fluorescent and colorimetric assay, respectively. This method may not only offer a new idea for the sensitive and effective determination of GSH, but also broaden the applications of AuNCs in fluorescent and colorimetric dual-readout bioanalysis.
Collapse
Affiliation(s)
- Guoyan Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu 273165, China.
| | | | | | | |
Collapse
|
19
|
Yang Y, Wu T, Xu LP, Zhang X. Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy. Talanta 2021; 226:122132. [PMID: 33676686 DOI: 10.1016/j.talanta.2021.122132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Staphylococcus aureus is one of the most important food-borne bacterial pathogens and causes numerous illnesses. In this work, we report a sensitive and highly selective magnetic-aptamer biosensor based on a personal glucose meter (PGM) platform for the detection of Staphylococcus aureus. The aptamer for Staphylococcus aureus was immobilized on the magnetic bead by hybridization with the capture probe P. In the presence of Staphylococcus aureus, the aptamer was dissociated from the magnetic bead. Then the capture probe was exposed and could be hybridized with a biotinylated probe to trigger the DNA hybridization chain reaction (HCR), thus achieving the signal amplification. The concentration of streptavidin-labeled invertase can be read by PGM, thus can lead to the portable quantitative detection of Staphylococcus aureus. After optimization of various conditions, 5 μM probe P, the MB-P reaction time for 36 h, the competition time for 60 min, 0.5 μM H1 & H2, 0.5 M sucrose and the sucrose invertase catalytic reaction time for 50 min was chosen to achieve the better sensor performance. Under the optimal conditions, the fabricated sensor offers high sensitivity with the limit of detection about 2 CFU/mL. This sensitive PGM based sensor could successfully evaluate the Staphylococcus aureus concentration in real food samples, and the results are consistent with those obtained by using plate counting methods. Moreover, the PGM sensor can greatly reduce the required time compared to the plate counting methods. The fabricated sensor supplies an ideal solution for rapid portable detection of bacterial pathogens and holds its potential use in the quality control for agriculture and food enterprises, entry-exit inspection and quality testing for food.
Collapse
Affiliation(s)
- Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tingting Wu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
20
|
Cao Y, Liu J, Zou L, Ye B, Li G. Ratiometric fluorescence sensing of glutathione by using the oxidase-mimicking activity of MnO 2 nanosheet. Anal Chim Acta 2020; 1145:46-51. [PMID: 33453880 DOI: 10.1016/j.aca.2020.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Abstract
In this work, a facile ratiometric fluorescence sensor for GSH measurement was designed based on MnO2 nanosheet (NS), carbon dots (CDs), as well as a simple substrate o-phenylenediamine (OPD). Herein, MnO2 NS played triple essential roles in the sensing system. First, it could be reduced by GSH through a special reaction, and therefore served as GSH recognizer. Second, it played as a fluorescence nanoquencher to strongly quench the fluorescence of CDs. Third, it could directly oxidize OPD to yield a luminescent product 2, 3-diaminophenazine (DAP) via the intrinsic oxidase-like activity. It revealed that MnO2 NS could be reduced to Mn2+ in the presence of GSH. Thus its oxidase-like activity and fluorescence quenching abilities were inhibited, which then restricted the generation of DAP and recovered the fluorescence of CDs. Based on this phenomenon, a novel ratiometric fluorescence sensor for GSH determination was fabricated by measuring the ratio of fluorescent intensity of DAP to that of CDs. Besides, the constructed ratiometric fluorescent sensor, which could be facilely operated with single-wavelength excitation, exhibited high sensitivity and selectivity with a wider linear range and a lower detection limit.
