1
|
Mohseni N, Moodi M, Kefayat A, Shokati F, Molaabasi F. Challenges and Opportunities of Using Fluorescent Metal Nanocluster-Based Colorimetric Assays in Medicine. ACS OMEGA 2024; 9:3143-3163. [PMID: 38284078 PMCID: PMC10809695 DOI: 10.1021/acsomega.3c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Development of rapid colorimetric methods based on novel optical-active metal nanomaterials has provided methods for the detection of ions, biomarkers, cancers, etc. Fluorescent metal nanoclusters (FMNCs) have gained a lot of attention due to their unique physical, chemical, and optical properties providing numerous applications from rapid and sensitive detection to cellular imaging. However, because of very small color changes, their colorimetric applications for developing rapid tests based on the naked eye or simple UV-vis absorption spectrophotometry are still limited. FMNCs with peroxidase-like activity have significant potential in a wide variety of applications, especially for point-of-care diagnostics. In this review, the effect of using various capping agents and metals for the preparation of nanoclusters in their colorimetric sensing properties is explored, and the synthesis and detection mechanisms and the recent advances in their application for ultrasensitive chemical and biological analysis regarding human health are highlighted. Finally, the challenges that remain as well as the future perspectives are briefly discussed. Overcoming these limitations will allow us to expand the nanocluster's application for colorimetric diagnostic purposes in medical practice.
Collapse
Affiliation(s)
- Nasim Mohseni
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Moodi
- Department
of Materials Science and Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran
| | - Amirhosein Kefayat
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
- Department
of Oncology, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
El Aamri M, Mohammadi H, Amine A. A highly sensitive colorimetric DNA sensor for MicroRNA-155 detection: leveraging the peroxidase-like activity of copper nanoparticles in a double amplification strategy. Mikrochim Acta 2023; 191:32. [PMID: 38102528 DOI: 10.1007/s00604-023-06087-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
A novel and highly sensitive colorimetric DNA sensor for determination of miRNA-155 at attomolar levelsis presented that combines the peroxidase-like activity of copper nanoparticles (CuNPs) with the hybridization chain reaction (HCR) . The utilization of CuNPs offers advantages such as strong interaction with double-stranded DNA, excellent molecular recognition, and mimic catalytic activity. Herein, a capture probe DNA (P1) was immobilized on carboxylated magnetic beads (MBs), allowing for amplified immobilization due to the 3D surface. Subsequently, the presence of the target microRNA-155 led to the formation of a sandwich structure (P2/microRNA-155/P1/MBs) when P2 was introduced to the modified P1/MBs. The HCR reaction was then triggered by adding H1 and H2 to create a super sandwich (H1/H2)n. Following this, Cu2+ ions were attracted to the negatively charged phosphate groups of the (H1/H2)n and reduced by ascorbic acid, resulting in the formation of CuNPs, which were embedded into the grooves of the (H1/H2)n. The peroxidase-like activity of CuNPs catalyzed the oxidation reaction of 3,3',5,5'-Tetramethylbenzidine (TMB), resulting in a distinct blue color measured at 630 nm. Under optimal conditions, the colorimetric biosensor exhibited a linear response to microRNA-155 concentrations ranging from 80 to 500 aM, with a detection limit of 22 aM, and discriminate against other microRNAs. It was also successfully applied to the determination of microRNA-155 levels in spiked human serum.
Collapse
Affiliation(s)
- Maliana El Aamri
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco
| | - Hasna Mohammadi
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco
| | - Aziz Amine
- Faculty of Sciences and Techniques, Laboratory of Process Engineering and Environment, Chemical Analysis and Biosensors Group, Hassan II University of Casablanca, P.A 146, Mohammedia, Morocco.
