1
|
Moharami R, Karimzadeh Z, Golsanamlu Z, Gharakhani A, Rahimpour E, Jouyban A. Development of a metal-organic framework-based nanosensor for determination of cyclosporine in plasma samples. BMC Chem 2025; 19:80. [PMID: 40148909 PMCID: PMC11951541 DOI: 10.1186/s13065-025-01456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
According to the narrow therapeutic range and multiple adverse effects of cyclosporine and the need for its therapeutic drug monitoring (TDM), in this study, an efficient zeolitic imidazolate framework-8 metal-organic framework (ZIF-8 MOF) based nanoprobe was designed for simple, rapid and high sensitive its quantification in plasma samples. After the successful synthesis of the ZIF-8 MOF, under the optimum condition, the fluorescence emission of ZIF-8 MOF, measured at an excitation wavelength of 370 nm and an emission wavelength of 417 nm, was enhanced with increasing cyclosporine concentration, due to the specific interactions between cyclosporine and the nanoprobe, including hydrogen bonding and hydrophobic effects. The nanoprobe showed a linear correlation between the analytical response and cyclosporine concentration in the concentration range of 0.01-1.0 µg mL- 1, with a detection limit of 0.003 µg mL- 1. Acceptable precision was achieved, evidenced by intra-day and inter-day relative standard deviations of 0.4% and 0.5%, respectively. Recovery between 97.1% and 102.1% in plasma samples indicated the method's reliability in practical applications.
Collapse
Affiliation(s)
- Reza Moharami
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Karimzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Golsanamlu
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Gharakhani
- Pharmaceutical Analysis Center, Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Fang WZ, Palanisamy S, Vijayaraghavan P, Chen CY, Weng SL, Yang CS, Wang YM. Construction of in situ modulated controlled growth of MOF-on-mof impedimetric assembly for the practical minimal level assessment of anti-mullerian hormone. Biosens Bioelectron 2025; 272:117113. [PMID: 39754847 DOI: 10.1016/j.bios.2024.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH2 was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH2 by in situ method for the first time. MOF matrix could be established to form a three-dimensional (3D) core-shell hybrid unit using MOFs with distinct characteristics. The morphology, structural characteristics, and electrochemical performance of MIL-88 B@UiO66NH2 were studied. It was successfully used for AMH sensing to demonstrate the detection performance of the internal extended growth method (IEGM) grown MIL-88 B@UiO66NH2 made immunosensor. The electrochemical results indicated that MOF-on-MOF exhibited linear EIS response for AMH concentration varying from 100 ng/mL to 1 fg/mL. Further, the immunosensor displayed high specificity and sensitivity for AMH detection. The fabricated sensor attained a remarkable limit of detection (LOD) of 1.07 fg/mL and 0.82 fg/mL, when studied in PBS and 10% serum buffer media, respectively. The biosensor achieved the limit of quantification (LOQ) of 3.25 fg/mL and 2.5 fg/mL, respectively, when analyzed in PBS buffer and 10% serum buffer. The significant results emphasized that the fabricated biosensor holds a promising potential to act as an appropriate tool for rapid assessment of AMH levels.
Collapse
Affiliation(s)
- Wan-Zheng Fang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Priya Vijayaraghavan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chiao-Yun Chen
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; School of Post-Baccalaureate Medicine, College of Medicine, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu 300, Taiwan; Department of Obstetrics and Gynecology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu 300, Taiwan.
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
Bobbitt NS, Sikma RE, Sammon JP, Chandross M, Deneff JI, Gallis DFS. Infection Diagnostics Enabled by Selective Adsorption of Breath-Based Biomarkers in Zr-Based Metal-Organic Frameworks. ACS Sens 2025; 10:360-375. [PMID: 39757838 DOI: 10.1021/acssensors.4c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Exhaled breath contains trace levels of volatile organic compounds (VOCs) that can reveal information about metabolic processes or pathogens in the body. These molecules can be used for medical diagnosis, but capturing and accurately measuring them is a significant challenge in chemical separations. A highly selective nanoporous sorbent can be used to capture target molecules from a breath sample and preconcentrate them for use in a detector. In this work, we present a combined predictive modeling-experimental validation study in which five Zr-based metal-organic frameworks (MOFs) were identified and tested. These MOFs display good selectivity for a variety of VOCs known to be indicators of viral infections such as influenza and COVID-19. We first used molecular simulation to identify promising MOF candidates that were subsequently synthesized and tested for recovery of a variety of VOCs (toluene, propanal, butanone, octane, acetaldehyde) at concentrations of 20 ppm in humid nitrogen. We show that MOF-818, PCN-777, and UiO-66 have particularly good selectivity for the target molecules in the presence of humidity. These three MOFs each recover around 40-60% of the targets (with the exception of acetaldehyde) at up to 95% relative humidity. MOF-818 recovers 63% of butanone and 60% of toluene at 80% relative humidity. Recovery for acetaldehyde is lower across all MOFs at high humidity, but notably, MOF-808 recovers 90% of acetaldehyde at 60% humidity.
Collapse
Affiliation(s)
- N Scott Bobbitt
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - R Eric Sikma
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jason P Sammon
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Michael Chandross
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob I Deneff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | |
Collapse
|
4
|
Qu L, Xu Y, Cui W, Wu L, Feng Y, Gu Y, Pan H. Trends in conductive MOFs for sensing: A review. Anal Chim Acta 2025; 1336:343307. [PMID: 39788646 DOI: 10.1016/j.aca.2024.343307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 01/12/2025]
Abstract
Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection. Numerous sensing devices that utilize conductive MOFs have been created. This text presents a thorough overview of the diverse applications of conductive MOFs within the sensing field. The results of this work provide insights into the properties and synthesis methods of conductive MOFs and the working mechanisms of sensors based on conductive MOFs, which will help to deepen the study of such materials, provide a new vision for the design and production of novel functional materials, and promote the development and application of sensors based on conductive MOFs.
