1
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
2
|
JAGIRANI MS, SOYLAK M. Arsenic speciation by using emerging sample preparation techniques: a review. Turk J Chem 2023; 47:991-1006. [PMID: 38173749 PMCID: PMC10760823 DOI: 10.55730/1300-0527.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/31/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.
Collapse
Affiliation(s)
- Muhammad Saqaf JAGIRANI
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R.
China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, P. R.
China
- National Center of Excellence in Analytical Chemistry University of Sindh, Kayseri,
Turkiye
| | - Mustafa SOYLAK
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Technology Research and Application Center (ERUTAUM), Erciyes University, Kayseri,
Turkiye
- Turkish Academy of Sciences (TÜBA), Ankara,
Turkiye
| |
Collapse
|
3
|
Pyrzynska K. Preconcentration and Removal of Pb(II) Ions from Aqueous Solutions Using Graphene-Based Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1078. [PMID: 36770084 PMCID: PMC9921202 DOI: 10.3390/ma16031078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 06/01/2023]
Abstract
Direct determination of lead trace concentration in the presence of relatively complex matrices is often a problem. Thus, its preconcentration and separation are necessary in the analytical procedures. Graphene-based nanomaterials have attracted significant interest as potential adsorbents for Pb(II) preconcentration and removal due to their high specific surface area, exceptional porosities, numerous adsorption sites and functionalization ease. Particularly, incorporation of magnetic particles with graphene adsorbents offers an effective approach to overcome the separation problems after a lead enrichment step. This paper summarizes the developments in the applications of graphene-based adsorbents in conventional solid-phase extraction column packing and its alternative approaches in the past 5 years.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Li Y, Yin H, Cai Y, Luo H, Yan C, Dang Z. Regulating the exposed crystal facets of α-Fe 2O 3 to promote Fe 2O 3-modified biochar performance in heavy metals adsorption. CHEMOSPHERE 2023; 311:136976. [PMID: 36288770 DOI: 10.1016/j.chemosphere.2022.136976] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
α-Fe2O3 modified biochar (Fe2O3/BC) was prepared to remove Cu(II), Pb(II) and As(V). By adjusting the calcination temperature, the morphology and exposed crystal facets of α-Fe2O3 on the biochar were changed which further affected the adsorption performance. The kinetics and isotherms were investigated systematically to reveal adsorption effect of the adsorbent on Cu(II), Pb(II) and As(V). The results indicated that chemisorption process was the dominant adsorption mechanism. Fe2O3/BC-350 exhibited superior adsorption capacity for Cu(II) (258.22 mg/g) and Pb(II) (390.60 mg/g), and Fe2O3/BC-250 showed relatively good adsorption capacity for As(V) (5.78 mg/g). By adsorption mechanism analysis, electrostatic adsorption, ion exchange, precipitation and complexation were coexisted in the process of removing metal ions by Fe2O3/BC. The repeatability test and the effect of ion strength exhibited the strong stability of Fe2O3/BC. Meanwhile, density functional theory (DFT) calculations manifested that the (202) facet of α-Fe2O3 on Fe2O3/BC-350 possessed the lowest adsorption energies of Cu(II) and Pb(II). While for As(V), it was the (104) facet of α-Fe2O3 on Fe2O3/BC-250 that exhibited the lowest adsorption energy. DFT results revealed that different Fe2O3/BC had different adsorption affinities to various heavy metals. In general, this work not only prepared a promising adsorbent via a simple procedure, but also served as a reference for researchers in designing absorbents with specific active facet for efficient heavy metals remediation.
Collapse
Affiliation(s)
- Yingchao Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Caiya Yan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| |
Collapse
|
5
|
Novel insights into Graphene oxide-based adsorbents for remediation of hazardous pollutants from aqueous solutions: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Nthwane Y, Fouda-Mbanga B, Thwala M, Pillay K. Removal of Cd2+ by N-CNS/ZnO nanocomposite from wastewater and reuse of Cd2+-N-CNS/ZnO in blood fingerprint detection. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Aslan F, Tor A. Determination and speciation of trace inorganic arsenic species in water samples by using metal organic framework mixed-matrix membrane and EDXRF spectrometry. CHEMOSPHERE 2022; 307:135661. [PMID: 35820479 DOI: 10.1016/j.chemosphere.2022.135661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A facile method to selectively determine trace As(V) species in the existence of As(III) one in water samples was developed, which was based on the batch adsorption process by using a miniaturized MIL-101(Fe) mixed-matrix membrane (MOF-MMM) followed by a direct determination through energy dispersive X-ray fluorescence (EDXRF) spectrometry. The quantitative adsorption of As(V) was achieved at pH (3-6) from 30 mL sample in 120 min of equilibrium time by employing the membrane with a monolayer adsorption capacity of Qo = 1.953 mg g-1. The direct determination of As(V) adsorbed on the membrane by EDXRF spectroscopy provided a method, not only easy-to-use and operable without elution stage, but also cost effective due to low gas consumption during the analysis. With a limit of detection of 0.094 μg L-1, analytical performance of the method, which was evaluated on fortified real water samples with three levels of As(V) (5, 10 and 50 μg L-1), demonstrated good recoveries in the range of 98(±3)-105(±10)%. Furthermore, the speciation of As(III) and As(V) in the fortified real samples containing other ionic species was also successfully achieved by described approach with characteristics of simple, cheap, viable and reproducible.
