1
|
Zhang W, Li Y, Muntiza N, Ji W, Fan Z, Li Q, Zhao J, Zhang H, Deng Q, Sun D, Liu T. Preparation of dual-epitopes imprinted particles with γ-cyclodextrin host-guest interaction and reversible addition-fragmentation chain transfer strategy for cytochrome c collaborative recognition. J Chromatogr A 2025; 1746:465782. [PMID: 39970687 DOI: 10.1016/j.chroma.2025.465782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
A dual-epitopes imprinted strategy for cytochrome c selective recognition assisted with γ-cyclodextrin host-guest interaction via N-terminal and C-terminal epitope's simultaneous imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal and C-terminal nonapeptides of Cyt c (GI-9 and AE-9) were used simultaneously as the epitope to achieve collaborative recognition for cytochrome c. As a supramolecule, γ-cyclodextrin can encapsulate the aromatic functional groups of amino acid residues to capture the peptide and improve the corresponding spatial orientation for epitope or cytochrome c recognition by host-guest interaction. After the γ-cyclodextrin modification and dual-epitopes immobilization, the imprinted polymer was synthesized by RAFT polymerization with 4-cyano-4-(phenyl-carbonothioylthio) pentanoic acid as a chain transfer agent. After the template removal, the obtained dual-epitopes imprinted particles showed well binding ability to AE-9 (26.50 mg·g-1, IF= 4.13), GI-9 (7.36 mg·g-1, IF= 2.18) and cytochrome c (79.56 mg·g-1, IF= 3.27). With the successive addition of RAFT agent, the imprinting factor rising of epitope peptide and cytochrome c further illustrated the regulation of imprinted polymer chains. The imprinted particles had the advantage for cytochrome c recognition compared to other proteins and good reusability with 82.60 % repeated reproduction rate after six cycles of adsorption and desorption. Furthermore, the selective recognition for cytochrome c in bovine serum proved its potentiality to be applied in complex biological samples. It indicated that the combination of dual-templates epitope imprinting, γ-CD host-guest interaction and RAFT polymerization provided an efficient method for collaborative protein recognition with well selectivity, reusability and stability.
Collapse
Affiliation(s)
- Wenbin Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yuzeng Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Nurimangul Muntiza
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wenquan Ji
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Zhen Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qinran Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Jin Zhao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Hongfeng Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qiliang Deng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Donglan Sun
- College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
2
|
Han W, Chai Y, Du Y, Wang L, Fu G, Ou L. Oriented surface imprinting of epitopes anchored on silica nanoparticles containing quantum dots by thiol-disulfide exchange reactions for the enhanced fluorescence detection of proteins. Talanta 2024; 280:126636. [PMID: 39126964 DOI: 10.1016/j.talanta.2024.126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
As artificial receptors for protein recognition, epitope-imprinted polymers combined with fluorescence sensing based on quantum dots (QDs) can be potentially used for biological analysis and disease diagnosis. However, the usual way for fabrication of QD sensors through unoriented epitope imprinting is confronted with the problems of disordered imprinting sites and low template utilization. In this context, a facile and efficient oriented epitope surface imprinting was put forward based on immobilization of the epitope templates via thiol-disulfide exchange reactions. With N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP) as a heterobifunctional reagent, cysteine-modified epitopes of cytochrome c were anchored on the surface of pyridyl disulfide functionalized silica nanoparticles sandwiching CdTe QDs. After surface imprinting via a sol-gel process, the epitope templates were removed from the surface-imprinted layers simply by reduction of the thiol-disulfide, affording oriented epitope-imprinted sites. By this method, the amount of epitope templates was only 1/20 of traditionally unoriented epitopes. The resulting sensors demonstrated significantly enhanced imprinting performance and high sensitivity, with the imprinting factor increasing from 2.6 to 3.9, and the limit of detection being 91 nM. Such epitope-oriented surface-imprinted method may offer a new design strategy for the construction of high-affinity protein recognition nanomaterials with fluorescence sensing.