Collapse
Affiliation(s)
- Lingli Qu
- Shanghai Urban Construction Vocational College, Shanghai, 201999, China; Institute of Urban Food Safety, Shanghai Urban Construction Vocational College, Shanghai, 201999, China.
| | - Yiwen Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Graduate School, Suzhou, 215123, China
| | - Weikang Cui
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lingjuan Wu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yi Feng
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yangyang Gu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
5
|
Günther A, Deja Y, Kilic M, Tran K, Kotra P, Renz F, Kowalsky W, Roth B. Investigation of the molecular switching process between spin crossover states of triazole complexes as basis for optical sensing applications. Sci Rep 2024; 14:5897. [PMID: 38467722 PMCID: PMC11636798 DOI: 10.1038/s41598-024-56427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
With the advent of the first laser sources and suitable detectors, optical sensor applications immediately also came into focus. During the last decades, a huge variety of optical sensor concepts were developed, yet the forecast for the future application potential appears even larger. In this context, the development of new sensor probes at different scales down to the atomic or molecular level open new avenues for research and development. We investigated an iron based triazole molecular spin-crossover complex changing its absorption characteristics significantly by varying environmental parameters such as humidity, temperature, magnetic or electric field, respectively, with respect to its suitability for a new class of versatile molecular sensor probes. Hereby, besides the investigation of synthesized pure bulk material using different analyzing methods, we also studied amorphous micro particles which were applied in or onto optical waveguide structures. We found that significant changes of the reflection spectra can also be obtained after combining the particles with different types of optical waveguides.The obtained results demonstrate the suitability of the material complex for a broad field of future sensor applications.
Collapse
Affiliation(s)
- Axel Günther
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany.
- Institute of High Frequency Technology, Technical University Braunschweig, 38106, Braunschweig, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany.
| | - Yves Deja
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
| | - Maximilian Kilic
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Kevin Tran
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Pavan Kotra
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
| | - Franz Renz
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Wolfgang Kowalsky
- Institute of High Frequency Technology, Technical University Braunschweig, 38106, Braunschweig, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University of Hannover, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany
| |
Collapse
|
6
|
Perk B, Tepeli Büyüksünetçi Y, Anik Ü. Copper based metal organic framework decorated with gold nanoparticles as a new electrochemical sensor material for the detection of L-Cysteine in milk samples. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:585-595. [PMID: 38327863 PMCID: PMC10844187 DOI: 10.1007/s13197-023-05866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 02/09/2024]
Abstract
A facile electrochemical sensor based on carbon felt electrode (CFE) modified with gold nanoparticles decorated copper based metal organic framework (AuNPs@Cu-MOF) was achieved for the electrochemical sensing of L-Cysteine (L-Cys). For this purpose, AuNPs@Cu-MOF was synthesized and characterized. The electrochemical behaviors of L-Cys at plain and modified CFEs were investigated via cyclic voltammetry (CV). According CV results, AuNPs@Cu-MOF structure showed a catalytic effect on the oxidation of L-Cys as well as increasing the active electrode surface area by 206% compared to bare CFE. In addition, the pH effect on electrochemical determination of L-Cys at AuNPs@Cu-MOF/CFE was widely examined, and it was determined that the best oxidation peak current of L-Cys was obtained in pH 5 acetate buffer. Moreover, a linear detection range of 30-400 µM for L-Cys with a limit of detection value of 2.21 µM (n = 3) was achieved with the proposed electrochemical sensor. The developed L-Cys sensor was also applied for L-Cys detection in various milk samples and acceptable recovery values were obtained ranging from 100.05 to 108.45%. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05866-1.
Collapse
Affiliation(s)
- Benay Perk
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
| | - Yudum Tepeli Büyüksünetçi
- Research Laboratory Center, Mugla Sitki Kocman University Sensors, Biosensors and Nano-diagnostic Systems Laboratory, Kotekli-Mugla, Turkey
| | - Ülkü Anik
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey
- Research Laboratory Center, Mugla Sitki Kocman University Sensors, Biosensors and Nano-diagnostic Systems Laboratory, Kotekli-Mugla, Turkey
| |
Collapse
|
7
|
Saghatforoush L, Mahmoudi T, Khorablou Z, Nasiri H, Bakhtiari A, Sajadi SAA. Electro-oxidation sensing of sumatriptan in aqueous solutions and human blood serum by Zn(II)-MOF modified electrochemical delaminated pencil graphite electrode. Sci Rep 2023; 13:16803. [PMID: 37798347 PMCID: PMC10556131 DOI: 10.1038/s41598-023-44034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
An electrochemical sensory platform is presented for determination of sumatriptan (SUM) in aqueous solutions and human blood serum. A pencil graphite electrode (PGE) was electrochemically delaminated by cyclic voltammetry technique, and then further modified using nanoparticles of a zinc-based metal-organic framework (Zn(II)-MOF). The fabricated Zn(II)-MOF/EDPGE electrode was utilized for sensitive electrochemical detection of SUM via an electro-oxidation reaction. The Zn(II)-MOF was hydrothermally synthesized and characterized by various techniques. The electrochemical delamination of PGE results in a porous substrate, facilitating the effective immobilization of the modifier. The designed sensor benefits from both enhanced surface area and an accelerated electron transfer rate, as evidenced by the chronocoulogram and Nyquist plots. Under optimized conditions, the developed sensor exhibited a linear response for 0.99-9.52 µM SUM solutions. A short response time of 5 s was observed for the fabricated sensor and the detection limit was found to be 0.29 μM. Selectivity of Zn(II)-MOF/EDPGE towards SUM was evaluated by examining the interference effect of codeine, epinephrine, acetaminophen, ascorbic acid, and uric acid, which are commonly found in biological samples. The developed sensor shows excellent performance with recovery values falling within the range of 96.6 to 111% for the analysis of SUM in human blood serum samples.
