1
|
Wu Y, Wang M, Gu Y, Ge K. Miniaturized thermal purge-and-trap device combined with self-calibration colorimetric/SERS dual-model optical sensors for highly rapid and selective detection of sulfur dioxide in wine. Food Chem X 2025; 25:102091. [PMID: 39758078 PMCID: PMC11699345 DOI: 10.1016/j.fochx.2024.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Herein, the miniaturized thermal purge-and-trap (MTPT) device combined with self-calibration colorimetric/surface-enhanced Raman spectroscopy (SERS) dual-model optical sensors were designed for effective analysis of sulfur dioxide (SO2) in wine. The SO2 can be rapidly separated from wine and enriched by MTPT device, ensuring colorimetric/SERS dual-model optical sensing based on Karl Fischer reaction. The high separation efficiency of miniaturized MTPT device combined with self-calibration of dual-model optical sensors significantly alleviate matrix interference and improve the detection accuracy. The satisfactory linear range of 0.1-200.0 mg/L and 0.1-500.0 mg/L with limit of detection of 0.03 mg/L can be obtained. Finally, the MTPT-colorimetric/SERS method was applied to determine the content of SO2 in different kinds of wine to verify the practicality. These results provide an ideal strategy in construction of MTPT device combined with self-calibration dual-model optical sensors for quantification of gaseous hazards in complex food samples with high rapidity, anti-interference and accuracy.
Collapse
Affiliation(s)
- Yun Wu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Meiqi Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Ge
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Chen J, Zhang C, Yi L, Duan F, Gu Y, Ge K, Fan X. Design and fabrication of self-calibration colorimetric/fluorescence/SERS tri-modal optical sensor for highly rapid and accurate detection of mercury ions in foods. Food Chem X 2024; 24:101958. [PMID: 39582646 PMCID: PMC11582429 DOI: 10.1016/j.fochx.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
The improvement of detection accuracy without loss of rapidity and sensitivity by optical sensors in complex food analysis is still full of challenges owing to the matrix interference. Herein, a novel and simple self-calibration colorimetric/fluorescence/surface-enhanced Raman spectroscopy (SERS) tri-modal optical sensor based on aminated Rhodamine 6G (R6G-NH2) was developed for highly rapid, sensitive, and accurate detection of Hg2+ in food samples. The high recognition specificity of R6G-NH2 for Hg2+ can be achieved through the metal chelation interaction between Hg2+ and -NH2, -COOH groups in R6G-NH2 with formation of R6G-NH2-Hg2+-R6G-NH2 complex. The DFT and FDTD simulations were adopted to confirm the theoretical feasibility in Hg2+ detection by tri-modal optical. Under the optimum conditions, the analytical method based on self-calibration tri-modal optical sensor for Hg2+ detection was established with promising properties (rapidity, linearity, linear range, LOD, and LOQ), providing a strategy in rapid, selective, sensitive, and accurate detection for food safety.
