1
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
2
|
Yang K, Han F, Jin Y, Li X. C-GCS@ZIF-F/PL based electrochemical sensor for rapid and ultra-sensitive detection of rutin in foods. Food Chem 2024; 460:140382. [PMID: 39126741 DOI: 10.1016/j.foodchem.2024.140382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
Herein, a stable and ultra-sensitive rutin electrochemical sensor was successfully developed. This sensor based on glassy carbon electrode (GCE) modified with C-GCS@ZIF-F/PL nanocomposite, which was made of thermally carbonized glucose (GCS) doped with flower-like ZIF (ZIF-F) and pencil lead (PL). The electrochemical response of rutin was considerably significant at C-GCS@ZIF-F/PL/GCE, demonstrating favorable conductivity and electrocatalytic properties for detection of rutin. Under optimal conditions, the linear range is 0.1-100 μM, with a low detection limit (LOD) of 0.0054 μM. It also exhibits excellent stability, reproducibility, as well as selectivity over common interfering ions such as Na+, uric acid, quercetin and riboflavin, etc. Meanwhile, the practical utility of developed sensor was evaluated in food samples including honey, orange, and buckwheat tea, achieving satisfactory recovery rates ranging from 98.2% to 101.7%. This paper introduces a novel technique for the detection of rutin in foods.
Collapse
Affiliation(s)
- Kaifeng Yang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Fangming Han
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Yafeng Jin
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| | - Xiaobo Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
3
|
Chen Z, Zhang T, Zhang X, Cheng W, Chen L, Lu N. A catalytic amplification platform based on Fe 2O 3 nanoparticles decorated graphene nanocomposites for highly sensitive detection of rutin. NANOSCALE ADVANCES 2024:d4na00583j. [PMID: 39323628 PMCID: PMC11420904 DOI: 10.1039/d4na00583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Exploration of nanocomposites with exceptional catalytic activities is essential for harnessing the unique advantages of each constituent in the domains of pharmaceutical analysis and electrochemical sensing. In this regard, we illustrated the synthesis of iron oxide/N-doped reduced graphene oxide (Fe2O3/N-rGO) nanocomposites through a one-step thermal treatment of iron phthalocyanine (FePc), melamine, and graphene oxide for electrochemical sensing. The large specific surface area and good conductivity of N-rGO can efficiently capture rutin molecules and accelerate electron transport, thereby improving the electrochemical performance. Moreover, the Fe2O3 nanoparticles with distinct electronic characteristics significantly enhanced the detection sensitivity of the constructed electrochemical platform. Because of the outstanding electrical conductivity, an extensive surface area, and synergistic catalysis, Fe2O3/N-rGO was employed as an advanced electrode modifier to build an electrochemical sensing platform for rutin detection. Significantly, the manufactured sensor showed a broad detection range from 7 nM to 150 μM and a high sensitivity of 5632 μA mM-1. Furthermore, the fabricated sensor showed desirable results in terms of stability, selectivity, and practical application. This work presents a facile method to prepare Fe2O3/N-rGO and supplies a valuable example for building metal oxide/graphene nanocomposites for electrochemical analysis.
Collapse
Affiliation(s)
- Zhuzhen Chen
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Tingting Zhang
- Qingdao Cancer Institute, Qingdao University Qingdao 266071 PR China
| | - Xue Zhang
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Wangxing Cheng
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Linwei Chen
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| | - Nannan Lu
- College of Pharmacy, Anhui University of Chinese Medicine Hefei 230013 PR China
| |
Collapse
|
4
|
Chen J, Fei M, Ni M, Wang Y, Liu Z, Xie Y, Zhao P, Zhang Z, Fei J. Multilayer Ti 3C 2-CNTs-Au Loaded with Cyclodextrin-MOF for Enhanced Selective Detection of Rutin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310217. [PMID: 38361221 DOI: 10.1002/smll.202310217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Indexed: 02/17/2024]
Abstract
In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Maoheng Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Meijun Ni
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
5
|
Wang Y, Chen Y, Zhou Y, Wang Y, Wu Y, Xie Y, Zhao P, Hu X, Fei J. Ultra-sensitive electrochemical sensor based on in situ grown ultrafine HKUST-1 nanoparticles @ graphite nanosheets and core-shell structured MoO 3-polypyrrole nanowires for the detection of rutin in orange juice. Mikrochim Acta 2024; 191:393. [PMID: 38874794 DOI: 10.1007/s00604-024-06417-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/05/2024] [Indexed: 06/15/2024]
Abstract
Rutin extracted from natural plants has important medical value, so developing accurate and sensitive quantitative detection methods is one of the most important tasks. In this work, HKUST-1@GN/MoO3-Ppy NWs were utilized to develop a high-performance rutin electrochemical sensor in virtue of its high conductivity and electrocatalytic activity. The morphology, crystal structure, and chemical element composition of the fabricated sensor composites were characterized by SEM, TEM, XPS, and XRD. Electrochemical techniques including EIS, CV, and DPV were used to investigate the electrocatalytic properties of the prepared materials. The electrochemical test conditions were optimized to achieve efficient detection of rutin. The 2-electron 2-proton mechanism, consisting of several rapid and sequential phases, is postulated to occur during rutin oxidation. The results show that HKUST-1@GN/MoO3-Ppy NWs have the characteristics of large specific surface area, excellent conductivity, and outstanding electrocatalytic ability. There is a significant linear relationship between rutin concentration and the oxidation peak current of DPV. The linear range is 0.50-2000 nM, and the limit of detection is 0.27 nM (S/N = 3). In addition, the prepared electrode has been confirmed to be useful for rutin analysis in orange juice.