Collapse
Affiliation(s)
| | - Tohid Mahmoudi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Zeynab Khorablou
- Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
| | - Hassan Nasiri
- Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Akbar Bakhtiari
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Seyed Ali Akbar Sajadi
- Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
| |
Collapse
|
8
|
Zhao T, Niu X, Pei WY, Ma JF. Thiacalix[4]arene-based metal-organic framework/reduced graphene oxide composite for electrochemical detection of chlorogenic acid. Anal Chim Acta 2023; 1276:341653. [PMID: 37573094 DOI: 10.1016/j.aca.2023.341653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
A novel metal-organic framework [Co2LCl4]·2DMF (Co-L) based on thiacalix[4]arene derivative was synthesized using the solvothermal method. Then Co-L was respectively mixed with reduced graphene oxide (RGO), multi-walled carbon nanotubes (MWCNT) and mesoporous carbon (MC) to prepare corresponding composite materials. PXRD, SEM and N2 adsorption-desorption illustrated that composite materials have been successfully prepared. After optimizing experimental conditions for detecting chlorogenic acid (CGA), the Co-L@RGO(1:1) composite material showed the optimal electrocatalytic activity for CGA, which may be because RGO possessed large specific surface area and hydroxyl and carboxyl groups that could form hydrogen-bonding with the oxide of CGA. Benefiting from the synergetic effect of Co-L and RGO, the glassy carbon electrode modified with Co-L@RGO(1:1) (Co-L@RGO(1:1)/GCE) exhibited a low limit of detection (LOD) of 7.24 nM for CGA within the concentration of 0.1-2 μM and 2-20 μM. Co-L@RGO(1:1)/GCE also showed excellent selectivity, stability, and reproducibility for the CGA detection. Co-L@RGO(1:1)/GCE could detect the CGA in honeysuckle with satisfactory results. This work provided a great example for the thiacalix[4]arene-based MOF in the application of electrochemical sensors.
Collapse
Affiliation(s)
- Tong Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xia Niu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
9
|
Chang Y, Chen Y, Wu M, Liu L, Song Q. Electrochemical detection of glycoproteins using boronic acid-modified metal-organic frameworks as dual-functional signal reporters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4452-4458. [PMID: 37641924 DOI: 10.1039/d3ay01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The sensitive analysis of glycoproteins is of great importance for early diagnosis and prognosis of diseases. In this work, a sandwich-type electrochemical aptasensor was developed for the detection of glycoproteins using 4-formylphenylboric acid (FPBA)-modified Cu-based metal-organic frameworks (FPBA-Cu-MOFs) as dual-functional signal probes. The target captured by the aptamer-modified electrode allowed the attachment of FPBA-Cu-MOFs based on the interaction between boronic acid and glycan on glycoproteins. Large numbers of Cu2+ ions in FPBA-Cu-MOFs produced an amplified signal for the direct voltammetric detection of glycoproteins. The electrochemical aptasensor showed a detection limit as low as 6.5 pg mL-1 for prostate specific antigen detection. The method obviates the use of antibody and enzymes for molecular recognition and signal output. The dual-functional MOFs can be extended to the design of other biosensors for the determination of diol-containing biomolecules in clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Yixuan Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Mian Wu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
| |
Collapse
|
10
|
Ibrahim MR, Greish YE. MOF-Based Biosensors for the Detection of Carcinoembryonic Antigen: A Concise Review. Molecules 2023; 28:5970. [PMID: 37630221 PMCID: PMC10458010 DOI: 10.3390/molecules28165970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer has been considered one of the most serious diseases in recent decades. Early diagnosis of cancer is a crucial step for expedited treatment. Ideally, detection of cancer biomarkers, which are usually elevated because of cancer, is the most straightforward approach to detecting cancer. Among these biomarkers, the carcinoembryonic antigen (CEA) is considered one of the most important tumor markers for colorectal cancer. The CEA has also been recognized as a biomarker for other types of cancers, including breast, gastric, ovarian, pancreatic, and lung cancers. Typically, conventional CEA testing depends on immunoassay approaches, which are known to be complex, highly expensive, and time consuming. Accordingly, various types of biosensors have been designed for the detection of cancer biomarkers. The main prerequisites of these biosensors are high sensitivity, fast response, and low cost. Many nanostructures have been involved in the design of biosensors, such as nanoparticles of certain metals and metal oxides that are further functionalized to contribute to the sensing of the biomarkers. Alternatively, metal organic frameworks (MOFs), which are extended crystalline structures comprising metal clusters surrounded by organic linkers, have been shown to be highly promising for the development of biosensors. The 3D structure of MOFs results in a combination of high surface area and high interconnected porosity, which are believed to facilitate their function in the design of a biosensor. This review briefly classifies and describes MOF-based biosensor trials that have been published recently for the aim of detecting CEA.
Collapse
Affiliation(s)
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
11
|
Afarinandeh A, Heidari K, Barczak M, Abdellattif MH, Izadi Yazdanaabadi Z, Mohammadi AA, Haghighat GA, Shams M. Controlled removal of fluoride by ZIF-8, ZIF-67, and Ni-MOF of different morphologies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
12
|
Zhang L, Zhang M, Yang P, Zhang Y, Fei J, Xie Y. Electrochemical Behavior of β-Cyclodextrin-Ni-MOF-74/Reduced Graphene Oxide Sensors for the Ultrasensitive Detection of Rutin. Molecules 2023; 28:4604. [PMID: 37375159 DOI: 10.3390/molecules28124604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Rutin, as a biological flavonoid glycoside, has very important medicinal value. The accurate and rapid detection of rutin is of great significance. Herein, an ultrasensitive electrochemical rutin sensor based on β-cyclodextrin metal-organic framework/reduced graphene oxide (β-CD-Ni-MOF-74/rGO) was constructed. The obtained β-CD-Ni-MOF-74 was characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption and desorption. The β-CD-Ni-MOF-74/rGO presented good electrochemical properties benefiting from the large specific surface area and good adsorption enrichment effect of β-CD-Ni-MOF-74 and the good conductivity of rGO. Under optimal conditions for the detection of rutin, the β-CD-Ni-MOF-74/rGO/GCE showed a wider linear range (0.06-1.0 μM) and lower detection limit (LOD, 0.68 nM, (S/N = 3)). Furthermore, the sensor shows good accuracy and stability for the detection of rutin in actual samples.