| |
Collapse
|
3
|
Wang H, Mu W, Wang S, Liu Y, Ran B, Shi L, Ma T, Lu Y. Simultaneous fluorescence sensing of vitamin B2 and sulfur ions based on fluorescent copper nanoparticles. Talanta 2023; 256:124267. [PMID: 36657240 DOI: 10.1016/j.talanta.2023.124267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
In this study, the F-CuNPs were synthesized by a modified liquid-phase chemical reduction method. Throughout the preparation process, anhydrous copper sulfate was used as the copper source, and ascorbic acid in the NaOH solution served as the reducing and protective agent. Förster resonance energy transfer (FRET) may exist between F-CuNPs and vitamin B2 due to the large spectral overlap between the fluorescence emission spectra of F-CuNPs and the UV-vis absorption spectra of vitamin B2. Therefore, the detection of vitamin B2 was designed based on a FRET system between F-CuNPs and vitamin B2. With S2- into the F-CuNPs&VB2 system, the fluorescence intensity of vitamin B2 was quenched, while the fluorescence intensity of F-CuNPs was almost unchanged. There may be a specific reaction between S2- and vitamin B2. Therefore, the research system can be further used to detect S2- based on ratiometric fluorescent probe. The research findings show that the linear range of vitamin B2 was 0.51 nM-34.64 nM with a detection limit of 0.25 nM (S/N = 3), the linear range of S2- was 0.64 μM-60.00 μM with a detection limit of 0.32 μM (S/N = 3). Furthermore, the simultaneous fluorescent sensing system has high sensitivity and selectivity. Therefore, this system was designed and successfully used to detect the content of vitamin B2 and S2- in actual samples to find a new effective method to detect analytes.
Collapse
Affiliation(s)
- Huan Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China.
| | - Wencheng Mu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Siying Wang
- 96602 Military Hospital of Chinese People's Liberation Army, Kunming, 650000, China
| | - Yuanyuan Liu
- Yinchuan Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Baocheng Ran
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Lin Shi
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Tianfeng Ma
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Yongchang Lu
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| |
Collapse
|
4
|
MnO2 nanosheet-assisted ratiometric fluorescence probe for the detection of sulfide based on silicon nanoparticles and o-phenylenediamine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Zhou HY, Chai TQ, Peng LJ, Zhang WY, Tian T, Zhang H, Yang FQ. Bisubstrate multi-colorimetric assay based on the peroxidase-like activity of Cu2+-triethylamine complex for copper ion detection. DYES AND PIGMENTS 2023; 210:111028. [DOI: 10.1016/j.dyepig.2022.111028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Zhao C, Xie Z, Ma C, Deng X, Hong C, Sun S. Highly Stable Hybrid Ligand Double-Enhanced Electrochemiluminescence for Sensitive Detection of Cu2+. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Deka MJ. Recent advances in fluorescent 0D carbon nanomaterials as artificial nanoenzymes for optical sensing applications. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Sun Y, Tang X, Zhang K, Liu K, Li Z, Zhao L. Hydrogen sulfide detection and zebrafish imaging by a designed sensitive and selective fluorescent probe based on resorufin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120265. [PMID: 34455378 DOI: 10.1016/j.saa.2021.120265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
A new long-wavelength fluorescent probe 1 that could specifically identify H2S has been successfully synthesized and applied for imaging H2S in zebrafish. Probe 1 was readily prepared by featuring nitrobenzene as the recognition unit coupled to resorufin. The fluorescence off-on response is based on the fact that H2S can reduce the nitro group to an amino group, followed by the 1,6-rearrangement-elimination and the release of resorufin. By evaluating the application abilities of probe 1 in vivo and vitro, it is shown that probe 1 has high sensitivity and selectivity to H2S, low background fluorescence interference, with a low detection limit of 17.30 μM. Notably, the occurrence of the reaction can be observed by the naked eye, and the color of the solution changes from yellow to pink. More importantly, it is the first time that using paper chips as carrier to detect H2S, which lays a foundation for the practical application of detecting H2S. The excellent analysis and application capabilities of probe 1 make it an effective tool for further application in practice.