Collapse
Affiliation(s)
- Ying Cao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jiaojiao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
21
|
Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt Chem 2020; 124:115782. [PMID: 32194293 PMCID: PMC7081941 DOI: 10.1016/j.trac.2019.115782] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing demand for high-performance point-of-care (POC) diagnostic technologies where in vitro diagnostics (IVD) is fundamental for prevention, identification, and treatment of many diseases. Over the past decade, a shift of IVDs from the centralized laboratories to POC settings is emerging. In this review, we summarize recent progress in translating IVDs from centralized labs to POC settings using commercially available handheld meters. After introducing typical workflows for IVDs and highlight innovative technologies in this area, we discuss advantages of using commercially available handheld meters for translating IVDs from centralized labs to POC settings. We then provide comprehensive coverage of different signal transduction strategies to repurpose the commercially-available handheld meters, including personal glucose meter, pH meter, thermometer and pressure meter, for detecting a wide range of targets by integrating biochemical assays with the meters for POC testing. Finally, we identify remaining challenges and offer future outlook in this area.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
210023, China
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street, Suite 101,
Champaign, IL 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
In syringe hybrid monoliths modified with gold nanoparticles for selective extraction of glutathione in biological fluids prior to its determination by HPLC. Talanta 2020; 209:120566. [DOI: 10.1016/j.talanta.2019.120566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
|
23
|
Tian Q, Xu J, Xu Q, Duan X, Jiang F, Lu L, Jia H, Jia Y, Li Y, Yu Y. A poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based electrochemical sensor for tert.-butylhydroquinone. Mikrochim Acta 2019; 186:772. [DOI: 10.1007/s00604-019-3899-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
|
24
|
Gu J, Li X, Zhou Z, Liu W, Li K, Gao J, Zhao Y, Wang Q. 2D MnO 2 nanosheets generated signal transduction with 0D carbon quantum dots: synthesis strategy, dual-mode behavior and glucose detection. NANOSCALE 2019; 11:13058-13068. [PMID: 31265041 DOI: 10.1039/c9nr03583d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A natural resource such as peony flower has been employed for the first time as a new carbon precursor to prepare green-emitting carbon nanodots (CDs). The emission peak is situated at 523 nm and the excitation wavelength can be extended to the visible light range (452 nm). Due to the formation of CD-MnO2 nanocomposites, the emission intensity of CDs is sharply reduced as a consequence of Förster resonance energy transfer (FRET). Moreover, glucose can be recognized due to the enzymatic conversion of glucose by glucose oxidase to generate H2O2. The MnO2 nanosheets are reduced to form Mn(ii) ions, and the fluorescence of CDs can be recovered. The fluorescence intensity has been improved linearly based on the increasing concentration of glucose (0.5-250 μM) with a detection limit as low as 0.18 μM. This strategy gives a new selection of eco-friendly precursors in carbon nanomaterials and such a consecutive recognition process provides valuable insights for bio-analysis.
Collapse
Affiliation(s)
- Jiapei Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University, Guangzhou 510006, China. and College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| | - Xiangqian Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University, Guangzhou 510006, China. and College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Kai Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University, Guangzhou 510006, China.
| | - Jinwei Gao
- Guangdong Provincial Engineering Technology Research Center For Transparent Conductive Materials, South China Normal University, Guangzhou 510006, China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| | - Qianming Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
25
|
Wu M, Hou P, Dong L, Cai L, Chen Z, Zhao M, Li J. Manganese dioxide nanosheets: from preparation to biomedical applications. Int J Nanomedicine 2019; 14:4781-4800. [PMID: 31308658 PMCID: PMC6613456 DOI: 10.2147/ijn.s207666] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
Advancements in nanotechnology and molecular biology have promoted the development of a diverse range of models to intervene in various disorders (from diagnosis to treatment and even theranostics). Manganese dioxide nanosheets (MnO2 NSs), a typical two-dimensional (2D) transition metal oxide of nanomaterial that possesses unique structure and distinct properties have been employed in multiple disciplines in recent decades, especially in the field of biomedicine, including biocatalysis, fluorescence sensing, magnetic resonance imaging and cargo-loading functionality. A brief overview of the different synthetic methodologies for MnO2 NSs and their state-of-the-art biomedical applications is presented below, as well as the challenges and future perspectives of MnO2 NSs.