Collapse
Affiliation(s)
- Li Zhang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418008, China
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua 418008, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Mengting Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Pingping Yang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
| | - Yin Zhang
- Junior Education Department, Changsha Normal University, Changsha 410100, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Yixi Xie
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418008, China
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Huaihua 418008, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
13
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
14
|
Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem 2023; 410:135434. [PMID: 36641911 DOI: 10.1016/j.foodchem.2023.135434] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chloramphenicol (CAP) is a widely used antibiotic for the treatment of sick animals owing to its potent action and low cost. However, the accumulation of CAP in the human body can cause irreversible aplastic anemia and hematopoietic toxicity. Accordingly, development of various analytical techniques for the rapid detection of CAP in animal products and the related processed foods is necessary. Among these analytical techniques, electrochemical and optical sensors offer many advantages for CAP detection, including high sensitivity, simple operation and fast analysis speed. In this review, we summarize recent application of carbon nanomaterials, metal nanoparticles, metal oxide nanoparticles and metal organic framework in the development of electrochemical and optical sensors for CAP detection (2010-2022). Based on the advantages and disadvantages of nanomaterials, electrochemical and optical sensors are summarized in this review. The preparation and synthesis of electrochemical and optical sensors and nanomaterials in the field of rapid detection are prospected.
Collapse
|
15
|
Qian Y, Han Z, Yang D, Cai Y, Jin J, Yang Z. Metal-Organic Frameworks Facilitate Nucleic Acids for Multimode Synergistic Therapy of Breast Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37236267 DOI: 10.1021/acs.langmuir.3c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Compared with traditional medical methods, gene therapy and photodynamic therapy are the new fields of cancer treatment, and they more accurately and effectively obtain preferable therapeutic effects. In this study, a chemotherapy drug-free nanotherapeutic system based on ZIF-90 encapsulated with Ce6-G3139 and Ce6-DNAzyme for gene and photodynamic therapies was constructed. Once entering the cancer cell, the therapy system will decompose and release Zn2+, Ce6-G3139, and Ce6-DNAzyme in the acidic environment. On the one hand, G3139 binds to the antiapoptotic gene BCL-2 in tumor cells and downregulates related proteins to inhibit tumor proliferation. On the other hand, Zn2+ produced by the decomposition of ZIF-90 can be used as a cofactor to activate the cleavage activity of DNAzyme to initiate gene therapy. Proliferation and metastasis of tumors were further inhibited by DNAzyme, targeting and cutting the gene of human early growth factor-1 (EGR-1). In addition, the photosensitizer Ce6 carried by the nucleic acid will produce cytotoxic ROS to kill cancer cells after irradiation. The results of this study demonstrated that the designed nanoplatform, which synergistically combines gene and photodynamic therapies, has shown great potential for cancer treatment.
Collapse
Affiliation(s)
- Yue Qian
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoyu Han
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dutao Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Kayhan EY, Yildirim A, Kocer MB, Uysal A, Yilmaz M. A cellulose-based material as a fluorescent sensor for Cr(VI) detection and investigation of antimicrobial properties of its encapsulated form in two different MOFs. Int J Biol Macromol 2023; 240:124426. [PMID: 37060971 DOI: 10.1016/j.ijbiomac.2023.124426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
It is crucial to detect toxic chromium ions quickly, reliably, sensitively and at low concentrations. In recent years, fluorescence-based methods have been developed for the rapid detection and determination of toxic ions such as chromium. In present work, we focused on the development of a cellulose-based fluorescent probe (Cel-Nap) for the determination of Cr(VI). The fluorescent probe bearing the 1,8-naphthalimide group displayed a low LOD of 1.07 μM for Cr(VI) in the working range of 0.33 × 10-5-3.22 × 10-5 M. The fluorescence and antibacterial properties of UiO-66-Cel-Nap and ZIF-8-Cel-Nap materials prepared by encapsulating Cel-Nap with 2 different MOF types (UiO-66 and ZIF-8) were investigated. While it was found that ZIF-8-based materials had better antimicrobial properties compared to those of UiO-66, it was determined that materials containing Ag+ were more effective against microbial than those containing AgNPs. It was found that the most effective material was ZIF-8-Cel-Nap-Ag+ and it had a significant antibacterial effect against E. coli at a MIC value of 0.0024 mg/mL.
Collapse
Affiliation(s)
| | - Ayse Yildirim
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Mustafa Baris Kocer
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey
| | - Ahmet Uysal
- Selcuk University, Vocational School of Health Services, Department of Medical Services and Techniques, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Faculty of Science, Department of Chemistry, Konya, Turkey.
| |
Collapse
|
17
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Sanchis-Gual R, Coronado-Puchau M, Mallah T, Coronado E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Sabaté Del Río J, Ro J, Yoon H, Park TE, Cho YK. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens Bioelectron 2023; 224:115057. [PMID: 36640548 DOI: 10.1016/j.bios.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip traditional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.