Collapse
Affiliation(s)
- Jinxin Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Cheng Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fengmin Duan
- YunNan Institute of Measuring and Testing Technology, Kunming 650228, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kun Ge
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
3
|
Rahman N, Ahmad I. Coordination polymer gel mediated spectrophotometric, ICP-AES and spectrofluorimetric methods for trace As(III) determination in water and food samples. CHEMOSPHERE 2024; 351:141272. [PMID: 38262491 DOI: 10.1016/j.chemosphere.2024.141272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Herein, a coordination polymer gel is proposed for the determination of As(III) in real samples through multispectroscopic techniques viz. spectrophotometry, spectrofluorimetry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Taguchi L32 (46 21) design and adaptive neuro fuzzy inference system (ANFIS) optimized the controllable factors affecting the extraction yielding an experimental S/N ratio of 39.94 dB. The fluorescence quenching (KSV = 2.63 × 106 L mol-1) was static with photoelectron transfer being the main mechanism confirmed by the density functional theory calculations. The limits of detection (LODs), limits of quantification (LOQs) and linear ranges were 0.038 μg L-1, 0.13 μg L-1 and 1.67-116.67 μg L-1, 0.40 μg L-1, 1.21 μg L-1 and 1.67-33.33 μg L-1, 1.07 μg L-1, 3.24 μg L-1 and 3.32-35.37 μg L-1 for the developed enrichment coupled ICP-AES, spectrophotometry and fluorescence sensing methods. Among these methods, the enrichment - ICP-AES method has the lowest LOD, LOQ and the widest linear range followed by the enrichment - spectrophotometry and fluorescene sensing methods. Spectrofluorimetry offers high sensitivity, selectivity, and possible real time monitoring, spectrophotometry provides a cost-effective and versatile option, while ICP-AES manifests multi-element analysis with high sensitivity and low interference. The developed methods were validated and employed for the successful determination of trace As(III) in real samples. The employment of these methods enhances the overall analytical capability for a wide range of sample types and concentrations.
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry Aligarh Muslim University, Aligarh-202002, India.
| | - Izhar Ahmad
- Department of Chemistry Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|
4
|
Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging. Mikrochim Acta 2023; 190:109. [PMID: 36867213 DOI: 10.1007/s00604-023-05693-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
A turn-on fluorescent aptasensor based on a paper-based microfluidic chip was developed to detect arsenite via aptamer competition strategy and smartphone imaging. The chip was prepared by wax-printing hydrophilic channels on filter paper. It is portable, low-cost, and environmentally friendly. Double-stranded DNA consisting of aptamer and fluorescence-labeled complementary strands was immobilized on the reaction zone of the paper chip. Due to the specific strong binding between aptamer and arsenite, the fluorescent complementary strand was squeezed out and driven by capillary force to the detection area of the paper chip, so that the fluorescent signal arose in the detection area under the excitation wavelength of 488 nm. Arsenite can be quantified by using smartphone imaging and RGB image analysis. Under the optimal conditions, the paper-based microfluidic aptasensor exhibited excellent linear response over a wide range of 1 to 1000 nM, with a detection limit as low as 0.96 nM (3σ).
Collapse
|
5
|
Diana R, Gentile FS, Concilio S, Petrella A, Belvedere R, Schibeci M, Arciello A, Di Costanzo L, Panunzi B. A DR/NIR Hybrid Polymeric Tool for Functional Bio-Coatings: Theoretical Study, Cytotoxicity, and Antimicrobial Activity. Polymers (Basel) 2023; 15:polym15040883. [PMID: 36850168 PMCID: PMC9967255 DOI: 10.3390/polym15040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Among modern biomaterials, hybrid tools containing an organic component and a metal cation are recognized as added value, and, for many advanced biomedical applications, synthetic polymers are used as thin protective/functional coatings for medical or prosthetic devices and implants. These materials require specific non-degradability, biocompatibility, antimicrobial, and antiproliferative properties to address safety aspects concerning their use in medicine. Moreover, bioimaging monitoring of the biomedical device and/or implant through biological tissues is a desirable ability. This article reports a novel hybrid metallopolymer obtained by grafting zinc-coordinated fragments to an organic polymeric matrix. This hybrid polymer, owing to its relevant emission in the deep red to near-infrared (DR/NIR) region, is monitorable; therefore, it represents a potential material for biomedical coating. Furthermore, it shows good biocompatibility and adhesion properties and excellent stability in slightly acidic/basic water solutions. Finally, in contact with the superficial layers of human skin, it shows antimicrobial properties against Staphylococcus aureus bacterial strains.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Napoli, Italy
| | | | - Simona Concilio
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy
- Bionam Research Center for Biomaterials, University of Salerno, 84084 Salerno, Italy
| | | | | | - Martina Schibeci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Roma, Italy
| | - Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Napoli, Italy
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Napoli, Italy
- Correspondence:
| |
Collapse
|
6
|
Research Progress in Fluorescent Probes for Arsenic Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238497. [PMID: 36500589 PMCID: PMC9740406 DOI: 10.3390/molecules27238497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Arsenic is a toxic non-metallic element that is widely found in nature. In addition, arsenic and arsenic compounds are included in the list of Group I carcinogens and toxic water pollutants. Therefore, rapid and efficient methods for detecting arsenic are necessary. In the past decade, a variety of small molecule fluorescent probes have been developed, which has been widely recognized for their rapidness, efficiency, convenience and sensitivity. With the development of new nanomaterials (AuNPs, CDs and QDs), organic molecules and biomolecules, the conventional detection of arsenic species based on fluorescence spectroscopy is gradually transforming from the laboratory to the portable kit. Therefore, in view of the current research status, this review introduces the research progress of both traditional and newly developed fluorescence spectrometry based on novel materials for arsenic detection, and discusses the potential of this technology in the rapid screening and field testing of water samples contaminated with arsenic. The review also discusses the problems that still exist in this field, as well as the expectations.