Collapse
Affiliation(s)
- Fuat Aslan
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Turkey
| | - Ali Tor
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| |
Collapse
|
8
|
Marguí E, Queralt I, de Almeida E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. CHEMOSPHERE 2022; 303:135006. [PMID: 35605725 DOI: 10.1016/j.chemosphere.2022.135006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the conceptual advancement on green analytical chemistry (GAC) has moved in parallel with efforts to incorporate new screening or quantitative low-cost analytical tools to solve analytical problems. In this sense, the role of solid state techniques that allow the non-invasive analysis (or with a minimum sample treatment) of solid samples cannot be neglected. This review describes the basic principles, instrumentation and advances in the application of X-ray fluorescence instrumentation to the environmental sciences research topics, published between 2006 and 2020. Obviously, and because of the enormous number of works that can be found in the literature, it is not possible to exhaustively cover all published articles and the diversity of topics related to the environment in which a solid state technique like XRF has been applied successfully. It is a question of making a compilation of the instrumentation in use, the significant advances in XRF spectrometry and sample treatment strategies to highlight the potential of its implementation for environmental assessment.
Collapse
Affiliation(s)
- E Marguí
- Department of Chemistry, University of Girona, C/M.AurèliaCampany 69, 17003, Girona, Spain.
| | - I Queralt
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C. Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - E de Almeida
- Laboratory of Nuclear Instrumentation, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP, 13416000, Brazil
| |
Collapse
|
9
|
Ahmad H, Koo BH, Khan RA. Magnetite β-lactoglobulin@Fe3O4 nanocomposite for the extraction and preconcentration of As(III) species. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wang Y, Chen X, Yan J, Wang T, Xie X, Yang S. Efficient removal arsenate from water by biochar-loaded Ce 3+-enriched ultra-fine ceria nanoparticles through adsorption-precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148691. [PMID: 34214812 DOI: 10.1016/j.scitotenv.2021.148691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles (Ce-BC) were used as a novel nanostructured adsorbent for the removal of arsenate (As(V)) from aqueous solutions. The effect of cerium valence on As(V) adsorption and the mechanism of As(V) adsorption onto Ce-BC were investigated using batch experiments and a series of spectroscopy detection technologies. The adsorption isotherm data fitted with the Langmuir model, with maximum As(V) sorption capacity of 219.8 mg g-1 at pH 5.0 and 25 °C. The adsorption kinetics fitted well with the pseudo-second-order model. Ce3+ on the surface of Ce-BC plays an important role in the adsorption of As(V). The decrease in Ce3+ concentration from 60.1% to 48.9% on the Ce-BC surface, significantly decreased the adsorption of As(V) on Ce-BC. Furthermore, a strong affinity between As(V) and Ce3+-enriched Ce-BC was revealed, resulting in irreversible adsorption. Most importantly, the adsorbed As(V) could further react with Ce3+ of the ultra-fine cerium oxide nanoparticles in Ce-BC to form rod-like CeAsO4 precipitates. Through the novel adsorption-precipitation process, Ce-BC can be used to remove trace As(V).