Collapse
Affiliation(s)
- Jonathan Sabaté Del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jooyoung Ro
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Heejeong Yoon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
20
|
Decoration of alkalization-intercalated Ti 3C 2 with ZIF-8@ZIF-67-derived N-doped carbon nanocage for detecting 4-nitrophenol. Mikrochim Acta 2023; 190:133. [PMID: 36917315 DOI: 10.1007/s00604-023-05713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
The highly effective alk-Ti3C2/bimetallic Co, Zn embedded N-doped carbon (Co-Zn-NC) composite was fabricated by a convenient self-assembled method strategy and applied to the reduction of 4-nitrophenol(4-NP). Co-Zn-NC nanocage was synthesized by using designed core-shell ZIF-8@ZIF-67 as sacrificial template. The Co-Zn-NC was prepared by pyrolysis of ZIF-8@ZIF-67 at 900 °C with high-specific surface area and hollow structure, which facilitates the dispersion of Co species and produces abundant Co-Nx active sites. In addition, the electrochemical property and specific surface area of Ti3C2 were improved by alkaline treatment. As a result, compared with alk-Ti3C2 and Co-Zn-NC, the alk-Ti3C2/Co-Zn-NC sensor showed higher activity and stability in detecting 4-NP. The alk-Ti3C2/Co-Zn-NC sensor has a wide determination range of 2-500 μM and a low detection limit of 0.23 μM for 4-NP. In addition, the newly developed alk-Ti3C2/Co-Zn-NC sensor displayed satisfactory reproducibility and good stability in detecting 4-NP in aqueous samples.
Collapse
|
21
|
Zhao Y, Hao H, Wang H, Sun L, Zhang N, Zhang X, Liang J. Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
22
|
Peng Y, Sanati S, Morsali A, García H. Metal-Organic Frameworks as Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202214707. [PMID: 36468543 DOI: 10.1002/anie.202214707] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Transition metal complexes are well-known homogeneous electrocatalysts. In this regard, metal-organic frameworks (MOFs) can be considered as an ensemble of transition metal complexes ordered in a periodic arrangement. In addition, MOFs have several additional positive structural features that make them suitable for electrocatalysis, including large surface area, high porosity, and high content of accessible transition metal with exchangeable coordination positions. The present review describes the current state in the use of MOFs as electrocatalysts, both as host of electroactive guests and their direct electrocatalytic activity, particularly in the case of bimetallic MOFs. The field of MOF-derived materials is purposely not covered, focusing on the direct use of MOFs or its composites as electrocatalysts. Special attention has been paid to present strategies to overcome their poor electrical conductivity and limited stability.
Collapse
Affiliation(s)
- Yong Peng
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße29a, 18059, Rostock, Germany
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115 175, Iran
| | - Hermenegildo García
- Instituto deTecnología Química,CSIV-UPV, Av.Delos Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
23
|
Mehrannia L, Khalilzadeh B, Rahbarghazi R, Milani M, Saydan Kanberoglu G, Yousefi H, Erk N. Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. BIOSENSORS 2023; 13:216. [PMID: 36831982 PMCID: PMC9954029 DOI: 10.3390/bios13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (L.M.) is a gram-positive bacillus with wide distribution in the environment. This bacterium contaminates water sources and food products and can be transmitted to the human population. The infection caused by L.M. is called listeriosis and is common in pregnant women, immune-deficient patients, and older adults. Based on the released statistics, listeriosis has a high rate of hospitalization and mortality; thus, rapid and timely detection of food contamination and listeriosis cases is necessary. During the last few decades, biosensors have been used for the detection and monitoring of varied bacteria species. These devices are detection platforms with great sensitivity and low detection limits. Among different types of biosensors, electrochemical biosensors have a high capability to circumvent several drawbacks associated with the application of conventional laboratory techniques. In this review article, different electrochemical biosensor types used for the detection of listeriosis were discussed in terms of actuators, bioreceptors, specific working electrodes, and signal amplification. We hope that this review will facilitate researchers to access a complete and comprehensive template for pathogen detection based on the different formats of electrochemical biosensors.
Collapse
Affiliation(s)
- Leila Mehrannia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | | | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 58167-53464, Iran
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
24
|
Ruthenium doped Cu-MOF as an Efficient Sensing Platform for the Voltammetric Detection of Ciprofloxacin. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Fateminia Z, Chiniforoshan H. Optimization and Synthesis of a La-TMA MOF with Some Improvements in Its Properties. ACS OMEGA 2023; 8:262-270. [PMID: 36643429 PMCID: PMC9835621 DOI: 10.1021/acsomega.2c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
A La-TMA metal-organic framework (MOF) made up of benzene-1,3,5-tricarboxylate and La(III) was synthesized by a different methodology compared to those in previous reports. By using various approaches, the structural characteristics and physical properties of the La-TMA MOF were analyzed. Eventually, the results showed micro-hexagonal hollow tubes with a high crystallinity grade and thermal stability (up to 400 °C) and a higher surface area compared with those from earlier reports. The BET surface area of a similar previous MOF was about 14.8 m2/g; however, in the current project, the BET surface area increased to about 34.49 m2/g and the Langmuir surface area to 42.3 m2/g.
Collapse
|
26
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Preparation of novel HKUST-1-glucose oxidase composites and their application in biosensing. Mikrochim Acta 2022; 190:10. [PMID: 36472673 DOI: 10.1007/s00604-022-05563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022]
Abstract
Copper-based metal-organic frameworks (MOF) and multi-walled carbon nanotubes (HKUST-1-MWCNTs) composite were synthesized by one-step hydrothermal method, and PDA-enzyme-HKUST-1-MWCNTs composite was prepared by one-pot method for the construction of glucose biosensors, which realized the sensitive amperometric detection of glucose at 0.7 V (vs. SCE). The sensitivity of the sensor for glucose detection was 178 μA mM-1cm-2 in the wide linear range of 0.005 ~ 7.05 mM, the detection limit was 0.12 μM and the corresponding RSD was 3.8%. Its high performance is mainly benefitted from the high porosity and large specific surface area of HKUST-1, the good conductivity of MWCNTs, and the excellent adhesion and dispersion of PDA. The strategy of combining PDA and MWCNTs to improve the dispersion and conductivity of MOF is expected to achieve a wider application of MOF-based materials in the electrochemical biosensing field.