Collapse
Affiliation(s)
- Yuefan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yinzhi Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yuhe Zhou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yingjie Wu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
6
|
Liu Y, Li Z, Chen W, Feng X. Fast Determination of Rutin on a Biosensor Made Using a Layered Double Hydroxide Nanocomposite Modified Electrode. BIOSENSORS 2023; 14:18. [PMID: 38248395 PMCID: PMC10813314 DOI: 10.3390/bios14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
In this study, a nanocomposite of LDH/graphene/polyaniline/gold (LDH/rGO/PANI/Au) was synthesized and characterized. The results of characterization showed that the composite material preserved the layered structure of LDH. The composite was dropped onto the glassy carbon electrode and laccase was then immobilized. Electrochemical tests showed that the composite could accelerate the electron transfer between the enzyme and the electrode. The composite/laccase showed an obvious response to rutin and the optimal detection conditions were discussed. The oxidative peak current of the biosensor constructed using the modified electrode was negatively correlated with rutin in the range of 0.05-4 μg/mL. The detection limit was 0.0017 μg/mL at a signal-to-noise ratio of 3. This biosensor of rutin also possessed high sensitivity, excellent anti-interference ability, and stability. The contents of rutin in tablets, first determined using HPLC, were also detected using the sensor constructed in this research as an application, and the results were acceptable. This research here provides a facile way for the fast detection of rutin in real samples.
Collapse
Affiliation(s)
- Yuge Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.C.)
| | - Zhiguo Li
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.C.)
| | - Weizhen Chen
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.C.)
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
7
|
Chiorcea-Paquim AM. Electrochemistry of Flavonoids: A Comprehensive Review. Int J Mol Sci 2023; 24:15667. [PMID: 37958651 PMCID: PMC10648705 DOI: 10.3390/ijms242115667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Flavonoids represent a large group of aromatic amino acids that are extensively disseminated in plants. More than six thousand different flavonoids have been isolated and identified. They are important components of the human diet, presenting a broad spectrum of health benefits, including antibacterial, antiviral, antimicrobial, antineoplastic, anti-mutagenic, anti-inflammatory, anti-allergic, immunomodulatory, vasodilatory and cardioprotective properties. They are now considered indispensable compounds in the healthcare, food, pharmaceutical, cosmetic and biotechnology industries. All flavonoids are electroactive, and a relationship between their electron-transfer properties and radical-scavenging activity has been highlighted. This review seeks to provide a comprehensive overview concerning the electron-transfer reactions in flavonoids, from the point of view of their in-vitro antioxidant mode of action. Flavonoid redox behavior is related to the oxidation of the phenolic hydroxy groups present in their structures. The fundamental principles concerning the redox behavior of flavonoids will be described, and the phenol moiety oxidation pathways and the effect of substituents and experimental conditions on flavonoid electrochemical behavior will be discussed. The final sections will focus on the electroanalysis of flavonoids in natural products and their identification in highly complex matrixes, such as fruits, vegetables, beverages, food supplements, pharmaceutical compounds and human body fluids, relevant for food quality control, nutrition, and healthcare research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal;
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
8
|
Picomolar, Electrochemical Detection of Paraoxon Ethyl, by Strongly Coordinated NiCo2O4-SWCNT Composite as an Electrode Material. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Electrochemical Polymerisation of Glutamic Acid on the Surface of Graphene Paste Electrode for the Detection and Quantification of Rutin in Food and Medicinal Samples. Diagnostics (Basel) 2022; 12:diagnostics12123113. [PMID: 36553121 PMCID: PMC9777661 DOI: 10.3390/diagnostics12123113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Rutin (RU) is one of the best-known natural antioxidants with various physiological functions in the human body and other plant species. In this work, an efficient voltammetric sensor to detect RU in food samples was explicated using a poly (glutamic acid)-modified graphene paste electrode (PGAMGPE). In order to detect RU, the proposed sensor diminishes material resistance and overpotential while increasing kinetic rate, peak currents, and material conductance. Using differential pulse voltammetry (DPV) and cyclic voltammetry (CV), the analysing efficiency of a PGAMGPE and a Bare graphene paste electrode (BGPE) was evaluated in 0.2 M phosphate buffer (PB) at an ideal pH of 6.5. in a potential window of -0.25 V to 0.6 V. Electrochemical impedance spectroscopy (EIS) was used to analyse the prepared electrode materials' conductivity, charge transfer resistance, and the kinetics of electron transport. Field emission scanning electron microscopy (FE-SEM) images were considered to compare the exterior morphology of the PGAMGPE and the BGPE. It was discovered that the PGAMGPE and the BGPE have electroactive surfaces of 0.062 cm2 and 0.04 cm2, respectively. It was determined that two protons and two electrons participated in the redox process. The resultant limit of detection (LOD) was found to be 0.04 µM and 0.06 µM, respectively, using DPV and CV methods. In spite of common interferents such as metal ions and chemical species, the developed sensor's selectivity for RU detection was impressive. For the simultaneous analysis of RU in the presence of caffeine (CF), the PGAMGPE affords a good electrochemical nature for RU with good selectivity. Due to the good stability, repeatability, reproducibility, and ease of use of the present RU sensor, it is useful for real sample analysis such as food and medicinal samples with recovery ranging from 94 to 100%.
Collapse
|
10
|
Rational design of hexagonal zinc oxide/boron-doped g-C3N4 nanosheets as efficient electrocatalyst for enhanced sensing of rutin in fruit samples. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Preparation of Nitrogen and Sulfur Co-Doped Fluorescent Carbon Dots from Cellulose Nanocrystals as a Sensor for the Detection of Rutin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228021. [PMID: 36432118 PMCID: PMC9697528 DOI: 10.3390/molecules27228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022]
Abstract
The poor water solubility, large particle size, and low accessibility of cellulose, the most abundant bioresource, have restricted its generalization to carbon dots (CDs). Herein, nitrogen and sulfur co-doped fluorescent carbon dots (N, S-CDs) were hydrothermally synthesized using cellulose nanocrystals (CNC) as a carbon precursor, exhibiting a small particle size and excellent aqueous dispersion. Thiourea was selected as a nitrogen and sulfur dopant to introduce abundant fluorescent functional groups into N, S-CDs. The resulting N, S-CDs exhibited nanoscale size (6.2 nm), abundant functional groups, bright blue fluorescence, high quantum yield (QY = 27.4%), and high overall yield (16.2%). The excellent optical properties of N, S-CDs endowed it to potentially display a highly sensitive fluorescence "turn off" response to rutin. The fluorescence response for rutin allowed a wide linear range of 0-40 mg·L-1, with a limit of detection (LOD) of 0.02 μM, which revealed the potential of N, S-CDs as a rapid and simple sensing platform for rutin detection. In addition, the sustainable and large-scale production of the N, S-CDs in this study paves the way for the successful high-value utilization of cellulose.
Collapse
|
12
|
Pan C, Qin X, Lu M, Ma Q. Water Soluble Silicon Nanoparticles as a Fluorescent Probe for Highly Sensitive Detection of Rutin. ACS OMEGA 2022; 7:28588-28596. [PMID: 35990497 PMCID: PMC9386801 DOI: 10.1021/acsomega.2c03463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 05/17/2023]
Abstract
In this work, water-soluble fluorescent silicon nanoparticles (SiNPs) were prepared by one-pot hydrothermal method using 3-(2-aminoethylamino)propyldimethoxymethylsilane (AEAPDMMS) as a silicon source and amidol as a reducing agent. The prepared SiNPs showed bright green fluorescence, excellent stability against photobleaching, salt tolerance, temperature stability, and good water solubility. Due to the internal filtration effect (IFE), rutin could selectively quench the fluorescence of the SiNPs. Based on such phenomena, a highly sensitive fluorescence method was established for rutin detection. The linear range and limit of detection (LOD) were 0.05-400 μM and 15.2 nM, respectively. This method was successfully applied to detect rutin in the samples of rutin tablets, Sophora japonica, fry Sophora japonica, and S. japonica carbon with satisfactory recovery.
