1
|
Issaka E, Melville L, Fazal A. A review on enzymatic colorimetric assays for organophosphate and carbamate pesticides detection in water environments. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106423. [PMID: 40350236 DOI: 10.1016/j.pestbp.2025.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
To monitor pesticides, which have grown to be a significant environmental and public health concern, sensitive, selective, and economical analytical tools must be developed. With advantages including high sensitivity, quick processing, and the potential for on-site monitoring, enzymatic colourimetric assays have surfaced as a potential substitute for conventional pesticide detection, particularly for organophosphate (OPPs) and carbamate pesticide detection. The toxicological effects of pesticides on humans and the environment are examined first in this review, followed by examining the concepts and mechanisms behind enzyme activity and colourimetric methods. Besides, single and double-enzyme-mediated colourimetric techniques are also studied to detect OPPs and carbamate pesticides. Furthermore, colourimetric smartphone platforms and paper-based devices have both garnered a lot of attention. These advanced approaches offer many pesticide detection options, from high-sensitivity lab-based procedures to on-site and in-field technologies. The fourth section of this review employs newly published studies to explore the applicability of these approaches for onsite OPPs and carbamate pesticide detection. Lastly, the challenges associated with enzymatic colourimetric assays, such as matrix effects and enzyme stability, and prospects for current and future research are discussed.
Collapse
Affiliation(s)
- Eliasu Issaka
- College of Engineering, Birmingham City University, Birmingham B4 7XG, United Kingdom.
| | - Lynsey Melville
- College of Engineering, Birmingham City University, Birmingham B4 7XG, United Kingdom
| | - Adnan Fazal
- College of Engineering, Birmingham City University, Birmingham B4 7XG, United Kingdom.
| |
Collapse
|
2
|
Qin N, Yang S, Li R, Zhan H, Wang L, Li F, Liu J. Aptasensor based on entropy-driven catalytic amplification system for the sensitive detection of acetamiprid in Chinese herbal medicine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:223-231. [PMID: 39605164 DOI: 10.1039/d4ay01655f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The traditional method of acetamiprid residue detection is difficult to operate, time-consuming, laborious and requires high professional knowledge of the detection personnel, which cannot meet the requirement of on-field rapid detection. For this reason, a colorimetric aptasensor based on an entropy-catalyzed amplification system was developed for the ultrasensitive and selective determination of acetamiprid. In the absence of acetamiprid, the aptamer and cDNA form a double-stranded structure. The formed hemin/G-quadruplex mimicking DNAzyme can catalyze the substrate ABTS to generate the colored ion ABTS- with the help of H2O2, and the solution turns blue-green. On the contrary, the presence of acetamiprid triggers the release of cDNA, which in turn initiates the entropy-driven system, resulting in the inability to form DNAzyme and therefore no blue-green color production in the solution. The quantity of acetamiprid determines the color. Under the optimal experimental conditions, the method showed a linear correlation (R2 = 0.9837) for the detection of acetamiprid in the concentration range of 0.1-100 ng/mL, with a limit of detection of 0.06 ng/mL. The developed method was used for the determination of acetamiprid in spiked Coix lacryma and Bitter almond, with recoveries in the range of 90.3-110.3%. The proposed enzyme-free and label-free assay can be developed into a simple, sensitive and rapid detection platform.
Collapse
Affiliation(s)
- Na Qin
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| | - Sunlei Yang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| | - Rui Li
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| | - Hongyun Zhan
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| | - Lijuan Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
3
|
Wang J, Sun Y, Wang P, Sun Z, Wang Y, Gao M, Wang H, Wang X. A dual-emitting fluoroprobe fabricated by aloe leaf-based N-doped carbon quantum dots and copper nanoclusters for nitenpyram detection in waters by virtue of inner filter effect and static quenching principles. Anal Chim Acta 2024; 1289:342182. [PMID: 38245198 DOI: 10.1016/j.aca.2023.342182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
Fluorescence sensing technique has been used in environmental analysis due to its simplicity, low cost, and visualization. Although the fruit pulp-based biomass carbon quantum dots (CQDs) have excellent luminescent properties, aloe leaves possess the superiority of being easily accessible in all seasons compared to fruit pulp. Thus, we fabricated Aloe carazo leaf-based nitrogen doping-CQDs (N-CQDs) using a facile hydrothermal approach, which emitted bright blue fluorescence with a quantum yield of 21.4 %. By comparison, the glutathione-encapsulated copper nanoclusters (GSH-CuNCs) displayed strong red fluorescence. A blue/red dual emission based on the N-CQDs/CuNCs mixture was established for nitenpyram detection. At the 350-nm excitation, the N-CQD/CuNCs system produced dual-wavelength emitting peaks at 440 and 660 nm, respectively. Moreover, when nitenpyram was introduced into the system, the fluorescence intensities (FIs) of N-CQDs significantly decreased, whereas the FIs of GSH-CuNCs varied slightly; simultaneously, the solution color changed from bright blue to dark red. Both the spectral overlapping between nitenpyram's UV-Vis absorption and N-CQDs' excitation and almost unchanged fluorescence lifetimes indicated the occurrence of inner-filtering effect (IFE) in the dual-emitting fluoroprobe. In addition, the Stern-Volmer constant (Ksv = 6.92 × 103 M-1), temperature effect, as well as UV-Vis absorption of N-CQD/CuNCs before and after the addition of nitenpyram corroborated the static-quenching behavior. Consequently, the fluorescence-quenching of N-CQDs by nitenpyram was attributable to the joint IFE and static-quenching principles. A good linearity existed between the F660/F440 values and nitenpyram concentrations (0.5-200 μM) with a method detection limit of 0.15 μM. The dual-emitting fluoroprobe provided the satisfactory recoveries (95.0%-107.0 %) for nitenpyram detection in real-world waters, which were comparable with the results of traditional liquid chromatography coupled to tandem mass spectrometry method. Owing to its simple operations, low-cost, and adaptability for on-site outdoor monitoring, the newly developed dual-emitting fluoroprobe possesses great potential applications in routine monitoring of nitenpyram under field conditions.