Collapse
|
7
|
Luo SZ, Yang JY, Jia BZ, Wang H, Chen ZJ, Wei XQ, Shen YD, Lei HT, Xu ZL, Luo L. Multicolorimetric and fluorometric dual-modal immunosensor for histamine via enzyme-enabled metallization of gold nanorods and inner filter effect of carbon dots. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhang H, Li Y, Lu H, Gan F. A ratiometric fluorescence and colorimetric dual-mode sensing platform based on sulfur quantum dots and carbon quantum dots for selective detection of Cu 2. Anal Bioanal Chem 2022; 414:2471-2480. [PMID: 35169908 DOI: 10.1007/s00216-022-03888-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 01/30/2023]
Abstract
A new dual-mode ratiometric fluorescence and colorimetric probe for selective determination of Cu2+ was developed based on blue-emission sulfur quantum dots (SQDs) and yellow-emission carbon quantum dots (CQDs). The fluorescence and absorbance of CQDs increased in the presence of Cu2+ due to the Cu2+ -oxidized o-phenylenediamine group on the surface of the CQDs. Because of the inner filter effect between SQDs and CQDs-Cu2+, the fluorescence response of SQDs decreased following the introduction of Cu2+. Furthermore, in the presence of Cu2+, the dual-mode SQD-CQD probe showed visible color changes under both ultraviolet light and sunlight. Under optimal conditions, the dual-mode probe was used to quantitatively detect Cu2+ with a linear range of 0.1-5.0 μM for ratiometric fluorescence and colorimetry, with a limit of detection of about 31 nM and 47 nM, respectively. Finally, the dual-mode probe was used for the determination of Cu2+ in practical samples to expand the practical application, and the difference between ratiometric fluorescence and colorimetric methods was compared. The recovery results confirmed the high accuracy of the dual-mode probe, showing that it has immense potential for sensitive and selective detection of Cu2+ in practical samples.