Collapse
Affiliation(s)
- Wenyan Han
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yamin Chai
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guoqi Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Yadav S, Sawarni N, Kumari P, Sharma M. Advancement in analytical techniques fabricated for the quantitation of cytochrome c. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Dou M, Wu Y, Du J. Luminescent gold nanoclusters as a signal reporter for cytochrome c assay with a double signal amplification strategy. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min‐Na Dou
- Normal Department Xianyang Vocational Technical College Xianyang China
| | - Yifan Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi′an China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi′an China
| |
Collapse
|
5
|
Hu R, Yan Y, Jiang L, Huang C, Shen X. Determination of total cathinones with a single molecularly imprinted fluorescent sensor assisted by electromembrane microextraction. Mikrochim Acta 2022; 189:324. [PMID: 35939150 DOI: 10.1007/s00604-022-05405-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
An electromembrane microextraction (EME)-assisted fluorescent molecularly imprinted polymer (MIP) sensing method is presented for detecting the total cathinone drugs in urine samples. In this detection system, the clean-up ability of EME eliminated the matrix effects on both target binding with MIPs and the luminescence of the fluorophore in the sensor. Moreover, by optimizing the extraction conditions of EME, different cathinone drugs with a same concentration show a same response on the single aggregation induced emission (AIE) based MIP (AIE-MIP) sensor (λex = 360 nm, λem = 467 nm). The recoveries were 57.9% for cathinone (CAT) and 78.2% for methcathinone (MCAT). The EME-assisted "light-up" AIE-MIP sensing method displayed excellent performance with a linear range of 2.0-12.0 μmol L-1 and a linear determination coefficient (R2) of 0.99. The limit of detection (LOD) value for EME-assisted "light-up" AIE-MIP sensing method was 0.3 μmol L-1. The relative standard deviation (RSD) values for the detection were found to be within the range 2.0-12.0%. To the best of our knowledge, this is the first time that determination of total illicit drugs with a single fluorescent MIP sensor was achieved and also the first utilization of sample preparation to tune the sensing signal of the sensor to be reported. We believe that this versatile combination of fluorescent MIP sensor and sample preparation can be used as a common protocol for sensing the total amount of a group of analytes in various fields.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
6
|
Dual selective sensor for exosomes in serum using magnetic imprinted polymer isolation sandwiched with aptamer/graphene oxide based FRET fluorescent ignition. Biosens Bioelectron 2022; 207:114112. [DOI: 10.1016/j.bios.2022.114112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022]
|
7
|
Zhang X, Wang Y, Wei ZH, An DY, Pu WR, Liu ZS, Huang YP. Improving the Identification of Lysine-Acetylated Peptides Using a Molecularly Imprinted Monolith Prepared by a Deep Eutectic Solvent Monomer. J Proteome Res 2022; 21:325-338. [PMID: 35050640 DOI: 10.1021/acs.jproteome.1c00553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To overcome the identification challenge of low-abundance lysine acetylation (Kac), a novel approach based on a molecularly imprinted polymer (MIP) was developed to improve the extraction capacity of Kac peptides in real samples. Green deep eutectic solvents (DESs) were introduced and used as one of the synergistic functional monomers with zinc acrylate (ZnA). Glycine-glycine-alanine-lysine(ac)-arginine (GGAKacR) was chosen as a template and N,N'-methylenbisacrylamide (MBAA) was used as a cross-linker. The obtained GGAKacR-MIP had excellent selectivity for the template with an imprinting factor (IF) of up to 21.4. The histone digest addition experiment demonstrated that GGAKacR-MIP could successfully extract GGAKacR from a complex sample. Finally, the application to the extraction of Kac peptides from mouse liver protein digestion was studied in detail. The number of Kac peptides and Kac proteins identified was 130 and 110, which were 3.71-fold and 3.93-fold higher than those of the untreated sample. In addition, the number of peptides and proteins identified after treatment increased from 5535 and 1092 to 17 149 and 4037 (3.10-fold and 3.70-fold, respectively). The results showed that the obtained MIP may provide an effective technical tool for the identification of Kac-modification and peptide fractionation, as well as a potential approach for simultaneously identifying post-translational-modified proteomic and proteomic information.