Collapse
Affiliation(s)
- Junxia Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yueying Sun
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Panpan Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhengpeng Sun
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yawei Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Huili Wang
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Li B, Wang H, Liu M, Geng L, Dou S, Zhai S, Liu J, Sun J, Zhao W, Guo Y, Sun X. Fluorescent aptasensor mediated with multiple ssDNA for sensitive detection of acetamiprid in vegetables based on magnetic Fe 3O 4/C-assisted separation. Anal Bioanal Chem 2024; 416:1105-1115. [PMID: 38189917 DOI: 10.1007/s00216-023-05104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
Acetamiprid (ACE) is a highly effective broad-spectrum insecticide, and its widespread use is potentially harmful to human health and environmental safety. In this study, magnetic Fe3O4/carbon (Fe3O4/C), a derivative of metal-organic framework MIL-101 (Fe), was synthesized by a two-step calcination method. And a fluorescent sensing strategy was developed for the efficient and sensitive detection of ACE using Fe3O4/C and multiple complementary single-stranded DNA (ssDNA). By using aptamer with multiple complementary ssDNA, the immunity of interference of the aptasensor was improved, and the aptasensor showed high selectivity and sensitivity. When ACE was present, the aptamer (Apt) combined with ACE. The complementary strand of Apt (Cs1) combined with two short complementary strands of Cs1, fluorophore 6-carboxyfluorescein-labeled complementary strand (Cs2-FAM) and the other strand Cs3. The three strands formed a double-stranded structure, and fluorescence would not be quenched by Fe3O4/C. In the absence of ACE, Cs2-FAM would be in a single-chain state and would be adsorbed by Fe3O4/C, and the fluorescence of FAM would be quenched by Fe3O4/C via photoelectron transfer. This aptasensor sensitively detected ACE over a linear concentration range of 10-1000 nM with a limit of detection of 3.41 nM. The recoveries of ACE spiked in cabbage and celery samples ranged from 89.49% to 110.76% with high accuracy.
Collapse
Affiliation(s)
- Baoxin Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Shouyi Dou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Shengxi Zhai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Jingjing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| |
Collapse
|
5
|
Qin N, Liu J, Li F, Liu J. Recent Advances in Aptasensors for Rapid Pesticide Residues Detection. Crit Rev Anal Chem 2023; 54:3592-3613. [PMID: 37708008 DOI: 10.1080/10408347.2023.2257795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Pesticides are applied widely to increase agricultural output and quality, however, this practice results in residual issues that not only harm the environment but also put people and animals' lives and health at risk. As a result, it is critical to find pesticide residues in a variety of sources, including crops, water supplies, and soil. Aptamers are more flexible in their synthesis and modification, have a high level of specificity, are inexpensive, and have good stability compared to conventional detection methods. They have therefore attracted a lot of interest in the industry. This study reviews the most recent aptasensor advancements in the detection of pesticide residues. Firstly, aptamers specifically binding to many pesticides are summarized. Secondly, the combination of aptasensors with colorimetric, fluorescent, surface enhanced Raman spectroscopy (SERS), resonance Light Scattering (RLS), chemiluminescence (CL), electrochemical, and electrochemiluminescence (ECL) technologies are systematically introduced, and their advantages and disadvantages are expounded. Importantly, the aptasensors for the detection of various pesticides (organochlorine, organophosphorus, neonicotinoids, carbamates, and pyrethroids) that have been developed so far are systematically analyzed and discussed. Finally, the furture prospects and challenges of the aptasensors are highlighted. It is expected to offer suggestions for the later creation of novel, highly effective and sensitive aptasensors for the detection of pesticide residues.