Collapse
|
28
|
MOF-Based Mycotoxin Nanosensors for Food Quality and Safety Assessment through Electrochemical and Optical Methods. Molecules 2022; 27:molecules27217511. [DOI: 10.3390/molecules27217511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Mycotoxins in food are hazardous for animal and human health, resulting in food waste and exacerbating the critical global food security situation. In addition, they affect commerce, particularly the incomes of rural farmers. The grave consequences of these contaminants require a comprehensive strategy for their elimination to preserve consumer safety and regulatory compliance. Therefore, developing a policy framework and control strategy for these contaminants is essential to improve food safety. In this context, sensing approaches based on metal-organic frameworks (MOF) offer a unique tool for the quick and effective detection of pathogenic microorganisms, heavy metals, prohibited food additives, persistent organic pollutants (POPs), toxins, veterinary medications, and pesticide residues. This review focuses on the rapid screening of MOF-based sensors to examine food safety by describing the main features and characteristics of MOF-based nanocomposites. In addition, the main prospects of MOF-based sensors are highlighted in this paper. MOF-based sensing approaches can be advantageous for assessing food safety owing to their mobility, affordability, dependability, sensitivity, and stability. We believe this report will assist readers in comprehending the impacts of food jeopardy exposure, the implications on health, and the usage of metal-organic frameworks for detecting and sensing nourishment risks.
Collapse
|
29
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
30
|
Lahcen A, Surya SG, Beduk T, Vijjapu MT, Lamaoui A, Durmus C, Timur S, Shekhah O, Mani V, Amine A, Eddaoudi M, Salama KN. Metal-Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49399-49424. [PMID: 36315467 PMCID: PMC9650679 DOI: 10.1021/acsami.2c12842] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The use of porous materials as the core for synthesizing molecularly imprinted polymers (MIPs) adds significant value to the resulting sensing system. This review covers in detail the current progress and achievements regarding the synergistic combination of MIPs and porous materials, namely metal/covalent-organic frameworks (MOFs/COFs), including the application of such frameworks in the development of upgraded sensor platforms. The different processes involved in the synthesis of MOF/COF-MIPs are outlined, along with their intrinsic properties. Special attention is paid to debriefing the impact of the morphological changes that occur through the synergistic combination compared to those that occur due to the individual entities. Thereafter, the strategies used for building the sensors, as well as the transduction modes, are overviewed and discussed. This is followed by a full description of research advances for various types of MOF/COF-MIP-based (bio)sensors and their applications in the fields of environmental monitoring, food safety, and pharmaceutical analysis. Finally, the challenges/drawbacks, as well as the prospects of this research field, are discussed in detail.
Collapse
Affiliation(s)
- Abdellatif
Ait Lahcen
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Sandeep G. Surya
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Abderrahman Lamaoui
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Ceren Durmus
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Suna Timur
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Osama Shekhah
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Aziz Amine
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
31
|
Melnikov P, Bobrov A, Marfin Y. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers (Basel) 2022; 14:polym14204448. [PMID: 36298026 PMCID: PMC9611646 DOI: 10.3390/polym14204448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications.
Collapse
Affiliation(s)
- Pavel Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
- Correspondence:
| | - Alexander Bobrov
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
| | - Yuriy Marfin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Sheremetevsky pr., 10, 153010 Ivanovo, Russia
- Pacific National University, 136 Tikhookeanskaya Street, 680035 Khabarovsk, Russia
| |
Collapse
|
32
|
Fayyazi M, Solaimany Nazar AR, Farhadian M, Tangestaninejad S. Adsorptive removal of ibuprofen to binary and amine-functionalized UiO-66 in the aquatic environment: synergistic/antagonistic evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69502-69516. [PMID: 35567678 DOI: 10.1007/s11356-022-20703-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The removal of ibuprofen (IBP) from the aqueous solution by metal-organic frameworks such as UiO-66, UiO-66-NH2, and a binary MOF (UiO-66@5%HKUST-1) was studied. MOFs were synthesized by the solvothermal method. The synthesized MOFs were characterized by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2 adsorption. BET results showed that binary MOF and UiO-66-NH2 had a smaller surface area and were mesoporous compared to UiO-66, while UiO-66 was microporous. Quantitative investigations were conducted to understand the effect of binary and functional UiO-66 in adsorbing IBP and compared to UiO-66. The results showed that UiO-66 with 213 mg/g had the highest adsorption in comparison to other adsorbents. UiO-66-NH2 showed the lowest adsorption (96 mg/g) due to a large decrease in the surface area. The binary MOF, despite a slight decrease in surface area (1277.6 m2/g), had lower adsorption than UiO-66 (147 mg/g) due to the antagonistic effects between the adsorbent and IBP. Furthermore, the pH of the solution had a great effect on the adsorption of IBP, and the results showed that increasing the pH values above 4 reduced the adsorption of IBP.
Collapse
Affiliation(s)
- Mostafa Fayyazi
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Ali Reza Solaimany Nazar
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Farhadian
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
33
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
34
|
Li S, Pang Y, Zhang N, Chen R, Tan CS, Xia Y, Zhao H, Cao Y, Liang J. Small-molecular amines fluorescence sensor based on the destruction of an aggregation-induced-emission-active Zn metal-organic framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Doxorubicin-Loaded Core–Shell UiO-66@SiO2 Metal–Organic Frameworks for Targeted Cellular Uptake and Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14071325. [PMID: 35890221 PMCID: PMC9324125 DOI: 10.3390/pharmaceutics14071325] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Beneficial features of biocompatible high-capacity UiO-66 nanoparticles, mesoporous SiO2, and folate-conjugated pluronic F127 were combined to prepare the core–shell UiO-66@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment. UiO-66 and UiO-66-NH2 nanoparticles with a narrow size and shape distribution were used to form a series of core–shell MOF@SiO2 structures. The duration of silanization was varied to change the thickness of the SiO2 shell, revealing a nonlinear dependence that was attributed to silicon penetration into the porous MOF structure. Doxorubicin encapsulation showed a similar final loading of 5.6 wt % for both uncoated and silica-coated particles, demonstrating the potential of the nanocomposite’s application in small molecule delivery. Silica coating improved the colloidal stability of the composites in a number of model physiological media, enabled grafting of target molecules to the surface, and prevented an uncontrolled release of their cargo, with the drawback of decreased overall porosity. Further modification of the particles with the conjugate of pluronic and folic acid was performed to improve the biocompatibility, prolong the blood circulation time, and target the encapsulated drug to the folate-expressing cancer cells. The final DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were subjected to properties characterization and in vitro evaluation, including studies of internalization into cells and antitumor activity. Two cell lines were used: MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes, and RAW 264.7 macrophages without folate overexpression. These findings will provide a potential delivery system for DOX and increase the practical value of MOFs.