Collapse
Affiliation(s)
- Muyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| | - Pingfu Hou
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Lina Dong
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Lulu Cai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Zhudian Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Mingming Zhao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China.,Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China.,Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
β-Cyclodextrin polymer based fluorescence enhancement method for sensitive adenosine triphosphate detection. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Simple and fast determination of biothiols using Fe3+-3, 3′, 5, 5′-tetramethylbenzidine as a colorimetric probe. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Chai Y, Li X, Yang M. Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO 2 nanosheets as the electrochemical probe. Mikrochim Acta 2019; 186:316. [PMID: 31044282 DOI: 10.1007/s00604-019-3412-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
The authors report a sensitive electrochemical aptamer-based assay for the cancer biomarker human epidermal growth factor receptor-2 (HER2). It is based on the use of MnO2 nanosheets that were functionalized with phosphate and a HER2 binding aptamer and serve as the electrochemical probe. The assay follows a sandwich protocol. A peptide that can specifically recognize HER2 was immobilized on a gold electrode for the capture of HER2. Then, the functionalized MnO2 nanosheets were linked to the electrode via the binding between HER2 and HER2 aptamer on the MnO2 nanosheets. The reaction of phosphate and aptamer on the MnO2 nanosheets with molybdate leads to the formation of redox-active molybdophosphate. This results in dual signal amplification. The generated electrochemical current was measured at 0.22 V (vs. Ag/AgCl). The assay allows HER2 to be determined in the 0.1 to 500 pg·mL-1 concentration range, and the detection limit is as low as 0.05 pg·mL-1. The assay was successfully applied for the detection of HER2 in spiked human serum samples. Graphical abstract Electrochemical detection of breast cancer biomarker human epidermal growth factor receptor-2 (HER2) is reported utilizing phosphate ions and aptamer functionalized MnO2 nanosheet as probe.
Collapse
Affiliation(s)
- Yuanlin Chai
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
| | - Xiaoqing Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, China.
| |
Collapse
|
29
|
Ge J, Cai R, Chen X, Wu Q, Zhang L, Jiang Y, Cui C, Wan S, Tan W. Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione. Talanta 2019; 195:40-45. [DOI: 10.1016/j.talanta.2018.11.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 01/27/2023]
|
30
|
Human serum albumin templated MnO 2 nanosheets are oxidase mimics for colorimetric determination of hydrogen peroxide and for enzymatic determination of glucose. Mikrochim Acta 2018; 185:559. [PMID: 30470905 DOI: 10.1007/s00604-018-3099-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
This paper reports on a colorimetric assay for H2O2 and glucose. It is based on the use of human serum albumin-templated MnO2 nanosheets that possess oxidase-like activity. They are capable of oxidizing 3,3',5,5'-tetramethylbenzidine (TMB) with oxygen to give a blue product (oxTMB) with an absorbance maximum at 652 nm. When H2O2 is introduced, the MnO2 nanosheets are reduced to Mn(II) ions, and this inhibits the formation of oxTMB. Based on these findings, a colorimetric assay was established for H2O2 that has a 0.56 μM detection limit. If glucose is oxidized by glucose oxidase under formation of H2O2, the nanosheets can be used to quantify H2O2 and thereby to sense glucose. Response is linear in the 0.5 μM to 50 μM glucose concentration range, and the detection limit is 0.32 μM. The method was applied to the determination of glucose in spiked serum samples and gave satisficatory results. Graphical abstract Human serum albumin (HSA) is used as a template for the synthesis of MnO2 nanosheet. These possess oxidase mimicking activity. H2O2 can reduce the nanosheets. The effect is exploited in colorimetric assays for H2O2 and glucose using tetramethylbenzidine (TMB) as a chromogenic substrate.