Collapse
Affiliation(s)
- Na Qin
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| | - Jinfeng Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
6
|
Azzouz A, Kumar V, Hejji L, Kim KH. Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnol Adv 2023; 66:108156. [PMID: 37084799 DOI: 10.1016/j.biotechadv.2023.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the covered aptasensing systems are classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL. Special attention has been paid to the fabrication processes, analytical achievements, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares, Jaén, Spain
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
7
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Hu R, Shi J, Tian C, Chen X, Zuo H. Nucleic Acid Aptamers for Pesticides, Toxins, and Biomarkers in Agriculture. Chempluschem 2022; 87:e202200230. [PMID: 36410759 DOI: 10.1002/cplu.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
Nucleic acid aptamers are short single-stranded DNA/RNA (ssDNA/RNA) oligonucleotides that can selectively bind to the targets. They are widely used in medicine, biosensing, and diagnostic assay. They have also been identified and extensively used for various targets in agriculture. In this review we summarize the progress of nucleic acid aptamers on pesticides (herbicides, insecticides, and fungicides), toxins, specific biomarkers of crops, and plant growth regulators in agricultural field in recent years. The basic process of aptamer selection, the already identified DNA/RNA aptamers and the aptasensors are discussed. We also discuss the future perspectives and the challenges for aptamer development in agriculture.
Collapse
Affiliation(s)
- Rongping Hu
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Jun Shi
- Mianyang Academy of Agricultural Sciences, Crop Characteristic Resources Creation, and Utilization Key Laboratory of Sichuan Province, Mianyang, Sichuan, 621023 (P. R., China
| | - Cheng Tian
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaojuan Chen
- Sichuan Institute of Edible Fungi, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, P. R. China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis, and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
9
|
Xi S, Wang L, Cheng M, Hu M, Liu R, Dong Y. Developing a DNA logic gate nanosensing platform for the detection of acetamiprid. RSC Adv 2022; 12:27421-27430. [PMID: 36276016 PMCID: PMC9513691 DOI: 10.1039/d2ra04794b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reports a novel fluorescence and colorimetric dual-signal-output DNA aptamer based sensor for the detection of acetamiprid residue. Acetamiprid is a new systemic broad-spectrum insecticide with high insecticidal efficiency that is widely used worldwide, but there is a risk of adverse neurological reactions in humans and animals. The dual-mode output principle designed in this paper, consisting of a fluorescence signal and colorimetric signal, is based on the relevant reaction of the special domain of a G-quadruplex, bidding farewell to a classical single-signal output, with a target-recognition cycle used to complete signal amplification through a hybridization chain reaction. Upgraded detection sensitivity and the qualitative and semi-quantitative detection of acetamiprid are achieved based on the fluorescence signal output and visual discrimination observations during colorimetric experiments. This model was applied to the determination of acetamiprid residue in fruits and vegetables. The dual-detection platform further reduced systematic error, with a detection limit of 27.7 pM. When applied in a comparative detection study using three different pesticides, the system shows excellent discrimination specificity and it performs well in actual sample detection and has a fast response time. Designing DNA logic gates that operate in the presence of targets and molecular-switch-based detection platforms also involves the intersection of biology and computational modeling, providing new ideas for biological platforms.
Collapse
Affiliation(s)
- Sunfan Xi
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Luhui Wang
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Meng Cheng
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Mengyang Hu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Rong Liu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Yafei Dong
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
10
|
Li T, Wang J, Zhu L, Li C, Chang Q, Xu W. Advanced screening and tailoring strategies of pesticide aptamer for constructing biosensor. Crit Rev Food Sci Nutr 2022; 63:10974-10994. [PMID: 35699641 DOI: 10.1080/10408398.2022.2086210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid development of aptamers has helped address the challenges presented by the wide existed pesticides contaminations. Screening of aptamers with excellent performance is a prerequisite for successfully constructing biosensors, while further tailoring of aptamers with enhanced activity greatly improved the assay performance. Firstly, this paper reviewed the advanced screening strategies for pesticides aptamers, including immobilization screening that preserves the native structures of targets, non-immobilized screening based on nanomaterials, capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX), virtual screening in silico, high-throughput selection, and rational secondary library generation methods, which contributed significantly to improve the success rate of screening, reduce the screening time, and ensure aptamer binding affinity. Secondly, the precise tailoring strategies for pesticides aptamers were modularly elaborated, containing deletion, splitting, elongation, and fusion, which provided various advantages like cost-efficiency, enhanced binding affinity, and new derived functional motifs. Thirdly, the developed aptamer-based biosensors (aptasensors) for pesticide detection were systematically reviewed according to the different signal output modes. Finally, the challenges and future perspectives of pesticide detection are discussed comprehensively.