Collapse
Affiliation(s)
- Yahui Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130021, China
| | - Xiaojie Tang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Kaikai Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130021, China
| | - Kelin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130021, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Li X, Zhu H, Liu P, Wang M, Pan J, Qiu F, Ni L, Niu X. Realizing selective detection with nanozymes: Strategies and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116379] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Hu X, Huang T, Liao H, Hu L, Wang M. The phosphatase-like activity of zirconium oxide nanoparticles and their application in near-infrared intracellular imaging. J Mater Chem B 2021; 8:4428-4433. [PMID: 32239056 DOI: 10.1039/d0tb00450b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the phosphatase mimetic activity of zirconium oxide nanoparticles (ZrO2 NPs) has been demonstrated. They can effectively catalyze the dephosphorylation of a series of commercial fluorogenic and chromogenic substrates of natural phosphatases. Compared with natural phosphatases, ZrO2 NPs possess several advantages such as low cost, facile preparation procedures, and high stability in a broader pH range or at high temperatures. In addition, the activity of ZrO2 NPs toward some important biomolecules was investigated. The ZrO2 NPs can catalyze the dephosphorylation of ATP and o-phospho-l-tyrosine, but they cannot react with DNA strands. These data are important for the further bio-related applications of ZrO2 NPs. Finally, the potential application of ZrO2 NPs in intracellular imaging is also demonstrated by using a near-infrared fluorescent substrate of alkaline phosphatase.
Collapse
Affiliation(s)
- Xilu Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Ting Huang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Hong Liao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
11
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
12
|
Li JJ, Qiao D, Yang SZ, Weng GJ, Zhu J, Zhao JW. Colorimetric determination of cysteine based on inhibition of GSH-Au/Pt NCs as peroxidase mimic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119257. [PMID: 33296750 DOI: 10.1016/j.saa.2020.119257] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In this work, we reported a facile and highly sensitive strategy for colorimetric detection of cysteine (Cys) based on the inhibition of catalytic activity of bimetallic nanoclusters induced by Cys. Glutathione-modified gold-platinum nanoclusters (GSH-Au/Pt NCs) with different Au/Pt molar ratios were prepared via one-pot approach and utilized as peroxidase mimics to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. It has been found that Cys could inhibit the peroxidase-like activity of GSH-Au/Pt NCs efficiently, which leads to a decrease of the absorption intensity of the system at 652 nm with a fading of the blue color. These findings provide a worthy method for visualization and quantitative detection of Cys with different concentrations in the range from 0.5 to 30 μM, and the detection limit is 0.154 μM. Moreover, this method displays a promising application in colorimetric analysis of Cys in urine samples.
Collapse
Affiliation(s)
- Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dan Qiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shou-Zhi Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
13
|
Liu Q, Zhao Y, Zhang Y, Xie K, Liu R, Ren B, Yan Y, Li L. A spiropyran functionalized fluorescent probe for mitochondria targeting and imaging of endogenous hydrogen sulfide in living cells. Analyst 2021; 145:8016-8021. [PMID: 33057526 DOI: 10.1039/d0an01298j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A turn-on spiropyran functionalized fluorescein derivative (FMC) is developed for targeting HS- in mitochondria. FMC exhibits very weak fluorescence at 525 nm under the excitation of 470 nm in aqueous solution due to its colorless spiropyran form; upon addition of HS-, a strong fluorescence enhancement by 6.4-fold is observed with spirocycle-opened merocyanine form and rapid trapping kinetics for HS-. FMC has good biocompatibility and high selectivity towards HS- with a detection limit of 88.2 nM and is very sensitive among the reported H2S fluorescent probes. Moreover, the significant colocalization of FMC with Mito Tracker® Deep Red FM in human laryngeal epidermoid carcinoma (HEp-2) cells and the Pearson correlation coefficient of 0.87 together demonstrate that FMC can target and image the endogenous H2S in the mitochondria of living cells.
Collapse
Affiliation(s)
- Qiaoling Liu
- Department of Chemistry, Taiyuan Normal University, 319 University Street, Jinzhong 030619, Yuci District, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang X, Feng S, He D, Jiang P. Porous manganese-cobalt oxide microspheres with tunable oxidase mimicking activity for sulfide ion colorimetric detection. Chem Commun (Camb) 2020; 56:14098-14101. [PMID: 33107877 DOI: 10.1039/d0cc06209j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we report the controllable synthesis of porous MnxCo1-xO microspheres and tunable catalytic activity in the oxidase mimicking reaction. Mn0.6Co0.4O possesses the best oxidase mimicking activity and can be used successfully in sulfide ion colorimetric detection with a low detection limit of 0.1 μM.