Collapse
Affiliation(s)
- Xue Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ze-Hui Wei
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dong-Yu An
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wan-Rong Pu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhao-Sheng Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yan-Ping Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
8
|
Ye H, Zhao L, Ren X, Cai Y, Chi H. "Switch-Off-On" Detection of Fe 3+ and F - Ions Based on Fluorescence Silicon Nanoparticles and Their Application to Food Samples. NANOMATERIALS 2022; 12:nano12020213. [PMID: 35055232 PMCID: PMC8779261 DOI: 10.3390/nano12020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023]
Abstract
An approach to the detection of F− ions in food samples was developed based on a “switch-off-on” fluorescence probe of silicon nanoparticles (SiNPs). The fluorescence of the synthetic SiNPs was gradually quenched in the presence of Fe3+ ion and slightly recovered with the addition of F− ion owing to the formation of a stable and colorless ferric fluoride. The fluorescence recovery exhibited a good linear relationship (R2 = 0.9992) as the concentration of F− ion increased from 0 to 100 μmol·L−1. The detection limit of the established method of F− ion was 0.05 μmol·L−1. The recovery experiments confirmed the accuracy and reliability of the proposed method. The ultraviolet–visible spectra, fluorescence decays, and zeta potentials evidenced the fluorescence quenching mechanism involving the electron transfer between the SiNPs and Fe3+ ion, while the fluorescence recovery resulted from the formation of ferric fluoride. Finally, SiNPs were successfully applied to detect F− ions in tap water, Antarctic krill, and Antarctic krill powder.
Collapse
Affiliation(s)
- Hongli Ye
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Lukai Zhao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Xinghui Ren
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Youqiong Cai
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.C.)
- Key Laboratory of Control of Safety and Quality for Aquatic Product, Ministry of Agriculture and Rural Affairs, Beijing 100141, China
| | - Hai Chi
- Laboratory of Aquatic Product Quality, Safety and Processing, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (H.Y.); (Y.C.)
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Correspondence:
| |
Collapse
|
9
|
Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Gómez-Caballero A, Elejaga-Jimeno A, García Del Caño G, Unceta N, Guerreiro A, Saumell-Esnaola M, Sallés J, Goicolea MA, Barrio RJ. Solid-phase synthesis of imprinted nanoparticles as artificial antibodies against the C-terminus of the cannabinoid CB1 receptor: exploring a viable alternative for bioanalysis. Mikrochim Acta 2021; 188:368. [PMID: 34618242 PMCID: PMC8497319 DOI: 10.1007/s00604-021-05029-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 10/30/2022]
Abstract
The production of artificial anti-CB1 antibodies in nanoparticle format is described using the solid-phase imprinting approach. Instead of whole protein imprinting, a linear C-terminus sequence of the receptor comprising 15 amino acids (458-KVTMSVSTDTSAEAL-472) has been used as template, in accordance with the epitope imprinting approach. This sequence is located intracellularly, and it is involved in coupling to Gi/o proteins, being responsible for CB1 receptor desensitisation and internalisation. Developed molecularly imprinted materials were found to be in the nanometre scale, with a particle size of 126.4 ± 10.5 nm at pH 3 (25 ºC) and spherical shape. It was also observed that the size was sensible to temperature changes being reduced to 106.3 ± 15.2 nm at 35 °C. Lower critical solution temperature of this polymer was found to be ≈ 33.4 °C. The affinity and selectivity of the artificial antibody were assessed through dot blot and Western blot experiments. For the latter, recombinant fusion proteins GST-CB1414-472 and GST-CB1414-442 were produced to work respectively as target and negative control proteins. The control protein did not carry the target epitope for being devoid of last 30 amino acids at the C-terminus. The results demonstrated that the anti-CB1 material recognised selectively the target protein, thanks to the presence of the 15-amino acid sequence selected as epitope, which revealed that binding occurred at the C-terminus of the receptor itself. The methodology presented may pave the way for the development of novel imprinted nanomaterials for other proteins included in the superfamily of the G-protein-coupled receptors (GPCR).
Collapse
Affiliation(s)
- Alberto Gómez-Caballero
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain.