Collapse
|
36
|
Wang Y, Jia M, Zheng X, Wang C, Zhou Y, Pan H, Liu Y, Lu J, Mei Z, Li C. Microvesicle-camouflaged biomimetic nanoparticles encapsulating a metal-organic framework for targeted rheumatoid arthritis therapy. J Nanobiotechnology 2022; 20:253. [PMID: 35658866 PMCID: PMC9164508 DOI: 10.1186/s12951-022-01447-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background Methotrexate (MTX) has been highlighted for Rheumatoid arthritis (RA) treatment, however, MTX does not accumulate well at inflamed sites, and long-term administration in high doses leads to severe side effects. In this study, a novel anti-RA nanoparticle complex was designed and constructed, which could improve the targeted accumulation in inflamed joints and reduce side effects. Results Here, we prepared a pH-sensitive biomimetic drug delivery system based on macrophage-derived microvesicle (MV)-coated zeolitic imidazolate framework-8 nanoparticles that encapsulated the drug methotrexate (hereafter MV/MTX@ZIF-8). The MV/MTX@ZIF-8 nanoparticles were further modified with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[folate (polyethylene glycol)-2000] (hereafter FPD/MV/MTX@ZIF-8) to exploit the high affinity of folate receptor β for folic acid on the surface of activated macrophages in RA. MTX@ZIF-8 nanoparticles showed high DLE (~ 70%) and EE (~ 82%). In vitro study showed that effective drug release in an acidic environment could be achieved. Further, we confirmed the activated macrophage could uptake much more FPD/MV/MTX@ZIF-8 than inactivated cells. In vivo biodistribution experiment displayed FPD/MV/MTX@ZIF-8 nanoparticles showed the longest circulation time and best joint targeting. Furthermore, pharmacodynamic experiments confirmed that FPD/MV/MTX@ZIF-8 showed sufficient therapeutic efficacy and safety to explore clinical applications. Conclusions This study provides a novel approach for the development of biocompatible drug-encapsulating nanomaterials based on MV-coated metal-organic frameworks for effective RA treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01447-0.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Pan
- Center for Medical Information and Modern Educational Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
37
|
AuNP@ZeNose (ZIF-based electrochemical nose) for detection of flu biomarker in breath. Mikrochim Acta 2022; 189:231. [PMID: 35612633 DOI: 10.1007/s00604-022-05334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
A novel electrochemical sensor is reported for the detection of isoprene levels in breath using a ZIF-based electrochemical nose. This sensor incorporates a hybrid detection system using gold nanoparticles encapsulated inside the ZIF-8 moiety. Breath-based analysis is widely being used for monitoring the metabolic state of the body. It is associated with the change in the concentration of volatile organic compounds and inorganic gases released endogenously and can be tracked using breath as the sample. One such volatile organic compound, isoprene, has been correlated to the presence of influenza virus or respiratory inflammation. Analytical techniques such as powder X-ray diffraction, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and tunneling electron microscopy were used to understand the structural features of the composite. The electrochemical nose system uses chronoamperometry as the transduction mechanism to monitor the diffusion kinetics of the target analyte across the electrode-electrolyte interface. The presented work demonstrates isoprene sensing with high sensitivity and specificity and a detection limit of 10 parts per billion in air. We successfully demonstrate the functionality of the ZIF-based electrochemical nose for point-of-care screening of isoprene levels by developing a prototype device using a commercially available development board. We foresee that the developed sensing platform can help in early screening for the presence of influenza virus and help control the infection rate.