Collapse
Affiliation(s)
- Xue Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Shiya Feng
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Daiping He
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Ping Jiang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
15
|
Song Y, Qiao J, Liu W, Qi L. Enhancement of gold nanoclusters-based peroxidase nanozymes for detection of tetracycline. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Bao J, Xu S, Zhao L, Peng G, Lu H. Colorimetric and fluorescent dual-mode strategy for sensitive detection of sulfide: Target-induced horseradish peroxidase deactivation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118296. [PMID: 32320918 DOI: 10.1016/j.saa.2020.118296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollution caused by sulfide compounds has become a major problem for public health. Hence, accurate detection of sulfide anions (S2-) level is valuable and vital for environmental monitoring and protection. Here, we report a new colorimetric/fluorescent dual-mode sensor for the determination of S2- based on the inhibition of enzyme activity and the unique optical properties of produced 2,3-diaminophenazine (DAP), thus making the analytical results more convincing. In this strategy, horseradish peroxidase (HRP) enzyme is used for catalyzing the H2O2-mediated oxidation of o-phenylenediamine (OPD) to produce DAP, and the color changed to bright yellow and produced orange yellow fluorescence. But the presence of S2- could cause the deactivation of HRP, which decreased the amount of DAP and consequently resulted in a substantial SPR band fading and an evident fluorescence quenching simultaneously. The mechanism of S2- sensor was examined by combining the UV-vis absorption spectra, fluorescence spectra and electrospray ionization mass spectrometry analysis. Under optimal conditions, the colorimetric and fluorescent linear responses of the proposed method exhibited a wide linear range from 2.5 nM-7.5 μM with ultralow detection limits of 1.2 nM and 0.9 nM, respectively. Some potential interferents (such as F-, Cl-, Br-, I-, SO42-, SO32-, SCN-, H2PO4-, HPO42-, Ac-, NO3-, CO32-) in real samples showed no interference. Moreover, the proposed method offered advantages of simple, low-cost instruments and rapid assay without the utilization of nanomaterials and has been successfully applied to determine S2- content in lake water samples with satisfying recoveries over 97.6%. More importantly, the present S2- sensor not only afforded a new optical sensing pattern for bioanalysis and environment monitoring, but also extends the application field of HRP-catalyzed OPD-H2O2 system.
Collapse
Affiliation(s)
- Jie Bao
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Shuxin Xu
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Lihua Zhao
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Guoyu Peng
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China
| | - Haifeng Lu
- Department of Pharmacy, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei 230061, PR China.
| |
Collapse
|
17
|
Chen CY, Tan YZ, Hsieh PH, Wang CM, Shibata H, Maejima K, Wang TY, Hiruta Y, Citterio D, Liao WS. Metal-Free Colorimetric Detection of Pyrophosphate Ions by Inhibitive Nanozymatic Carbon Dots. ACS Sens 2020; 5:1314-1324. [PMID: 32323526 DOI: 10.1021/acssensors.9b02486] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pyrophosphate ion (P2O74-, PPi) plays a critical role in various biological processes and acts as an essential indicator for physiological mechanism investigations and disease control monitoring. However, most of the currently available approaches for PPi species detection for practical usage still lack appropriate indicator generation, straightforward detection requirements, and operation convenience. In this study, a highly sensitive and selective PPi detection approach via the use of nanozymatic carbon dots (CDs) is introduced. This strategy eliminates the common need for metal ions in the detection process, where a direct indicator-PPi interaction is adopted to provide straightforward signal reports, and importantly, through a green indicator preparation. The preparation of this nanozymatic CDs' indicator utilizes an aqueous solution refluxing, employing galactose and histidine as the precursor materials. The mild conditions of the solution refluxing produce fluorescent CDs exhibiting peroxidase-mimic properties, which can catalyze the o-phenylenediamine oxidation under the presence of H2O2. The introduction of PPi species, interestingly, inhibits this process very efficiently, the extent of which can be colorimetrically monitored by the generated yellow product 2,3-diaminophenazine. Spectroscopic results point to CD surface functional groups' selective binding toward PPi species, which severely interferes with the electron transfer process in the enzymatic catalysis. Relying on this CD peroxidase-mimetic property inhibition, sensitive and selective recognition of PPi reaches a detection limit of 4.29 nM, enabling practical usage in complex matrixes. Owing to the superior compatibility and high stability of nanozymatic CDs, they can also be inkjet-printed on paper-based devices to create a portable and convenient platform for PPi detection. Both the solution and the paper-device-based selective recognitions confirm this unique and robust metal-free inhibitive PPi detection, which is supported by a convenient green preparation of nanozymatic CDs.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan
| | - Ying Zi Tan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ping-Hsuan Hsieh
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hiroyuki Shibata
- Department of Applied Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Kento Maejima
- Department of Applied Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Ting-Yi Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
An Y, Ren Y, Bick M, Dudek A, Hong-Wang Waworuntu E, Tang J, Chen J, Chang B. Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens Bioelectron 2020; 154:112078. [DOI: 10.1016/j.bios.2020.112078] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
19
|
Shen D, Liu J, Sheng L, Lv Y, Wu G, Wang P, Du K. Design, synthesis and evaluation of a novel fluorescent probe to accurately detect H 2S in hepatocytes and natural waters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117690. [PMID: 31740124 DOI: 10.1016/j.saa.2019.117690] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Design and synthesis of fluorescent probe with fast response, excellent water solubility and good hepatocyte-targeting capacity to detect hydrogen sulfide (H2S) in hepatocytes and water samples is of great significance. Here, a novel fluorescent probe QL-Gal-N3 for detection of H2S was designed and synthesized based on H2S-mediated azide reduction strategy. This sensor demonstrated low toxicity, fast response (within 1 min), high selectivity and low detection limit (as low as 126 nM in water) for the detection of H2S. HeLa, A549 and HepG-2 cells were chosen to investigate the hepatocyte-targeting ability of QL-Gal-N3 respectively. The results indicated that the specific recognition of ASGPR over-expressed in hepatocytes by galactose group was an important reason for the good targeting ability of probe QL-Gal-N3. Furthermore, due to the introduction of glycosyl moiety, the water solubility of fluorescent probe was enhanced obviously. It was successfully applied for the detection of H2S in environmental water samples including river water, tap water, lake water and waste water.
Collapse
Affiliation(s)
- Dadong Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jian Liu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Li Sheng
- Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing, 312500, China.
| | - Yonghui Lv
- Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing, 312500, China
| | - Guofeng Wu
- Research & Development Center, Zhejiang Medicine Co. Ltd, Shaoxing, 312500, China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| |
Collapse
|
20
|
|
21
|
Novel enzyme-free immunomagnetic microfluidic device based on Co0.25Zn0.75Fe2O4 for cancer biomarker detection. Anal Chim Acta 2019; 1071:59-69. [DOI: 10.1016/j.aca.2019.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/30/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022]
|
22
|
Lin L, Xiao Y, Wang Y, Zeng Y, Lin Z, Chen X. Hydrothermal synthesis of nitrogen and copper co-doped carbon dots with intrinsic peroxidase-like activity for colorimetric discrimination of phenylenediamine isomers. Mikrochim Acta 2019; 186:288. [DOI: 10.1007/s00604-019-3404-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
|
23
|
A colorimetric heparin assay based on the inhibition of the oxidase mimicking activity of cerium oxide nanoparticles. Mikrochim Acta 2019; 186:274. [DOI: 10.1007/s00604-019-3382-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
|
24
|
Copper(II) ions enhance the peroxidase-like activity and stability of keratin-capped gold nanoclusters for the colorimetric detection of glucose. Mikrochim Acta 2019; 186:271. [DOI: 10.1007/s00604-019-3395-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
|
25
|
Colorimetric determination of lead(II) or mercury(II) based on target induced switching of the enzyme-like activity of metallothionein-stabilized copper nanoclusters. Mikrochim Acta 2019; 186:250. [PMID: 30888507 DOI: 10.1007/s00604-019-3360-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
It is shown that metallothionein-stabilized copper nanoclusters (MT-CuNCs) display catalase-like activity. In the presence of either lead(II) or mercury(II), the catalase-like activity is converted to a peroxidase-like activity. On addition of Pb(II) or Hg(II), the inhibitory effect of MT-CuNCs on the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2 is weakened. On the other hand, the catalytic effect of the nanoclusters on the chromogenic reaction is increased. The system MT-CuNCs-Pb(II)/Hg(II) exhibits high affinity for the substrates TMB and H2O2. Their catalytic behavior follows Michaelis-Menten kinetics. Based on these findings, a method was developed for visual detection (via the blue coloration formed) and spectrophotometric determination (at 450 nm) of Pb(II) and Hg(II). The linear range for Pb(II) extends from 0.7 to 96 μM, and the linear ranges for Hg(II) from 97 nM to 2.3 μM and from 3.1 μM to 15.6 μM. The detection limits are 142 nM for Pb(II) and 43.8 nM for Hg(II). Graphical abstract Metallothionein-stabilized copper nanoclusters (MT-CuNCs) display catalase-like activity. On addition of Pb(II) or Hg(II), the catalase-like activity is converted to a peroxidase-like activity. The latter catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2.
