1
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Lou YF, Peng YB, Luo X, Yang Z, Wang R, Sun D, Li L, Tan Y, Huang J, Cui L. A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP. Mikrochim Acta 2019; 186:494. [PMID: 31267250 DOI: 10.1007/s00604-019-3596-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.
Collapse
Affiliation(s)
- Yi-Fei Lou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Yong-Bo Peng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.,Molecular Science and Biomedicine Laboratory (MBL), College of Life Sciences, Hunan University, Changsha, 410082, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Estates Building, 10 Sassoon Road, Hong Kong, 00852, People's Republic of China
| | - Xiaowei Luo
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Zhiming Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Ruifeng Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Dewen Sun
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Yuyu Tan
- Department of Biomedical Engineering School of Electrical Engineering, University of South China, Hengyang, 421002, China
| | - Jiahao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
| |
Collapse
|
8
|
Liu Z, Luo D, Ren F, Ran F, Chen W, Zhang B, Wang C, Chen H, Wei J, Chen Q. Ultrasensitive fluorescent aptasensor for CRP detection based on the RNase H assisted DNA recycling signal amplification strategy. RSC Adv 2019; 9:11960-11967. [PMID: 35517011 PMCID: PMC9063470 DOI: 10.1039/c9ra01352k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2022] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
An aptamer-based method for the ultrasensitive fluorescence detection of C-reactive protein (CRP) was developed using the ribonuclease H (RNase H) assisted DNA recycling signal amplification strategy. In this assay, CRP can specifically bind to the aptamer of CRP and the DNA chain of P1 is released from the aptamer/P1 (Ap/P1) complexes. After the addition of the fluorescence labeled (5-FAM) RNA, P1 hybridizes with fluorescence labeled RNA to form a P1/RNA double strand. When RNase H is added, the RNA with fluorescence labeling in the double strand is specifically cut into nucleotide fragments, which cannot be adsorbed on the surface of the GO, so as to generate a fluorescence signal. In the absence of CRP, fluorescence labeled RNA cannot hybridize with P1 to form double strands, which is able to directly adsorb on the surface of GO, resulting in no fluorescence signal. The detection limit is as low as 0.01 ng mL-1, with a linear dynamic range from 50 pg mL-1 to 100 ng mL-1. This sensor is able to detect CRP in spiked human serum, urine and saliva. Thus, it shows a great application prospect in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Zhongzhi Liu
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
| | - Dan Luo
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
- College of Pharmacy, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Fangling Ren
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
- College of Pharmacy, Hubei University of Medicine Hubei Shiyan 442008 China
| | - Fengying Ran
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
| | - Wei Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
| | - Bingqiang Zhang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
| | - Ceming Wang
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
| | - Hao Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
| | - Jian Wei
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine Hubei Shiyan 442008 China +86 0719 8272283
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine Hubei Shiyan 442008 China
| |
Collapse
|