Collapse
|
31
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
32
|
Zhang L, Gu C, Ma H, Zhu L, Wen J, Xu H, Liu H, Li L. Portable glucose meter: trends in techniques and its potential application in analysis. Anal Bioanal Chem 2018; 411:21-36. [DOI: 10.1007/s00216-018-1361-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
|
33
|
Song ZL, Dai X, Li M, Teng H, Song Z, Xie D, Luo X. Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Mikrochim Acta 2018; 185:485. [DOI: 10.1007/s00604-018-3024-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023]
|
34
|
Polystyrene nanofibers capped with copper nanoparticles for selective extraction of glutathione prior to its determination by HPLC. Mikrochim Acta 2018; 185:321. [DOI: 10.1007/s00604-018-2845-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
|
35
|
Lin Y, Zhou Q, Zeng Y, Tang D. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B 1. Mikrochim Acta 2018; 185:311. [PMID: 29860598 DOI: 10.1007/s00604-018-2848-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022]
Abstract
The authors describe a photoelectrochemical (PEC) immunoassay for determination of aflatoxin B1 (AFB1) in foodstuff. The competitive immunoreaction is carried out on a microplate coated with a capture antibody against AFB1 using AFB1-bovine serum albumin (BSA)-liposome-coated mesoporous silica nanoparticles (MSN) loaded with L-cysteine as a support. The photocurrent is produced by a photoactive material consisting of cerium-doped Bi2MoO6. Initially, L-cysteine acting as the electron donor is gated in the pores by interaction between mesoporous silica and liposome. Thereafter, AFB1-BSA conjugates are covalently bound to the liposomes. Upon introduction of the analyte (AFB1), the labeled AFB1-BSA complex competes with the analyte for the antibody deposited on the microplate. Accompanying with the immunocomplex, the liposomes on the MSNs are lysed upon addition of Triton X-100. This results in the opening of the pores and in a release of L-cysteine. Free cysteine then induces the electron-hole scavenger of the photoactive nanosheets to increase the photocurrent. The photocurrent (relative to background signal) increases with increasing AFB1 concentration. Under optimum conditions, the photoactive nanosheets display good photoelectrochemical responses, and allow the detection of AFB1 at a concentration as low as 0.1 pg·mL-1 within a linear response in the 0.3 pg·mL-1 to 10 ng·mL-1 concentration range. Accuracy was evaluated by analyzing naturally contaminated and spiked peanut samples by using a commercial AFB1 ELISA kit as the reference, and well-matching results were obtained. Graphical abstract Schematic presentation of a photoelectrochemical immunoassay for AFB1. It is based on the use of Ce-doped Bi2MoO6 nanosheets and of liposome-coated mesoporous silica nanoparticles loaded with L-cysteine.
Collapse
Affiliation(s)
- Youxiu Lin
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350116, People's Republic of China.
| |
Collapse
|
36
|
Ma L, Zhang M, Yang A, Wang Q, Qu F, Qu F, Kong RM. Sensitive fluorescence detection of heparin based on self-assembly of mesoporous silica nanoparticle–gold nanoclusters with emission enhancement characteristics. Analyst 2018; 143:5388-5394. [PMID: 30295305 DOI: 10.1039/c8an01556b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensitive fluorescence detection of heparin based on self-assembly of mesoporous silica nanoparticle–gold nanoclusters with emission enhancement characteristics was reported.
Collapse
Affiliation(s)
- Lin Ma
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Mengyue Zhang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Aijun Yang
- Center for Reproductive medicine
- Affiliated Hospital of Jining Medical University
- Jining
- P. R. China
| | - Qin Wang
- Center for Reproductive medicine
- Affiliated Hospital of Jining Medical University
- Jining
- P. R. China
| | - Fei Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| |
Collapse
|
37
|
Yang J, Huang Z, Hu Y, Ge J, Li J, Li Z. A facile fluorescence assay for rapid and sensitive detection of uric acid based on carbon dots and MnO2nanosheets. NEW J CHEM 2018. [DOI: 10.1039/c8nj02607f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A sensitive turn-on fluorescence method for uric acid detection is proposed based on FRET between carbon dots and MnO2nanosheets.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhongming Huang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yalei Hu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jia Ge
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jianjun Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhaohui Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
38
|
Tan X, Li Z, Du Y, Zheng A, Zeng Y, Zhang X, Liu X, Peng N. A MnO 2nanosheets– o-phenylenediamine oxidative system for the sensitive fluorescence determination of alkaline phosphatase activity. ANALYTICAL METHODS 2018; 10:5341-5346. [DOI: 10.1039/c8ay02061b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A MnO2nanosheets–o-phenylenediamine (OPDA) oxidative system was developed for detecting ALP activity selectively, sensitively and conveniently.
Collapse
Affiliation(s)
- Xionghong Tan
- College of Life Science
- Fujian Agriculture and Forestry University
- Fuzhou
- P. R. China
- Fujian Institute of Research on the Structure of Matter
| | - Zheng Li
- State Key Laboratory for Manufacturing System Engineering
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Yanlin Du
- College of Life Science
- Fujian Agriculture and Forestry University
- Fuzhou
- P. R. China
- Fujian Institute of Research on the Structure of Matter
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- PR China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- PR China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- PR China
| | - Xiaolong Liu
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
| | - Niancai Peng
- State Key Laboratory for Manufacturing System Engineering
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| |
Collapse
|