Collapse
|
13
|
Simple and affordable graphene nano-platelets and carbon nanocomposite surface decorated with cetrimonium bromide as a highly responsive electrochemical sensor for rutin detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Arumugam B, Ramaraj SK. Insights into the Design and Electrocatalytic Activity of Magnesium Aluminum Layered Double Hydroxides: Application to Nonenzymatic Catechol Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4848-4858. [PMID: 35413192 DOI: 10.1021/acs.langmuir.1c03494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design of an efficient electrocatalyst for effective trace level determinations of noxious synthetic and or biological compounds is the unceasingly noteworthy conceptual approach for rapid technology. In this work, we designed a magnesium-aluminum layered double hydroxides (Mg-Al LDHs) nanocatalyst and applied it to the electrocatalytic determination of an extremely carcinogenic catechol sensor. A coprecipitation method was employed for synthesizing the nanocatalyst, and the structure, porous nature, and morphology were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm, field emission-scanning electron microscopy, and transmission electron microscopy. The elemental composition was observed by energy dispersive X-ray analysis. The electrochemical studies were investigated with the help of cyclic voltammetry and differential pulse voltammetry techniques. The Mg-Al LDHs-based electrocatalyst was used to detect catechol by electrochemical measurements with different parameters. The proposed catechol sensor shows a wide dynamic range (0.007-200 μM) with a lower level of detection (2.3 nm) and sensitivity (3.57 μA μM-1 cm-2). The excellent sensor performance is attributed to the high surface area, fast electron transfer, more active sites, and excellent flexibility. This study depicts the proposed sensor as probable to practical in a scientific investigation. In addition, the modified electrode showed greater selectivity and was used in the detection of fatal contaminants in instant treatment strategies. Moreover, the Mg-Al LDHs confirmed auspicious real sample scrutiny with noteworthy retrieval outcomes in lake water samples which exposed improved consequences.
Collapse
Affiliation(s)
- Balamurugan Arumugam
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| |
Collapse
|
15
|
Soluble tetraaminophthalocyanines indium functionalized graphene platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
George SA, Rajeev R, Thadathil DA, Varghese A. A Comprehensive Review on the Electrochemical Sensing of Flavonoids. Crit Rev Anal Chem 2022; 53:1133-1173. [PMID: 35001755 DOI: 10.1080/10408347.2021.2008863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Flavonoids are bioactive polyphenolic compounds, widespread in the plant kingdom. Flavonoids possess broad-spectrum pharmacological effects due to their antioxidant, anti-tumor, anti-neoplastic, anti-mutagenic, anti-microbial, anti-inflammatory, anti-allergic, immunomodulatory, and vasodilatory properties. Care must be taken, since excessive consumption of flavonoids may have adverse effects. Therefore, proper identification, quantification and quality evaluations of flavonoids in edible samples are necessary. Electroanalytical approaches have gained much interest for the analysis of redox behavior and quantification of different flavonoids. Compared to various conventional methods, electrochemical techniques for the analysis of flavonoids offer advantages of high sensitivity, selectivity, low cost, simplicity, biocompatibility, easy on-site evaluation, high accuracy, reproducibility, wide linearity of detection, and low detection limits. This review article focuses on the developments in electrochemical sensing of different flavonoids with emphasis on electrode modification strategies to boost the electrocatalytic activity and analytical efficiency.