| | - Ainhoa Elejaga-Jimeno
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain
| | - Nora Unceta
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain
| | | | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
| | - M Aránzazu Goicolea
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain
| | - Ramón J Barrio
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz (Álava), Spain
| |
Collapse
|
11
|
Yin C, Chen L, Niu N. Nitrogen-doped carbon quantum dots fabricated from cellulolytic enzyme lignin and its application to the determination of cytochrome c and trypsin. Anal Bioanal Chem 2021; 413:5239-5249. [PMID: 34212211 DOI: 10.1007/s00216-021-03496-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
A sensitive and effective strategy for the detection of cytochrome c (Cyt c) and trypsin was developed using biomass nitrogen-doped carbon quantum dots (N-CQDs) as the fluorescence probe. N-CQDs were synthesized through a one-pot hydrothermal method by utilizing cellulolytic enzyme lignin as the carbon source and ammonia as the solvent and nitrogen source. The obtained N-CQDs had good water solubility and stable optical properties. The introduction of nitrogen increased fluorescence quantum yield (QY) to 8.23%, which was almost four times as high as that before nitrogen doping. The N-CQDs were fabricated as a label-free biosensor to detect Cyt c and trypsin. The fluorescence of N-CQDs was quenched with positively charged Cyt c due to electrostatic induction aggregation and static quenching. However, Cyt c tended to be hydrolyzed into small peptides in the presence of trypsin, which caused fluorescence recovery of the N-CQDs/Cyt c complex. A wide linear response range was achieved for Cyt c within 1-50 μM and the developed N-CQDs/Cyt c complex displayed a linear response for trypsin within 0.09-5.4 U/mL. The detection limits were 0.29 μM for Cyt c and 0.013 U/mL for trypsin, respectively. Furthermore, this assay had been applied to Cyt c and trypsin detection in serum samples with the recoveries in the range of 94.6-98.5% and 95.5-102.0%, respectively. The established method was sensitive, selective, easy to operate, and low cost, which proved its potential application in clinical diagnosis. The synthesis and fluorescence mechanism of N-CQDs and the strategy for Cyt c and trypsin detection.
Collapse
Affiliation(s)
- Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China. .,Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
12
|
Wang X, Chen G, Zhang P, Jia Q. Advances in epitope molecularly imprinted polymers for protein detection: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1660-1671. [PMID: 33861232 DOI: 10.1039/d1ay00067e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epitope molecularly imprinted polymers (EMIPs) are novel imprinted materials using short characteristic peptides as templates rather than entire proteins. To be specific, the amino acid sequence of the template peptide is the same as an exposed N- or C-terminus of a target protein, or its amino acid composition and sequence replicate a similar conformational arrangement as the same amino acid residues on the surface of the target protein. EMIPs have a good application prospect in protein research. Herein, we focus on classification of epitope imprinting techniques, methods of epitope immobilization on matrix materials including boronate affinity immobilization, covalent bonding immobilization, physical adsorption immobilization and metal ion chelation immobilization, and application of EMIPs in peptides, proteins, target imaging and target therapy fields. Finally, the main problems and future development are summarized.
Collapse
Affiliation(s)
- Xindi Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | |
Collapse
|
13
|
Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment. Talanta 2021; 224:121810. [PMID: 33379035 DOI: 10.1016/j.talanta.2020.121810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Microfluidic system with multi-functional integration of high-throughput protein/peptide separation ability has great potential for improving the identification capacity of biological samples in proteomics. In this paper, a sample treatment platform was constructed by integrating reversed phase chromatography, immobilized enzyme reactor (IMER) and imprinted monolith through a microfluidic chip to achieve the online proteins fractionation, denaturation, digestion and peptides enrichment. We firstly synthesized a poly-allyl phenoxyacetate (AP) monolith and a lysine-glycine-glycine (KGG) imprinted monolith separately, and investigated in detail their performance in fractionating proteins and extracting KGG from the protein digests of MCF-7 cell. The removal percentage of 94.6% for MCF-7 cell protein and the recovery of 90.8% for KGG were obtained. The number of proteins and peptides identified on this microfluidic platform was 2,004 and 8,797, respectively, which was 2.8-fold and 3.0-fold higher than that of untreatment sample. The time consumed by this platform for a sample treatment was about 9.6 h, less than that of conventional method (approximate 13.3 h). In addition, this platform can enrich some peptide fragments containing KGG based on imprinted monolith, which can be served for the identification of ubiquitin-modified proteomics. The successful construction of this integrated microfluidic platform provides a considerable and efficient technical tool for simultaneous identification of proteomics and post-translational modification proteomics information.
Collapse
|
14
|
Shen Y, Shen X, Ge J, Qu L, Li Z. A highly sensitive fluorescent biosensor for the detection of cytochrome c based on polydopamine nanotubes and exonuclease I amplification. NEW J CHEM 2021. [DOI: 10.1039/d1nj02112e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel fluorescence method for the detection of Cyt c was developed based on PDANTs and exonuclease I amplification.