Collapse
Affiliation(s)
- Tianshun Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| | - Chenwei Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaoying Chang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| |
Collapse
|
11
|
Altuner EE, Ozalp VC, Yilmaz MD, Sudagidan M, Aygun A, Acar EE, Tasbasi BB, Sen F. Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles. CHEMOSPHERE 2022; 297:134077. [PMID: 35218784 DOI: 10.1016/j.chemosphere.2022.134077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
This study, it is aimed to develop an electrochemical aptasensor that can detect phosphate ions using 3.3'5.5' tetramethylbenzidine (TMB). It is based on the principle of converting the binding affinity of the target molecule phosphate ion (PO43-) into an electrochemical signal with specific aptamer sequences for the aptasensor to be developed. The aptamer structure served as a gate for the TMB to be released and was used to trap the TMB molecule in mesoporous silica nanoparticles (MSNPs). The samples for this study were characterized by transmission electron spectroscopy (TEM), Brunner-Emmet-Teller, dynamic light scattering&electrophoretic light scattering, and induction coupled plasma atomic emission spectroscopy. According to TEM analysis, MSNPs have a morphologically hexagonal structure and an average size of 208 nm. In this study, palladium-carbon nanoparticles (Pd/C NPs) with catalytic reaction were used as an alternative to the biologically used horseradish peroxidase (HRP) enzyme for the release of TMB in the presence of phosphate ions. The limit of detection (LOD) was calculated as 0.983 μM, the limit of determination (LOQ) was calculated as 3.276 μM, and the dynamic linear phosphate range was found to be 50-1000 μM. The most important advantage of this bio-based aptasensor assembly is that it does not contain molecules such as a protein that cannot be stored for a long time at room temperature, so its shelf life is very long compared to similar systems developed with antibodies. The proposed sensor shows good recovery in phosphate ion detection and is considered to have great potential among electrochemical sensors.
Collapse
Affiliation(s)
- Elif Esra Altuner
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| | - Veli Cengiz Ozalp
- Medical School, Department of Medical Biology, Atilim University, 06830, Ankara, Turkiye.
| | - M Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Mert Sudagidan
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Aysenur Aygun
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye
| | - Elif Esma Acar
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Behiye Busra Tasbasi
- KIT-ARGEM, R&D Center, Konya Food and Agriculture University, 42080, Konya, Turkiye
| | - Fatih Sen
- Department of Biochemistry, Dumlupinar University, 43000, Kutahya, Turkiye.
| |
Collapse
|
12
|
Liu J, Ye LY, Zhang Y, Yang H, Zhou L, Luo E, Lei J. Nonenzymatic Target-Driven DNA Nanomachine for Monitoring Malathion Contamination in Living Cells and Bioaccumulation in Foods. Anal Chem 2022; 94:5667-5673. [PMID: 35357827 DOI: 10.1021/acs.analchem.2c00315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intensive applications of toxic malathion pesticides bring a vital threat to the environment and health. Hence, a credible and sensitive strategy is urgently needed for the respective detection of malathion. In this work, an aptamer-based nonenzymatic autonomous DNA walking machine was fabricated for monitoring trace malathion contamination in cells and foods. Along with the machine walking driven by malathion-triggered reaction entropy, multiple fluorescent signal outputs were thermodynamically generated for signal amplification. The proposed stable DNA nanomachine achieved satisfactory results with a detection limit of 81.9 pg L-1 for testing malathion, which could be applied to actual samples including apple juice, paddy water, and paddy soil. Furthermore, the high stability, sensitivity, and biocompatibility of the nanomachine enabled monitoring of the malathion contamination in living cells and bioaccumulation in lettuce without additional purification. Consequently, with these excellent performances, it is strongly anticipated that the DNA walking machine has tremendous potential to be extended to general platforms against pesticides to avoid malathion-contaminated agricultural production for environmental safety and human health.
Collapse
Affiliation(s)
- Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Lin Yao Ye
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Zhou
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Elan Luo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
13
|
Xie M, Zhao F, Zhang Y, Xiong Y, Han S. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108399] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Johnson ZT, Williams K, Chen B, Sheets R, Jared N, Li J, Smith EA, Claussen JC. Electrochemical Sensing of Neonicotinoids Using Laser-Induced Graphene. ACS Sens 2021; 6:3063-3071. [PMID: 34370948 DOI: 10.1021/acssensors.1c01082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neonicotinoids are the fastest-growing insecticide accounting for over 25% of the global pesticide market and are capable of controlling a range of pests that damage croplands, home yards/gardens, and golf course greens. However, widespread use has led to nontarget organism decline in pollinators, insects, and birds, while chronic, sublethal effects on humans are still largely unknown. Therefore, there is a need to understand how prevalent neonicotinoids are in the environment as there are currently no commercially available field-deployable sensors capable of measuring neonicotinoid concentrations in surface waters. Herein, we report the first example of a laser-induced graphene (LIG) platform that utilizes electrochemical sensing for neonicotinoid detection. These graphene-based sensors are created through a scalable direct-write laser fabrication process that converts polyimide into LIG, which eliminates the need for chemical synthesis of graphene, ink formulation, masks, stencils, pattern rolls, and postprint annealing commonly associated with other printed graphene sensors. The LIG electrodes were capable of monitoring four major neonicotinoids (CLO, IMD, TMX, and DNT) with low detection limits (CLO, 823 nM; IMD, 384 nM; TMX, 338 nM; and DNT, 682 nM) and a rapid response time (∼10 s) using square-wave voltammetry without chemical/biological functionalization. Interference testing exhibited negligible responses from widely used pesticides including the broad-leaf insecticides parathion, paraoxon, and fipronil, as well as systemic herbicides glyphosate (roundup), atrazine, dicamba, and 2,4-dichlorophenoxyacetic acid. These scalable, graphene-based sensors have the potential for wide-scale mapping of neonicotinoids in watersheds and potential use in numerous electrochemical sensor devices.