Collapse
Affiliation(s)
| | - Rijo Rajeev
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
17
|
Qin D, Li T, Li X, Feng J, Tang T, Cheng H. A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5450-5457. [PMID: 34755722 DOI: 10.1039/d1ay01421h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a novel type of zeolitic imidazolate framework-8 (ZIF-8) polyhedron/multi-walled carbon nanotube (MWCNT) modified electrode was successfully prepared for effective on-site detection of rutin. The morphology and microstructure of the ZIF-8/MWCNT nanocomposite were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The electrochemical performance of the ZIF-8/MWCNT based electrode for the determination of rutin was studied by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPV). The as-prepared sensor illustrates better electrocatalytic activity and lower background current than the MWCNT modified electrode for the oxidation of rutin. Besides, the ZIF-8/MWCNTs sensor offers a remarkable linear response for rutin concentrations from 0.1 to 15 μM. The detection limit (LOD) was calculated to be 0.26 nM (S/N = 3). Also, the ZIF-8/MWCNT electrode showed high anti-interference ability towards common interfering species. More importantly, the fabricated electrode was quickly evaluated for determination of rutin in medicine tablets with satisfactory recoveries and the obtained results successfully achieved good consistency with the data from high performance liquid chromatography (HPLC). Finally, the method shows an enhanced electrocatalytic property and sensitivity for the analysis of rutin, which may provide an economical and promising electrochemical sensor for practical on-site detection of rutin.
Collapse
Affiliation(s)
- Danfeng Qin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi province, P. R. China
| | - Tianhao Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Xuenuan Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi province, P. R. China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| |
Collapse
|
18
|
Askari N, Salarizadeh N, Askari MB. Electrochemical determination of rutin by using NiFe 2O 4 nanoparticles-loaded reduced graphene oxide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2021; 32:9765-9775. [PMID: 38624849 PMCID: PMC7954365 DOI: 10.1007/s10854-021-05636-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 05/10/2023]
Abstract
A binary transition metal oxide containing nickel and iron (NiFe2O4) and hybridization of this nanomaterial with reduced graphene oxide (rGO) are synthesized by the hydrothermal method. X-ray diffraction (XRD) and Raman spectroscopy confirm the successful synthesis of these materials. Also, scanning electron microscope (SEM) and transmission electron microscope (TEM) images illustrated the particle morphology with the particle size of 20 nm. The synthesized material is then examined as a sensor on the surface of the glassy carbon electrode to detect a very small amount of rutin. Some electrochemical tests such as cyclic voltammetry, differential pulse voltammetry (DPV), and impedance spectroscopy indicate the remarkable accuracy of this sensor and its operation in a relatively wide range of concentrations of rutin (100 nM-100 µM). The accuracy of the proposed electrochemical sensors is approximately 100 nM in 0.1 M PBS, (pH = 3) which is relatively impressive and can be reported. Also, the stability rate after 100 DPV was about 95 %, which is a considerable and relatively excellent value. Considering the very good results, it seems that the NiFe2O4-rGO can be considered as a new proposal in the development of accurate and inexpensive electrochemical sensors.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Navvabeh Salarizadeh
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Phycology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, P.O. Box: 41335-1914, Rasht, Iran
- Department of Physics, Payame Noor University, P.O.Box: 19395-3697, Tehran, Iran
| |
Collapse
|
19
|
Kong FY, Li RF, Zhang SF, Wang ZX, Li HY, Fang HL, Wang W. Nitrogen and sulfur co-doped reduced graphene oxide-gold nanoparticle composites for electrochemical sensing of rutin. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Zhang B, Jaouhari AE, Wu X, Liu W, Zhu J, Liu X. Synthesis and characterization of PEDOT-MC decorated AgNPs for voltammetric detection of rutin in real samples. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Qian J, Kai G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J Pharm Biomed Anal 2020; 190:113548. [PMID: 32861928 DOI: 10.1016/j.jpba.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied for the prevention and cure of various diseases for centuries. Ingredient with pharmacological activity is the key to the application of TCM. Hence, it is of significance to separate and detect active ingredients in TCM effectively. Micro/nanomaterial is the promising candidate for adsorption and sensing due to its unique physical and chemical properties. For years, many efforts have been made to develop functional micro/nanomaterials to realize the effective adsorption or sensing of bioactive compounds in TCM. In this review, we discussed recent progresses in the application of various functional micro/nanomaterials for adsorption or detection (electrochemical detection, fluorescent detection, and colorimetric detection) of active ingredients. Based on the kind of matrix materials, micro/nano-adsorbents or sensors can be classified into following categories: metal-based micro/nanomaterials, porous materials, carbon-based materials, graphene/graphite-liked micro/nanomaterials and hybrid micro/nanomaterials.
