1
|
Wang M, Zheng J, Zhang G, Lu S, Zhou J. Wearable Electrochemical Glucose Sensors for Fluid Monitoring: Advances and Challenges in Non-Invasive and Minimally Invasive Technologies. BIOSENSORS 2025; 15:309. [PMID: 40422047 DOI: 10.3390/bios15050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025]
Abstract
This review highlights the latest developments in wearable electrochemical glucose sensors, focusing on their transition from invasive to non-invasive and minimally invasive designs. We discuss the underlying mechanisms, performance metrics, and practical challenges of these technologies, emphasizing their potential to revolutionize diabetes care. Additionally, we explore the motivation behind this review: to provide a comprehensive analysis of emerging sensing platforms, assess their clinical applicability, and identify key research gaps that need addressing to achieve reliable, long-term glucose monitoring. By evaluating electrochemical sensors based on tears, saliva, sweat, urine, and interstitial fluid, this work aims to guide future innovations toward more accessible, accurate, and user-friendly solutions for diabetic patients, ultimately improving their quality of life and disease management outcomes.
Collapse
Affiliation(s)
- Ming Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, China
| | - Junjie Zheng
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ge Zhang
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Shiyan Lu
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Jinli Zhou
- College of Intelligent Textile and Fabric Electronics, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
2
|
Zhuang W, Pan K, Wu J, Liu L, Lv S, Hu J, Shi F, Zhao W, Yu D. Harnessing the power of traceable system C-GAP: homologous-targeting to fire up T-cell immune responses with low-dose irradiation. J Nanobiotechnology 2025; 23:207. [PMID: 40075499 PMCID: PMC11905511 DOI: 10.1186/s12951-025-03281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
While radiotherapy-induced immunogenic cell death (ICD) holds potential for enhancing cancer immunotherapy, the conventional high-dose irradiation often leads to an immunosuppressive microenvironment and systemic toxicity. Therefore, a biomimetic nanoplatform cell membrane coated-nitrogen-doped graphene quantum dots combined with Au nanoparticles (C-GAP) was developed in this study. Firstly, homologous and traceable targeting features of C-GAP enables tumor-selective accumulation, providing reference for the selection of the timing of radiotherapy. Secondly, radiosensitization by C-GAP with Low-dose irradiation (LDI) amplifies reactive oxygen species (ROS) generation to trigger potent ICD. Thirdly, remarkable immune remodeling induced by C-GAP enhances CD8+ T cell infiltration and effector function. Single-cell RNA sequencing revealed that C-GAP-LDI combination upregulates TNF and CCL signaling pathway expression in tumor-infiltrating CD8+ T cells which potentiates tumor eradication. Our findings present a novel approach for safe and effective radioimmunotherapy, where C-GAP sensitized LDI achieves therapeutic enhancement through precise ICD induction and systemic immune activation.
Collapse
Affiliation(s)
- Weijie Zhuang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Kuangwu Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
- Department of Stomatology, The Third People's Hospital of Chengdu, Sichuan, China
| | - Jie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Leyi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Shiyu Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Jiajun Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Fangyang Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| |
Collapse
|
3
|
Bolaños-Mendez D, Fernández L, Uribe R, Cunalata-Castro A, González G, Rojas I, Chico-Proano A, Debut A, Celi LA, Espinoza-Montero P. Evaluation of a Non-Enzymatic Electrochemical Sensor Based on Co(OH) 2-Functionalized Carbon Nanotubes for Glucose Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7707. [PMID: 39686245 DOI: 10.3390/s24237707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
This work reports on the assessment of a non-hydrolytic electrochemical sensor for glucose sensing that is developed using functionalized carbon nanotubes (fCNTs)/Co(OH)2. The morphology of the nanocomposite was investigated by scanning electron microscopy, which revealed that the CNTs interacted with Co(OH)2. This content formed a nanocomposite that improved the electrochemical characterizations of the electrode, including the electrochemical active surface area and capacitance, thus improving sensitivity to glucose. In the electrochemical characterization by cyclic voltammetry and chronoamperometry, the increase in catalytic activity by Co(OH)2 improved the stability and reproducibility of the glucose sensor without the use of enzymes, and its concentration range was between 50 and 700 μmol L-1. The sensor exhibited good linearity towards glucose with LOD value of 43.200 µmol L-1, which proved that the Co(OH)2-fCNTs composite is judicious for constructing cost effective and feasible sensor for glucose detection.