Collapse
Affiliation(s)
- Yi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xuelin Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingfan Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tianyu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomin Xie
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sen Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Silica Mesoporous Structures: Effective Nanocarriers in Drug Delivery and Nanocatalysts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The application of silica mesoporous structures in drug delivery and the removal of pollutants and organic compounds through catalytic reactions is increasing due to their unique characteristics, including high loading capacities, tunable pores, large surface areas, sustainability, and so on. This review focuses on very well-studied class of different construction mesoporous silica nano(particles), such as MCM-41, SBA-15, and SBA-16. We discuss the essential parameters involved in the synthesis of these materials with providing a diverse set of examples. In addition, the recent advances in silica mesoporous structures for drug delivery and catalytic applications are presented to fill the existing gap in the literature with providing some promising examples on this topic for the scientists in both industry and academia active in the field. Regarding the catalytic applications, mesoporous silica particles have shown some promises to remove the organic pollutants and to synthesize final products with high yields due to the ease with which their surfaces can be modified with various ligands to create appropriate interactions with target molecules. In the drug delivery process, as nanocarriers, they have also shown very good performance thanks to the easy surface functionalization but also adjustability of their porosities to providing in-vivo and in-vitro cargo delivery at the target site with appropriate rate.
Collapse
|
12
|
Cellulose mini-membranes modified with TiO 2 for separation, determination, and speciation of arsenates and selenites. Mikrochim Acta 2020; 187:430. [PMID: 32632649 PMCID: PMC7338822 DOI: 10.1007/s00604-020-04387-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/13/2020] [Indexed: 11/13/2022]
Abstract
Sorptive and selective mini-membranes based on TiO2 directly synthesized onto cellulose filters (TiO2@cellulose) have been developed. The in situ synthesis of TiO2@cellulose applied is simple and economically advantageous. The obtained membranes can be useful for (1) separating arsenic(V) and selenium(IV) from other ions and organic matter, (2) speciation of arsenic and selenium, and (3) determining ulratraces of these ions in water samples. The membranes exhibit good stability and high maximum adsorption capacities for Se(IV) (71 mg g−1) and As(V) (41 mg g−1). A monolayer chemical adsorption of analytes on the membranes was confirmed. The structure of membranes was examined with scanning electron microscopy, x-ray diffractometry, and micro energy-dispersive x-ray fluorescence spectrometry (μ-EDXRF). The membranes were characterized by homogenous distribution of TiO2 onto cellulose. The TiO2@cellulose was used as a new sorbent in micro-solid phase extraction for determination of Se(IV) and As(V) by EDXRF. Using direct analysis of mini-membranes after sorption of analytes avoids the elution step. Thus, the proposed procedure is an attractive and solvent-free option for quantitative monitoring of Se(IV) and As(V) in different materials. Both analytes were quantitatively and simultaneously separated/determined from samples at pH 2 with very good recovery (close to 100%), precision (4.5%), and detection limits (0.4 ng mL−1 Se and 0.25 ng mL−1 As). TiO2@cellulose membranes were applied to water analysis. Effective method for determination of ultra trace arsenates and selenites using cellulose-based sorbent ![]()
Collapse
|
13
|
Ahmad H, Haseen U, Umar K, Ansari MS, Ibrahim MNM. Bioinspired 2D carbon sheets decorated with MnFe2O4 nanoparticles for preconcentration of inorganic arsenic, and its determination by ICP-OES. Mikrochim Acta 2019; 186:649. [DOI: 10.1007/s00604-019-3753-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/10/2019] [Indexed: 01/07/2023]
|
14
|
Musielak M, Gagor A, Zawisza B, Talik E, Sitko R. Graphene Oxide/Carbon Nanotube Membranes for Highly Efficient Removal of Metal Ions from Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28582-28590. [PMID: 31318194 DOI: 10.1021/acsami.9b11214] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) has an excellent adsorption capacity toward metal ions. Therefore, it is widely recognized as an auspicious material for fabrication of membranes applied in metal ion separation. However, GO membranes are not stable in aqueous solution because of electrostatic repulsion between GO nanosheets which are negatively charged. This paper shows that stable GO membranes can be easily obtained by the noncovalent interaction of GO with oxidized carbon nanotubes (CNTs). The experiment also shows that the GO/CNTs membranes can be used for the effective adsorption of metal ions. The kinetic data, adsorption isotherms, competitive adsorption experiment, and X-ray photoelectron spectroscopy indicate that the adsorption of metal ions is based on chemisorption. The membranes are remarkably durable in acidic, neutral, and basic solutions. Although the significant stabilization of the membranes by CNTs is observed, they strongly influence the adsorption process. Our study reveals that even a small amount of CNTs (GO/CNTs in the ratio 8:1) significantly reduces adsorption capacities of the membranes which were as follows: 37, 40, 50, 42, 48, and 98 mg g-1 for Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The reduction of the membrane adsorption capacities results from the creation of micro- and nanochannels formed by entangled CNTs. Durability and adsorptive properties of studied membranes indicate their potential use for the removal of metals from water.