Collapse
Affiliation(s)
- Jun Qian
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
22
|
El Jaouhari A, Wang Y, Zhang B, Liu X, Zhu J. Effect of surface properties on the electrochemical response of cynarin by electro-synthesized functionalized-polybithiophene/MWCNT/GNP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111067. [PMID: 32994030 DOI: 10.1016/j.msec.2020.111067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Cynarin is one of the biologically active functional components present a wide range of pharmacological applications. Herein, we reported the fabrication and surface properties investigation of a new highly sensitive electrochemical sensor for the detection of cynarin. The electrochemical sensors were fabricated in several steps; the first being the synthesis of bi-thiophene derivatives-based monomers 3,3'-bithiophen (M1); 2-methoxy-5-carbaldehyde-[3,3'-bithiophene] (M2) and 2-((2-methoxy-[3,3'-bithiophen]-5-yl)methylene)malononitrile) (M3) followed by electrochemical polymerization on a glassy carbon electrode after which multi-walled carbon nanotube (MWCNT) and gold nanoparticles (GNP's) were electrodeposited layer-by-layer on the polymer coating to obtain multilayer electrochemical sensors. The morphological properties of the formed polymers were evaluated using SEM analysis and the apparent contact angles to preview the changes in surface properties after the functionalization of monomers and therefore their effects on the detection of cynarin. Analytical parameters such as the accumulation time and pH of the PBS solution which influence the sensitivity of the electrochemical sensors were optimized. Under the optimal conditions the GCE/P3/MWCNT/GNP's showed a wide range of analyte concentrations (1 to 100 μM and 0.01 to 1 μM) and detection limit of 0.0095 using pulse differential voltammetry. In addition, the electrochemical sensors showed good reproducibility, stability and selectivity and they were used successfully for the determination of cynarin in real solutions.
Collapse
Affiliation(s)
- Abdelhadi El Jaouhari
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yong Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Bowen Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
23
|
El Jaouhari A, Yan L, Zhu J, Zhao D, Zaved Hossain Khan M, Liu X. Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin. Anal Chim Acta 2020; 1106:103-114. [DOI: 10.1016/j.aca.2020.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/25/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
|
24
|
Ansari SH, Arvand M. A magnetic nanocomposite prepared from electrospun CoFe 2O 4 nanofibers and graphene oxide as a material for highly sensitive determination of rutin. Mikrochim Acta 2020; 187:103. [PMID: 31912294 DOI: 10.1007/s00604-019-4068-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/06/2019] [Indexed: 12/29/2022]
Abstract
A magnetic bar carbon paste electrode (MBCPE) modified with cobalt ferrite magnetic electrospun nanofibers (NFs) and graphene oxide (GO) is described for the electrochemical determination of rutin. The NFs were prepared by electrospinning using a solution that contains poly(vinyl pyrrolidone) (PVP) and Co(II) and Fe(III) nitrates as metal sources. Carbon paste was prepared by hand mixing GO, CoFe2O4 NFs and graphite. This paste was then packed into the end of a glass tube and a very small magnetic bar was inserted into the tube to be coated with the carbon paste to provide a magnetic field. The MBCPE was used to attract the magnetic nanofibers to the electrode surface. Cyclic voltammetry and differential pulse voltammetry techniques were used to study the electrochemical behavior of rutin on the modified MBCPE at pH 2.5. The electrocatalytic current, best measured at a potential of around 0.5 V (vs. Ag/AgCl), varies with the rutin concentration in two linear ranges, viz. from 0.001-0.1 nM and from 1.0-100 nM, with a 0.94 pM detection limit. The electrode was successfully applied to the determination of rutin in lemon, red apple, lime and orange juices. Graphical abstractSchematic representation of a modified magnetic bar carbon paste electrode for detection of rutin. To achieve the modified electrode, electrospun CoFe2O4 nanofibers, graphene oxide and a very small magnetic bar are packed into the end of a glass tube.
Collapse
Affiliation(s)
- Sepideh Hojat Ansari
- Department of Chemistry, Pardis Campus, University of Guilan, Park-e-Shahr, P.O. Box 4199613776, Rasht, Iran
| | - Majid Arvand
- Department of Chemistry, Pardis Campus, University of Guilan, Park-e-Shahr, P.O. Box 4199613776, Rasht, Iran. .,Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
| |
Collapse
|
25
|
Patil AB, Huang Y, Ma L, Wu R, Meng Z, Kong L, Zhang Y, Zhang W, Liu Q, Liu XY. An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosens Bioelectron 2019; 142:111595. [DOI: 10.1016/j.bios.2019.111595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|