Collapse
Affiliation(s)
- Yanmei Shen
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xueping Shen
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jia Ge
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
15
|
The Recent Advances of Fluorescent Sensors Based on Molecularly Imprinted Fluorescent Nanoparticles for Pharmaceutical Analysis. Curr Med Sci 2020; 40:407-421. [PMID: 32681246 PMCID: PMC7366466 DOI: 10.1007/s11596-020-2195-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/22/2020] [Indexed: 12/16/2022]
Abstract
Fluorescent nanoparticles have good chemical stability and photostability, controllable optical properties and larger stokes shift. In light of their designability and functionability, the fluorescent nanoparticles are widely used as the fluorescent probes for diverse applications. To enhance the sensitivity and selectivity, the combination of the fluorescent nanoparticles with the molecularly imprinted polymer, i.e. molecularly imprinted fluorescent nanoparticles (MIFN), was an effective way. The sensor based on MIFN (the MIFN sensor) could be more compatible with the complex sample matrix, which was especially widely adopted in medical and biological analysis. In this mini-review, the construction method, detective mechanism and types of MIFN sensors are elaborated. The current applications of MIFN sensors in pharmaceutical analysis, including pesticides/herbicide, veterinary drugs/drugs residues and human related proteins, are highlighted based on the literature in the recent three years. Finally, the research prospect and development trend of the MIFN sensor are forecasted.
Collapse
|
16
|
Khanra S, Ta S, Paladhi A, Ghosh M, Ghosh S, Hira SK, Manna PP, Brandão P, Félix V, Das D. A polynuclear Cu(ii) complex for real time monitoring of mitochondrial cytochrome C release during cellular apoptosis. Chem Commun (Camb) 2020; 56:6563-6566. [PMID: 32396594 DOI: 10.1039/d0cc01606c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new amide-imine conjugate, 2-hydroxybenzoic acid-(2-hydroxybenzylidene)-hydrazide (L1), is employed to prepare a single crystal X-ray structurally characterized poly-nuclear Cu(ii) complex (M1). M1 selectively and spatially interacts with cytochrome C (Cyt C) to allow fluorescence imaging of intracellular translocation events in living cells. Thus, direct visualization of a Cyt C translocation event during an apoptotic process is achieved for the first time. The binding constant and LOD are 7.52 × 104 M-1 and 34.0 nM, respectively.
Collapse
Affiliation(s)
- Somnath Khanra
- Department of Chemistry, The University of Burdwan, Burdwan, WB 713104, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang J, Feng W, Liang K, Chen C, Cai C. A novel fluorescence molecularly imprinted sensor for Japanese encephalitis virus detection based on metal organic frameworks and passivation-enhanced selectivity. Talanta 2020; 212:120744. [DOI: 10.1016/j.talanta.2020.120744] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 02/04/2023]
|
18
|
Zhang Y, Li S, Ma XT, He XW, Li WY, Zhang YK. Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor. Mikrochim Acta 2020; 187:228. [PMID: 32170469 DOI: 10.1007/s00604-020-4198-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
A carbon dots-embedded epitope imprinted polymer (C-MIP) was fabricated for targeted fluorescence imaging of cervical cancer by specifically recognizing the epidermal growth factor receptor (EGFR). The core-shell C-MIP was prepared by a reverse microemulsion polymerization method. This method used silica nanoparticles embedded with carbon dots as carriers, acrylamide as the main functional monomer, and N-terminal nonapeptides of EGFR modified by palmitic acid as templates. A series of characterizations (transmission electron microscope, dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, zeta potential, and energy dispersive X-ray spectroscopy) prove the successful synthesis of C-MIP. The fluorescence of C-MIP is quenched by the epitopes of EGFR due to the specific recognition of epitopes of EGFR through their imprinted cavities (analytical excitation/emission wavelengths, 540 nm/610 nm). The linear range of fluorescence quenching is 2.0 to 15.0 μg mL-1 and the determination limit is 0.73 μg mL-1. The targeted imaging capabilities of C-MIP are demonstrated through in vitro and in vivo experiments. The laser confocal imaging results indicate that HeLa cells (over-expression EGFR) incubated with C-MIP show stronger fluorescence than that of MCF-7 cells (low-expression EGFR), revealing that C-MIP can target tumor cells overexpressing EGFR. The results of imaging experiments in tumor-bearing mice exhibit that C-MIP has a better imaging effect than C-NIP, which further proves the targeted imaging ability of C-MIP in vivo. Graphical abstract An oriented epitope imprinted polymer embedded with carbon dots was prepared for the determination of the epitopes of epidermal growth factor receptor and targeted fluorescence imaging of cervical cancer.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Si Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xiao-Tong Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