Collapse
Affiliation(s)
- Zachary T. Johnson
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 528 Bissell Road, Ames, Iowa 50010, United States
| | - Kelli Williams
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 528 Bissell Road, Ames, Iowa 50010, United States
| | - Bolin Chen
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 528 Bissell Road, Ames, Iowa 50010, United States
| | - Robert Sheets
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 528 Bissell Road, Ames, Iowa 50010, United States
| | - Nathan Jared
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 528 Bissell Road, Ames, Iowa 50010, United States
| | - Jingzhe Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Emily A. Smith
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- The Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Jonathan C. Claussen
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 528 Bissell Road, Ames, Iowa 50010, United States
| |
Collapse
|
15
|
Wu L, Zhou S, Wang G, Yun Y, Liu G, Zhang W. Nanozyme Applications: A Glimpse of Insight in Food Safety. Front Bioeng Biotechnol 2021; 9:727886. [PMID: 34504834 PMCID: PMC8421533 DOI: 10.3389/fbioe.2021.727886] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022] Open
Abstract
Nanozymes own striking merits, including high enzyme-mimicking activity, good stability, and low cost. Due to the powerful and distinguished functions, nanozymes exhibit widespread applications in the field of biosensing and immunoassay, attracting researchers in various fields to design and engineer nanozymes. Recently, nanozymes have been innovatively used to bridge nanotechnology with analytical techniques to achieve the high sensitivity, specificity, and reproducibility. However, the applications of nanozymes in food applications are seldom reviewed. In this review, we summarize several typical nanozymes and provide a comprehensive description of the history, principles, designs, and applications of nanozyme-based analytical techniques in food contaminants detection. Based on engineering and modification of nanozymes, the food contaminants are classified and then discussed in detail via discriminating the roles of nanozymes in various analytical methods, including fluorescence, colorimetric and electrochemical assay, surface-enhanced Raman scattering, magnetic relaxing sensing, and electrochemiluminescence. Further, representative examples of nanozymes-based methods are highlighted for contaminants analysis and inhibition. Finally, the current challenges and prospects of nanozymes are discussed.
Collapse
Affiliation(s)
- Long Wu
- College of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, China
| | - Shuhong Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, China
| | - Gonglei Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yonghuan Yun
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Weimin Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
16
|
Zhao Y, Zhang H, Wang Y, Zhao Y, Li Y, Han L, Lu L. A low-background fluorescent aptasensor for acetamiprid detection based on DNA three-way junction-formed G-quadruplexes and graphene oxide. Anal Bioanal Chem 2021; 413:2071-2079. [PMID: 33608750 DOI: 10.1007/s00216-020-03141-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
A simple fluorescence detection platform has been established for acetamiprid assay based on DNA three-way junctions (TWJs), which can triple the fluorescence signal without any other amplification. It is designed with three single-stranded DNAs (ssDNA), each of which contains one-third or two-thirds of the G-quadruplex sequence at each end. Upon the addition of acetamiprid, the conformation of the aptamer-containing double-stranded DNA (dsDNA) changes from its original conformation and releases a strand of ssDNA. This ssDNA, with the other two ssDNAs, can assemble into DNA TWJs, and the three pairs of the branched ends of the DNA TWJs are adjacent to each other, allowing them to form three units of G-quadruplexes. Hence, the fluorescence of N-methyl mesoporphyrin IX (NMM) is lighted by the nascent G-quadruplexes. Graphene oxide (GO) is then added to minimize the detection background by absorbing the free NMM and non-target-induced ssDNA. The proposed strategy can assay acetamiprid in a wide linear range of 0-500 nM with a detection limit of 5.73 nM. More importantly, this assay platform demonstrates high potential for acetamiprid assay in food control and environmental monitoring.