Collapse
|
26
|
Sinduja B, John SA. Silver nanoparticles capped with carbon dots as a fluorescent probe for the highly sensitive "off-on" sensing of sulfide ions in water. Anal Bioanal Chem 2019; 411:2597-2605. [PMID: 30824967 DOI: 10.1007/s00216-019-01697-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
The present study illustrates the synthesis of silver nanoparticles capped with carbon dots (AgNPs-CDs) and their application towards the sensitive and selective sensing of sulfide ions by colorimetry and spectrofluorimetry methods. The CDs were prepared from l-asparagine by pyrolysis at 234 °C. The as-synthesized CDs were then utilized as reducing and capping agents for the synthesis of AgNPs-CDs by the wet chemical method. The size of the AgNPs-CDs was found to be ~ 5.2 nm. They show a characteristic surface plasmon resonance band at 417 nm and emission maximum at 441 nm when excited at 348 nm. Since the AgNPs were formed on the surface of CDs, the emission intensity of AgNPs-CDs was drastically decreased in contrast to that of CDs. The as-synthesized AgNPs-CDs were then successfully used for the sensitive and selective determination of sulfide ions. The addition of 0.1 μM sulfide ions to AgNPs-CDs leads to a decrease in the absorbance intensity at 417 nm aside turning from yellow to colorless. In the contrary, the emission was "turned on" after the addition of sulfide ions. The decrease in the absorbance and increase in the emission were attributed to the rapid formation of Ag2S. Finally, the practical application of the present method was demonstrated by determining dissolved H2S in tap water samples.
Collapse
Affiliation(s)
- B Sinduja
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Dindigul, 624 302, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Dindigul, 624 302, India.
| |
Collapse
|
27
|
Zhong Q, Chen Y, Qin X, Wang Y, Yuan C, Xu Y. Colorimetric enzymatic determination of glucose based on etching of gold nanorods by iodine and using carbon quantum dots as peroxidase mimics. Mikrochim Acta 2019; 186:161. [DOI: 10.1007/s00604-019-3291-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 02/04/2023]
|
28
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
29
|
Wang Y, Zhang P, Liu L, Xue F, Liu M, Li L, Fu W. Regulating peroxidase-like activity of Pd nanocubes through surface inactivation and its application for sulfide detection. NEW J CHEM 2019. [DOI: 10.1039/c8nj05138k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peroxidase-like activity of Pd nanocubes is regulated by the formation of surface PdS layers, which has been applied for sulfide assay in environmental water samples.
Collapse
Affiliation(s)
- Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Pu Zhang
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
- China
| | - Lei Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Fei Xue
- International Research Center for Renewable Energy
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi’an
- China
| | - Maochang Liu
- International Research Center for Renewable Energy
- State Key Laboratory of Multiphase Flow in Power Engineering
- Xi’an Jiaotong University
- Xi’an
- China
| | - Ling Li
- Chongqing Key Laboratory of Green Synthesis and Applications, and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, and College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- China
| |
Collapse
|
30
|
Fluorometric determination of sulfide ions via its inhibitory effect on the oxidation of thiamine by Cu(II) ions. Mikrochim Acta 2018; 185:362. [DOI: 10.1007/s00604-018-2906-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
|