19
|
Xie R, Liu Y, Yang P, Huang L, Zou X, Liu J, Ren Q, Tao J, Zhao P. “French fries”-like luminescent metal organic frameworks for the fluorescence determination of cytochrome c released by apoptotic cells and screening of anticancer drug activity. Mikrochim Acta 2020; 187:221. [DOI: 10.1007/s00604-020-4207-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
|
20
|
Liu M, Zhou J, He Y, Cai Z, Ge Y, Zhou J, Song G. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Mikrochim Acta 2019; 186:770. [DOI: 10.1007/s00604-019-3945-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
|
21
|
Cai M, Ding C, Cao X, Wang F, Zhang C, Xian Y. Label-free fluorometric assay for cytochrome c in apoptotic cells based on near infrared Ag2S quantum dots. Anal Chim Acta 2019; 1056:153-160. [DOI: 10.1016/j.aca.2019.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/16/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
|
22
|
Cazares-Cortes E, Cabana S, Boitard C, Nehlig E, Griffete N, Fresnais J, Wilhelm C, Abou-Hassan A, Ménager C. Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Adv Drug Deliv Rev 2019; 138:233-246. [PMID: 30414493 DOI: 10.1016/j.addr.2018.10.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Abstract
Magnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of specific temperature profile at the vicinity of nanoparticles for heating with minor to no long-range effect. This magneto-thermal effect can be exploited as a relevant external stimulus to temporally and spatially trigger drug release. In this review, we focus on recent advances in magnetic hyperthermia. Indirect experimental proofs of the local temperature increase are first discussed leading to a good estimation of the temperature at the surface (from 0.5 to 6 nm) of superparamagnetic NPs. Then we highlight recent studies illustrating the hot-spot effect for drug-release. Finally, we present another recent strategy to enhance the efficacity of thermal treatment by combining photothermal therapy with magnetic hyperthermia mediated by magneto-plasmonic nanoplatforms.
Collapse
|
23
|
Poly(styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin. Mikrochim Acta 2018; 185:383. [DOI: 10.1007/s00604-018-2920-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/15/2018] [Indexed: 01/22/2023]
|
24
|
Xu W, Dai Q, Wang Y, Hu X, Xu P, Ni R, Meng J. Creating magnetic ionic liquid-molecularly imprinted polymers for selective extraction of lysozyme. RSC Adv 2018; 8:21850-21856. [PMID: 35541737 PMCID: PMC9081177 DOI: 10.1039/c8ra03818j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023] Open
Abstract
A novel magnetic (Fe3O4) surface molecularly imprinted polymer (MIP) based on ionic liquid (IL) (Fe3O4@VTEO@IL-MIPs) was prepared for the selective extraction of lysozyme (Lys). As the functional monomer of the MIPs, an imidazolium-based IL with vinyl groups was prepared. It can provide multiple interactions with template molecules. The amount of IL was optimized (200 mg). Fourier transform infrared spectrometry (FT-IR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and a vibrating sample magnetometer (VSM) were used to characterize the MIP. The results indicate the successful formation of an imprinting polymer layer. The concentration of Lys in the supernatant was determined by UV-vis spectrophotometry at a wavelength of 280 nm. The maximum adsorption capability of the MIP is 213.7 mg g-1 and the imprinting factor (IF) is 2.02. It took 2.5 h for the MIP to attain adsorption equilibrium. The structure of the protein was evaluated using circular dichroism (CD) spectra and UV-visible spectra. The adsorption performance was further investigated in detail by selective adsorption experiments, competitive rebinding tests, and reusability and stability experiments. Furthermore, it was utilized to separate the template protein from a mixture of proteins and real samples successfully because of the high adsorption capacity for Lys.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Qingzhou Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Xiaojian Hu
- Department of Chemistry, School of Basic Medicine, Changsha Medical University Changsha 410219 P. R. China
| | - Panli Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Rui Ni
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| | - Jiaojiao Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88821848 +86-731-88821903
| |
Collapse
|