Collapse
Affiliation(s)
- Yunwei Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ying Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanfang Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yaowei Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Lihua Lu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
17
|
Bahreyni A, Luo H, Ramezani M, Alibolandi M, Soheili V, Danesh NM, Ashjaei MS, Abnous K, Taghdisi SM. A fluorescent sensing strategy for ultrasensitive detection of oxytetracycline in milk based on aptamer-magnetic bead conjugate, complementary strand of aptamer and PicoGreen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119009. [PMID: 33035887 DOI: 10.1016/j.saa.2020.119009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Misuse of antibiotics in animal husbandry and presence of their residues in animal foods is a serious crisis worldwide and thus, monitoring the level of them in food samples is vital for human health. Herein, a fluorescent aptasensor was developed for highly sensitive quantification of oxytetracycline (OTC) in food samples. This method is based on OTC aptamer conjugated to magnetic beads, functioned as recognition element, complementary strand of OTC aptamer, and PicoGreen (PG) as a sensitive double-stranded DNA (dsDNA) fluorescent dye. Formation of OTC aptamer-magnetic bead conjugate provides the opportunity of sample condensation and separation technology. Additionally, the presence of complementary strand leads to significant fluorescence signal alteration of aptasensor in the presence or absence of target and a noteworthy improvement of the aptasensor sensitivity. In the absence of target, complementary strand could bind to aptamer and form dsDNA on the surface of magnetic bead. As a consequence, adding PG to the sample leads to observation of high fluorescence signal from sample. In contrast, once OTC is added to the sample, it binds to OTC aptamer-magnetic bead complex and prevents hybridization of OTC aptamer and its complementary strand. Hence, after addition of PG to the sample, a weak fluorescence intensity is measured. Under optimized conditions, the linear ranges for OTC detection were 0.2-2 nM and 2-800 nM. The detection limit was calculated to be as low as 0.15 nM for the fabricated aptasensor. Besides the great sensitivity, proposed method demonstrated superior specificity towards OTC once it was used against several antibiotics. More significantly, the recovery rates of OTC in milk ranged from 96.46% to 101.5%, implying the great feasibility of designed sensor as well as its potential to be employed for analysis of OTC in real samples.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mitra Sabeti Ashjaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Koçer MB, Aydoğdu Tığ G, Pekyardımcı Ş. Selective determination of non-organophosphorus insecticide using DNA aptamer-based single-use biosensors. Biotechnol Appl Biochem 2020; 68:1174-1184. [PMID: 32969502 DOI: 10.1002/bab.2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
In the present study, we developed a disposable aptamer-based biosensor for rapid, sensitive, and reliable detection of acetamiprid (ACE). To improve the sensitivity of the aptasensor, poly-5-amino-2-mercapto-1,3,4-thiadiazole [P(AMT)] and gold nanoparticles (AuNPs) were progressively electrodeposited on the screen-printed electrode (SPE) surface by using cyclic voltammetry (CV) technique. For the determination of ACE, thiol-modified primary aptamer (Apt1) was selected by using the SELEX method and immobilized on the surface of the P(AMT) and AuNPs-modified SPE (SPE/P(AMT)/AuNPs) via AuS bonding. Then, the surface-bound aptamer was incubated with ACE for 45 Min. After that, the biotin-labeled aptamer 2 (Apt2) was interacted with the ACE, then the enzyme-labeled step was performed. In this step, alkaline phosphatase (ALP) was bound to the surface through the interaction between Apt2 labeled with biotin and streptavidin (strep)-ALP conjugate. The determination of ACE was achieved by measuring the oxidation signal of α-naphthol, which is formed on the electrode surface through the interaction of ALP with α-naphthyl phosphate. The working range of the developed aptasensor was determined as 5 × 10-12 -5 × 10-10 mol L-1 with a low limit of detection (1.5 pmol L-1 ). It was also found that the proposed aptasensor possessed great advantages such as low cost, good selectivity, and good reproducibility.
Collapse
Affiliation(s)
- Mustafa Barış Koçer
- Department of Chemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Gözde Aydoğdu Tığ
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Şule Pekyardımcı
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Preparation and comparison of molecularly imprinted polymer fluorimetric nanoprobe based on polymer dots and carbon quantum dots for determination of acetamiprid using response surface method. Mikrochim Acta 2020; 187:294. [DOI: 10.1007/s00604-020-04283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/13/2020] [Indexed: 01/14/2023]
|
20
|
Xu Y, Zhang W, Shi J, Li Z, Huang X, Zou X, Tan W, Zhang X, Hu X, Wang X, Liu C. Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables. Food Chem 2020; 322:126762. [PMID: 32283369 DOI: 10.1016/j.foodchem.2020.126762] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022]
Abstract