Collapse
|
38
|
Sohrabi H, Sani PS, Orooji Y, Majidi MR, Yoon Y, Khataee A. MOF-based sensor platforms for rapid detection of pesticides to maintain food quality and safety. Food Chem Toxicol 2022; 165:113176. [DOI: 10.1016/j.fct.2022.113176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/15/2022]
|
39
|
Gao H, Yang M, Du Z, Liu X, Dai X, Lin K, Bao XQ, Li H, Xiong D. Metal-organic framework derived bimetal oxide CuCoO 2 as efficient electrocatalyst for the oxygen evolution reaction. Dalton Trans 2022; 51:5997-6006. [PMID: 35352083 DOI: 10.1039/d2dt00517d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metal-organic framework (MOF) materials with tunable porous morphology, controlled crystalline structure, various compositions, and high specific surface area are widely used as precursors to synthesize electrocatalysts for water splitting, which is beneficial for improving their oxygen evolution reaction (OER) performance. Using ZIF-67 as a Co source and Cu-BTC as a Cu source, hexagonal MOF-derived CuCoO2 (MOF-CCO) nanocrystals with the size of ∼288 nm were prepared through a one-step solvothermal method. The influence of the content of the precursor solvents (absolute ethanol and deionized water), reaction temperature, mass ratio of reactants, NaOH addition, and reactant concentration of precursors on the structure and morphology of the products was investigated. The optimal CuCoO2 nanocrystals (MOF-CCO1) around 288 nm present the highest OER activity, such as a low overpotential of 364.7 mV at 10 mA cm-2, a small Tafel slope of 64.1 mV dec-1, and attractive durability in 1.0 M KOH solution. The XPS results showed that the higher catalytic efficiency of MOF-CCO1 nanocrystals could be due to the oxygen vacancies caused by lattice oxygen loss, the increase of OH- content on the surface, and the synergistic effect of Cu2+/Cu+ and Co2+/Co3+ redox pairs. Finally, a possible OER mechanism for MOF-CCO nanocrystals of water splitting was proposed. This study provides a new approach for the preparation of delafossite nanomaterials and for the improvement of their OER performances.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China. .,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Miao Yang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zijuan Du
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xing Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xianglong Dai
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Kun Lin
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xiao-Qing Bao
- State Key Laboratory of Optical Technologies on Nanofabrication and Microengineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
| | - Hong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China. .,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
40
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
41
|
Zirconium metal organic framework based opto-electrochemical sensor for nitrofurazone detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Synthesis of Co-H2ABDC metal organic framework and finding their electrochemical non-enzymatic sensing properties. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Çorman M, Ozcelikay G, Cetinkaya A, Kaya S, Armutcu C, Özgür E, Uzun L, Ozkan S. Metal-Organic Frameworks as an Alternative Smart Sensing Platform for Designing Molecularly Imprinted Electrochemical Sensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Yaghoubi M, Zanganeh AR, Mokhtarian N, Vakili MH. ZIF-67 nanocrystals for determining silver: optimizing conditions by Box–Behnken design. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-021-01660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Mei L, Shi Y, Shi Y, Yan P, Lin C, Sun Y, Wei B, Li J. Multivalent SnO 2 quantum dot-decorated Ti 3C 2 MXene for highly sensitive electrochemical detection of Sudan I in food. Analyst 2022; 147:5557-5563. [DOI: 10.1039/d2an01432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new electrochemical sensor was fabricated by SnO2 quantum dot-decorated Ti3C2 MXene for the highly sensitive detection of Sudan I in food. This sensor with good selectivity, precision and accuracy can be used in monitoring illegal food additives.
Collapse
Affiliation(s)
- Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450001, P.R. China
| | - Yange Shi
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Pengpeng Yan
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Chunlei Lin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Yue Sun
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Bingjie Wei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| | - Jing Li
- School of Foreign Languages, Zhongyuan University of Technology, Zhengzhou 450007, P.R. China
| |
Collapse
|
46
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
47
|
Adeel M, Canzonieri V, Daniele S, Rizzolio F, Rahman MM. Organobase assisted synthesis of Co(OH)2 nanosheets enriched with oxygen vacancies for nonenzymatic glucose sensing at physiological pH. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Walenszus F, Evans JD, Bon V, Schwotzer F, Senkovska I, Kaskel S. Integration of Fluorescent Functionality into Pressure-Amplifying Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:7964-7971. [PMID: 35600608 PMCID: PMC9115756 DOI: 10.1021/acs.chemmater.1c01804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/06/2021] [Indexed: 06/15/2023]
Abstract
The flexibility of soft porous crystals, i.e., their ability to respond to external stimuli with structural changes, is one of the most fascinating features of metal-organic frameworks (MOFs). In addition to breathing and swelling phenomena of flexible MOFs, negative gas adsorption (NGA) and pressure amplification (PA) are the more recent discoveries in this field initially observed in the cubic DUT-49 framework. In recent years, the structural contraction was monitored by physisorption, X-ray diffraction, nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) techniques, providing only limited information about the electronic structure of the ligand. In this work, we designed a new ligand with a fluorescent core in the linker backbone and synthesized three new MOFs, isoreticular to DUT-49, denoted as DUT-140(M) (M-Cu, Co, Zn), crystallizing in the space group Fm3̅m. DUT-140(Cu) can be desolvated and is highly porous with an accessible apparent surface area of 4870 m2 g-1 and a pore volume of 2.59 cm3 g-1. Furthermore, it shows flexibility and NGA upon adsorption of subcritical gases. DUT-140(Zn), synthesized using postsynthetic metal exchange, could only be studied with guests in the pores. In addition to the investigation of the adsorption behavior of DUT-140(Cu), spectroscopic and computational methods were used to study the light absorption properties.
Collapse
|
49
|
Wu YB, Ma Y, Li QB, Li ST, Han YJ, Li FX. Carbon-supported copper–organic framework as active catalysts for acetylene hydrochlorination. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, activated carbon supported Cu-MOF was used as an acetylene hydrochlorination catalyst to manufacture vinyl chloride. Cu-MOF/AC with 15 wt. % Cu-MOF content has the initial acetylene conversion of 99.2% and vinyl chloride selectivity of 98.5% at 200 °C. By combining steady-state experiments and physical–chemical characterization results (XPS, BET, H2-TPR, C2H2-TPD, XRD, and HCl adsorption experiments), Cu–O–C is shown to slow the reduction of Cu2+, improve the reactants adsorption, and strengthen the anti-coking ability of Cu-based catalysts. According to the previous studies and the Eley–Rideal mechanism, it is proposed that Cu2+ first adsorbed C2H2 to generate transition states in acetylene hydrochlorination catalysis.
Collapse
Affiliation(s)
- Yi-Bo Wu
- College of Chemistry and Environmental Engineering, Pingding Shan University, Pingding Shan, 467000, China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yao Ma
- Shanxi Institutes of Geology and Mineral Resources, Taiyuan, 030024, China
| | - Qing-Bin Li
- College of Chemistry and Environmental Engineering, Pingding Shan University, Pingding Shan, 467000, China
| | - Song-Tian Li
- College of Chemistry and Environmental Engineering, Pingding Shan University, Pingding Shan, 467000, China
| | - Yong-Jun Han
- College of Chemistry and Environmental Engineering, Pingding Shan University, Pingding Shan, 467000, China
| | - Fu-Xiang Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
50
|
Zhu X, Zhu G, Ge Y, Zhang B, Yang J, Hu B, Liu J. Aunano/Fe-MOF hybrid electrode for highly sensitive determination of trace As(III). J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|