Collapse
Affiliation(s)
- Hanqiang Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yufei Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Haixin Lu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Feng Gan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
9
|
A covalent organic framework containing bipyridine groups as a fluorescent chemical probe for the ultrasensitive detection of arsenic (III). J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
11
|
A dual-colored persistent luminescence nanosensor for simultaneous and autofluorescence-free determination of aflatoxin B 1 and zearalenone. Talanta 2021; 232:122395. [PMID: 34074391 DOI: 10.1016/j.talanta.2021.122395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Mycotoxins contamination in agricultural products poses a serious threat to human and animal health, so rapid and sensitive nanosensors for simultaneous determination of multiple mycotoxins in food samples are highly desirable for food safety monitoring. Herein, we report the fabrication of functional dual-colored persistent luminescence nanoparticles (PLNPs) in conjunction with Fe3O4 magnetic nanoparticles as a nanosensor for the simultaneous biosensing of aflatoxin B1 (AFB1) and zearalenone (ZEN) in food samples. Two types of PLNPs with a single excitation wavelength, Zn2GeO4:Mn2+ and Zn1.25Ga1.5Ge0.25O4:Cr3+,Yb3+,Er3+, are employed as the signal units, and aptamers with high affinity and specificity to the corresponding mycotoxins are used as the recognition units. The nanosensor was fabricated by hybridizing the aptamer modified PLNPs with the complementary DNA modified Fe3O4. The developed nanosensor offers the integrated merits of autofluorescence-free detection of persistent luminescence, the high specificity of aptamer and the high speed of magnetic separation, allowing highly sensitive and selective detection of AFB1 and ZEN in food samples with the limits of detection of 0.29 pg mL-1 for AFB1 and 0.22 pg mL-1 for ZEN and the recoveries of 93.6%-103.2% for AFB1 and 94.7%-105.1% for ZEN. This work also provides a novel universal PLNPs-based optical platform for the simultaneous detection of multiple contaminants in complex samples.
Collapse
|
12
|
Shukla S, Singh S, Mitra MD. Photosensitizer Modulated Turn – off Fluorescence System and Molecular Logic Functions for Selective Detection of Arsenic (III). ChemistrySelect 2020. [DOI: 10.1002/slct.202003558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shubhangi Shukla
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi India
| | - Shwarnima Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi India
| | - Murli Dhar Mitra
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi India
| |
Collapse
|
13
|
|
14
|
Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. NANO-MICRO LETTERS 2020; 12:70. [PMID: 34138268 PMCID: PMC7770784 DOI: 10.1007/s40820-020-0404-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Weihang Ding
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Letong Xu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
15
|
Duan J, Liu B, Liu J. Interactions between gold, thiol and As(iii) for colorimetric sensing. Analyst 2020; 145:5166-5173. [DOI: 10.1039/d0an00946f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arsenite cannot crosslink glutathione-capped gold nanoparticles but a high concentration of arsenite can displace adsorbed glutathione, indicating that any two species from gold, thiol and arsenite can react.
Collapse
Affiliation(s)
- Junling Duan
- College of Chemistry and Material Science
- Shandong Agricultural University
- Tai'an
- P.R. China
- Department of Chemistry
| | - Biwu Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Juewen Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
16
|
Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.100318] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Das A, Mohanty S, Kuanr BK. Label-free gold nanorod-based plasmonic sensing of arsenic(iii) in contaminated water. Analyst 2019; 144:4708-4718. [DOI: 10.1039/c9an00668k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient label-free strategy for arsenic(iii) sensing in water through the suppression of iron(iii)-catalyzed oxidative shortening of gold nanorods.
Collapse
Affiliation(s)
- Anindita Das
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Sonali Mohanty
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Bijoy Kumar Kuanr
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
18
|
Liu JM, Wang ZH, Li CY, Lv SW, Zhao N, Wang S. Construction of molecularly imprinted nanoplatforms with persistent luminescence for the in vitro specific adsorption and in vivo targeted regulation of food-borne biotoxins. NEW J CHEM 2019. [DOI: 10.1039/c9nj03231b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecularly imprinted nanoplatforms with super-long afterglow persistent luminescence showed in vitro specific adsorption and in vivo targeted regulation ability of food-borne biotoxins by autofluorescence-free nanoimaging.
Collapse
Affiliation(s)
- Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine, Nankai University
- Tianjin 300071
- China
| | - Zhi-Hao Wang
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine, Nankai University
- Tianjin 300071
- China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine, Nankai University
- Tianjin 300071
- China
| | - Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine, Nankai University
- Tianjin 300071
- China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine, Nankai University
- Tianjin 300071
- China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine, Nankai University
- Tianjin 300071
- China
| |
Collapse
|