A novel electrochemical aptasensor modified with highly porous gold and aptamer was prepared for the determination of acetamiprid in fruits and vegetables. Highly porous gold was synthesized by electroreduction at -4 V in an electrolyte containing 2.5 mol/L NH4Cl and 10 mmol/L HAuCl4. Acetamiprid-binding aptamer was immobilized on highly porous gold by self-assembly. Acetamiprid could be captured by aptamer on the sensing interface, resulting in an increment of electron transfer resistance. Thanks to the large specific surface area of highly porous gold and the high affinity of aptamer, the aptasensor exhibited a highly sensitive impedance response for acetamiprid. Under optimal condition, the aptasensor displayed a linear response for acetamiprid in the concentration range of 0.5-300 nmol/L, and the detection limit was 0.34 nmol/L. Furthermore, the aptasensor showed high selectivity, good reproducibility and stability. Finally, the aptasensor was applied for the determination of acetamiprid in fruits and vegetables with satisfactory results.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhihua Li
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Weilong Tan
- Center for Disease Control and Prevention of Eastern Theater Command, Nanjing 210002, China
| | - Xinai Zhang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuetao Hu
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Wang
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chao Liu
- Institute of Agricultural Engineering, School of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
21
|
Nana L, Ruiyi L, Xiulan S, Yongqiang Y, Zaijun L. Dual amplification in a fluorometric acetamiprid assay by using an aptamer, G-quadruplex/hemin DNAzyme, and graphene quantum dots functionalized with D-penicillamine and histidine. Mikrochim Acta 2020; 187:158. [PMID: 32034503 DOI: 10.1007/s00604-020-4127-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/19/2020] [Indexed: 12/31/2022]
Abstract
D-penicillamine and histidine-functionalized graphene quantum dot (DPA-GQD-His) was synthesized and applied in a fluorometric method for determination of acetamiprid using a G-quadruplex DNAzyme. At first DNA probe (probe 1) consists of a target-specific aptamer with two arms of DNA segments. Probe 1 was hybridized with DNA probe 2 composed of a single DNA sequence with two split G-rich DNA sequences. This leads to the formation of a triplex-to-G-quadruplex (TPGQ). Next, acetamiprid was hybridized with the aptamer in the TPGQ to release free DNA probe 2. The released probe 2, in the presence of of K+, undergoes a structural change into a stem-loop structure (by self-complementary hybridization and Hoogsteen hydrogen bonding) that bears a G-quadruplex structure. This is followed by conjugation with hemin to form the G-quadruplex/hemin DNAzyme. The DNAzyme catalyzes the oxidation of o-phenylenediamine by H2O2 to produce a yellow fluorescent product with excitation/emission maxima at 420/560 nm. The oxidation product interacts with DPA-GQD-His to achieve a rapid energy transfer between DPA-GQD-His and oxidation product. This increases the fluorescence of the oxidation product and quenches the fluorescence of DPA-GQD-His. DPA-GQD-His also improves the catalytic activity of DNAzyme towards oxidation of ophenylenediamine oxidization and enhances fluorometric response to acetamiprid. The assay works in the 1.0 fM to 1.0 nM acetamiprid concentration range and has a 0.38 fM detection limit. It was successfully applied to the determination of acetamiprid in tea. Graphical abstractThe study reported one double amplification strategy for ultrasensitive fluorescence detection of acetamiprid in tea with D-penicillamine and histidine-functionalized graphene quantum dots and G-quadruplex/heminDNAzyme. The analtyical method exhibits ultra high sensitivity, selectivity and rapidity of fluorescence response to acetamiprid.
Collapse
Affiliation(s)
- Li Nana
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Li Ruiyi
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Sun Xiulan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Yongqiang
- National Graphene Product Quality Supervision and Inspection Center, Jiangsu Province Special Equipment Safety Supervision and Inspection Institute Branch, Wuxi, 214071, China
| | - Li Zaijun
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Abd-Elsalam KA, Ramadan MM, Hassanien MK. Nanocarbon-based sensors for pesticide detection: Recent trends. CARBON NANOMATERIALS FOR AGRI-FOOD AND ENVIRONMENTAL APPLICATIONS 2020:401-428. [DOI: 10.1016/b978-0-12-819786-8.00018-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Yao Y, Liu Y, Zhang H, Wang X. A highly sensitive and low-background fluorescence assay for pesticides residues based on hybridization chain reaction amplification assisted by magnetic separation. Methods Appl Fluoresc 2019; 7:035006. [PMID: 31042679 DOI: 10.1088/2050-6120/ab1e7a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the concern over food safety, it is important to detect the pesticides residues in agricultural products. Here, a highly sensitive and low background fluorescent strategy for the detection of pesticides residues has been developed. The fluorescence intensity of N-methyl mesoporphyrin IX (NMM) binding G-quadruplex could be turn off because of inhibiting effect of the pesticides on the acetylcholinesterase (AChE) activity. For that, four single-stranded DNAs (named linker, trigger, H1 and H2, respectively) are rational designed and T-Hg-T mismatches duplex DNAs as a recognizer combined with the separation of magnetic beads. The design of hybridization chain reaction (HCR) amplification strategy assisted by magnetic separation has been adopted to improve the detection sensitivity. In the presence of pesticides, the amount of the thiol group generated by hydrolysis reaction of acetylcholine (ACh) is reduced, lead to release of less trigger DNA. Therefor subsequent HCR process is retarded with decreased fluorescence intensity. The reduced fluorescence intensity has a quantitative relationship with the pesticide concentration. The limit of detection of chlorpyrifos was estimated to be 2.0 ng ml-1. It has been applied to detect the pesticides residues in real samples.