Collapse
Affiliation(s)
- Marcin Musielak
- Institute of Chemistry , University of Silesia , Szkolna 9 , 40-006 Katowice , Poland
| | - Anna Gagor
- Institute of Low Temperature and Structure Research , Polish Academy of Science , P.O. Box 1410, 50-950 Wroclaw , Poland
| | - Beata Zawisza
- Institute of Chemistry , University of Silesia , Szkolna 9 , 40-006 Katowice , Poland
| | - Ewa Talik
- Institute of Physics , University of Silesia , 75 Pulku Piechoty 1 , 41-500 Chorzow , Poland
| | - Rafal Sitko
- Institute of Chemistry , University of Silesia , Szkolna 9 , 40-006 Katowice , Poland
| |
Collapse
|
15
|
Karimi A, Andreescu S, Andreescu D. Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24725-24734. [PMID: 31190542 DOI: 10.1021/acsami.9b05234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantification of chemical reactions of nanoparticles (NPs) and their interaction with contaminants is a fundamental need to the understanding of chemical reactivity and surface chemistry of NPs released into the environment. Herein, we propose a novel strategy employing single-particle electrochemistry showing that it is possible to measure reactivity, speciation, and loading of As3+ on individual NPs, using cerium oxide (CeO2) as a model system. We demonstrate that redox reactions and adsorption processes can be electrochemically quantified with high sensitivity via the oxidation of As3+ to As5+ at 0.8 V versus Ag/AgCl or the reduction of As3+ to As0 at -0.3 V (vs Ag/AgCl) generated by collisions of single particles at an ultramicroelectrode. Using collision electrochemistry, As3+ concentrations were determined in basic conditions showing a maximum adsorption capacity at pH 8. In acidic environments (pH < 4), a small fraction of As3+ was oxidized to As5+ by surface Ce4+ and further adsorbed onto the CeO2 surface as a As5+ bidentate complex. The frequency of current spikes (oxidative or reductive) was proportional to the concentration of As3+ accumulated onto the NPs and was found to be representative of the As3+ concentration in solution. Given its sensitivity and speciation capability, the method can find many applications in the analytical, materials, and environmental chemistry fields where there is a need to quantify the reactivity and surface interactions of NPs. This is the first study demonstrating the capability of single-particle collision electrochemistry to monitor the interaction of heavy metal ions with metal oxide NPs. This knowledge is critical to the fundamental understanding of the risks associated with the release of NPs into the environment for their safe implementation and practical use.
Collapse
Affiliation(s)
- Anahita Karimi
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| |
Collapse
|
16
|
Zheng M, Lian F, Zhu Y, Zhang Y, Liu B, Zhang L, Zheng B. pH-responsive poly (xanthan gum-g-acrylamide-g-acrylic acid) hydrogel: Preparation, characterization, and application. Carbohydr Polym 2019; 210:38-46. [DOI: 10.1016/j.carbpol.2019.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
17
|
Sarma GK, Sen Gupta S, Bhattacharyya KG. Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6245-6278. [PMID: 30623336 DOI: 10.1007/s11356-018-04093-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 05/21/2023]
Abstract
Over the years, heavy metal pollution has become a very serious environmental problem worldwide. Even though anthropogenic sources are believed to be the major cause of heavy metal pollution, they can also be introduced into the environment from natural geogenic sources. Heavy metals, because of their toxicity and carcinogenicity, are considered to be the most harmful contaminants of groundwater as well as surface water, a serious threat to both human and aquatic life. Nanomaterials due to their size and higher surface area to volume ratio show some unique properties compared to their bulk counterpart and have drawn significant attention of the scientific community in the last few decades. This large surface area can make these materials as effective adsorbents in pollution remediation studies. In this review, an attempt has been made to focus on the applicability of different types of nanomaterials, such as clay-nanocomposites, metal oxide-based nanomaterials, carbon nanotubes, and various polymeric nanocomposites as adsorbents for removal of variety of heavy metals, such as As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sn, U, V, and Zn, from water as reported during the last few years. This work tries to analyze the metal-nanomaterial interactions, the mechanism of adsorption, the adsorption capacities of the nanomaterials, and the kinetics of adsorption under various experimental conditions. The review brings forward the relation between the physicochemical properties of the nanomaterials and heavy metal adsorption on them.
Collapse
Affiliation(s)
- Gautam Kumar Sarma
- Department of Chemistry, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, 791112, India.
| | | | | |
Collapse
|