Collapse
Affiliation(s)
- Yueyue Yao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Yang L, Sun H, Wang X, Yao W, Zhang W, Jiang L. An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles. Mikrochim Acta 2019; 186:308. [PMID: 31030275 DOI: 10.1007/s00604-019-3422-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
An acetamiprid-binding aptamer (ABA), gold nanoparticles (AuNPs) and upconversion nanoparticles (UCNPs) are used in a colorimetric and fluorometric method for the ultrasensitive and selective detection of the pesticide acetamiprid. The ABA is first configured into a duplex with a complementary DNA covalently attached to AuNPs. The resulting dsDNA-functionalized AuNP probe is not stable in 0.15 M NaCl solution and aggregates. This causing the color to change from red to purple. In the presence of acetamiprid, the ABA undergoes a structural switch from a DNA duplex to an aptamer-acetamiprid complex and consequently dissociates from the AuNPs. The partially unhybridized AuNPs are stable against salt-induced aggregation and show red color. The ratio of absorbances at 524 nm (red) and 650 nm (purple blue) varies with the concentration of acetamiprid in the 0.025-10 μM concentration range. The colorimetric signal can be further amplified by introducing DNA-modified carboxylated UCNPs (silica-coated NaYF4:Yb,Er) which display red and green fluorescence under 980 nm excitation. An inner filter effect occurs between DNA-modified UCNPs and dsDNA-modified AuNPs. The fluorometric assay is based on the measurement of the ratio of red (654 nm) and green (540 nm) fluorescence and works in the 0.025 to 1 μM acetamiprid concentration range and has a 0.36 nM detection limit (at a signal-to-noise ratio of 3). Because of the specificity of the aptamer, the assay is high selective. It was successfully used to quantify acetamiprid in contaminated real samples. Graphical abstract Schematic presentation of an upconversion fluorescent assay for acetamiprid. It involves the principle of analyte-triggered structural switch of aptamers, salt-induced AuNP aggregation, and signal amplification from UCNP.
Collapse
Affiliation(s)
- Limin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Haifeng Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Xuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Weijing Yao
- Center for Evidence Identification, Chongqing Public Security Bureau, Chongqing, 401147, People's Republic of China
| | - Wenjuan Zhang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China
| | - Lei Jiang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, 266580, People's Republic of China.
| |
Collapse
|
25
|
Saberi Z, Rezaei B, Ensafi AA. Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Mikrochim Acta 2019; 186:273. [PMID: 30963279 DOI: 10.1007/s00604-019-3378-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
A fluorometric aptamer-based method is described for sensitive detection of the pesticide acetamiprid. Cationic carbon dots (cCDs) with blue fluorescence were synthesized from cetrimonium bromide (CTAB) by a hydrothermal method. In the presence of the acetamiprid aptamers with a negative charge, the aptamers bind to the surface of the cCDs due to electrostatic attraction. As a result, the fluorescence of the cCDs is quenched partially (the best measurement was done at excitation/emission wavelengths of 360/445 nm). If acetamiprid is added to the above system, the aptamer binds to acetamiprid as a target with strong and specific affinity. Therefore, fluorescence increases proportionally to the acetamiprid concentrations. The aptasensor has a detection limit of 0.3 nM with a dynamic range from 1.6 to 120 nM which reveals that the method is sensitive in comparison to the other techniques. The selectivity of the method towards various pesticides was also studied and found to be adequate. The sensor was applied for the determination of acetamiprid in (spiked) wastewater, tap water, and tomatoes to underpin its practicability. Graphical abstract Cationic CDs (cCDs) were synthesized from cetrimonium bromide by a hydrothermal method. The addition of the negatively charged acetamiprid aptamer to a solution containing cCDs, the cCDs will be coated by the aptamer. This causes the blue fluorescence of the cCDs partially is quenched. If acetamiprid (ACP) is then added, the aptamer will bind to acetamiprid with strong and specific affinity. Hence, fluorescence will be gradually restored.
Collapse
Affiliation(s)
- Zeinab Saberi
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran.
| | - Ali Ashghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R., 84156-83111, Iran
| |
Collapse
|
26
|
Aptasensors for pesticide detection. Biosens Bioelectron 2019; 130:174-184. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022]
Abstract
Pesticide contamination has become one of the most serious problems of public health in the world, due to their wide application in agriculture industry to guarantee the crop yield and quality. The detection of pesticide residues plays an important role in food safety management and environment protection. However, the conventional detection methodologies cannot realize highly sensitive, selective and on-site detection, which limits their applications. Aptamers are short single-stranded oligonucleotides (RNA or DNA) selected by SELEX method, which can selectively bind to their targets with high affinity. Compared with the commonly used antibodies or enzymes in designing biosensors, aptamers exhibit better stability, low molecular weight, easy modification and low cost, and were regarded as excellent candidates for developing aptasensors for pesticide detection. In this review, application of aptamers for pesticide detection was reviewed. Firstly, aptamers specifically bind to various pesticides were first summarized. Secondly, the progresses and highlights of developing aptasensors for highly-sensitive and selective detection of pesticide residues were systematically provided. Finally, the present challenges and future perspectives for developing novel highly-effective aptasensor for the detection of pesticide residues were discussed.
Collapse
|
27
|
Liu Q, Wang H, Han P, Feng X. Fluorescent aptasensing of chlorpyrifos based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles and luminescent metal–organic frameworks. Analyst 2019; 144:6025-6032. [DOI: 10.1039/c9an00943d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent aptasensor of chlorpyrifos based on terbium(iii) based on metal–organic frameworks and PDDA-aggregated-gold nanoparticles.
Collapse
Affiliation(s)
- Qingju Liu
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| | - Hui Wang
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| | - Ping Han
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| | - Xiaoyuan Feng
- Beijing Research Center for Agriculture Standards and Testing
- Beijing 100097
- China
- Risk Assessment Lab for Agro-products (Beijing)
- Ministry of Agriculture
| |
Collapse
|