Collapse
Affiliation(s)
- Diego Bolaños-Mendez
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Rafael Uribe
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | - Alisson Cunalata-Castro
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Gema González
- Escuela de Ciencias Físicas y Nanotecnología, Universidad Yachay Tech, Urcuqui 100650, Ecuador
| | - Isamara Rojas
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | - Andrés Chico-Proano
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 170501, Ecuador
| | - Luis Alberto Celi
- Departamento de Ingeniería Química, Escuela Politécnica Nacional, Quito 170525, Ecuador
| | | |
Collapse
|
4
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
5
|
Abdullah, Din M, Waris A, Khan M, Ali S, Muhammad R, Salman M. The contemporary immunoassays for HIV diagnosis: a concise overview. ASIAN BIOMED 2023; 17:3-12. [PMID: 37551202 PMCID: PMC10405330 DOI: 10.2478/abm-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Recent advances in human immunodeficiency virus (HIV) diagnostics have improved the management of disease progression significantly, which have also boosted the efficacy of antiviral therapies. The detection of HIV at the earliest is very important. A highly recognized and effective virological biomarker for acute HIV infections is p24 antigen. This brief overview is based on advances of HIV diagnosis while focusing on the latest HIV testing technologies including HIV-specific antigens detecting assays of both anti-HIV antibodies and p24 antigen. In addition to other emerging molecular diagnostics for acute HIV infection, the utilization of p24 antigen has been summarized. Moreover, it has been explained how these immunoassays have reduced the window period for detection of HIV in the acute stage of infection.
Collapse
Affiliation(s)
- Abdullah
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar25000, Pakistan
| | - Misbahud Din
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad45320, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Shezhen518057, Hong Kong SAR
| | - Muddasir Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar25120, Pakistan
| | - Sajjad Ali
- Department of Zoology, University of Buner, Buner19281, Pakistan
| | - Riaz Muhammad
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar25000, Pakistan
- Department of Zoology, Government Degree College Lakarai, Mohmand24651, Pakistan
| | - Muhammad Salman
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar25000, Pakistan
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
6
|
Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022; 248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Since the content levels of biomarkers at the early stage of many diseases are generally lower than the detection threshold concentration, achieving ultrasensitive and accurate detection of these biomarkers is still one of the major goals in bio-analysis. To achieve ultrasensitive and reliable bioassay, it requires developing highly sensitive biosensors. Among all kinds of biosensors, electrogenerated chemiluminescence (ECL) based biosensors have attracted enormous attention due to their excellent properties. In order to improve the performance of ECL biosensors, gold nanoparticles (Au NPs) have been widely utilized as signal amplification tags. The introduction of Au NPs could dramatically enhance the performance of the constructed ECL biosensors via diverse ways such as electrode modification material, efficient energy acceptor in ECL resonant energy transfer (ECL-RET), reaction catalyst, surface plasmon resonance (SPR) enhancer, and as nanocarrier. Herein, we summarize recent developments and progress of ECL biosensors based on Au NPs signal amplification strategies. We will cover ECL applications of Au NPs as a signal amplification tag in the detection of proteins, metal ions, nucleic acids, small molecules, living cells, exosomes, and cell imaging. Finally, brief summary and future outlooks of this field will be presented.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China; Department of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
7
|
Zhang X, Tian L, Wu K, Sun Z, Wu Q, Shan X, Zhao Y, Chen R, Lu J. High sensitivity electrochemiluminescence sensor based on the synergy of ZIF-7 and CdTe for determination of glucose. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Jia S, Wang C, Qian J, Zhang X, Cui H, Zhang Q, Tian Y, Hao N, Wei J, Wang K. An upgraded 2D nanosheet-based FRET biosensor: insights into avoiding background and eliminating effects of background fluctuations. Chem Commun (Camb) 2021; 58:467-470. [PMID: 34908039 DOI: 10.1039/d1cc05429e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We demonstrated a new class of 2D nanosheet-based FRET biosensor utilizing vertically oriented MoS2 nanosheets on a magnetic nanocarrier. Compared with the non-separated biosensor under identical conditions, this upgraded one can avoid the background signal of the system and eliminate the effects of background fluctuations, which produces more excellent detection methods.
Collapse
Affiliation(s)
- Suli Jia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haining Cui
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Yunmeng Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
9
|
Bactericidal Activity of Multilayered Hybrid Structures Comprising Titania Nanoparticles and CdSe Quantum Dots under Visible Light. NANOMATERIALS 2021; 11:nano11123331. [PMID: 34947680 PMCID: PMC8708662 DOI: 10.3390/nano11123331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Titania nanoparticle/CdSe quantum dot hybrid structures are a promising bactericidal coating that exhibits a pronounced effect against light-sensitive bacteria. Here, we report the results of a comprehensive study of the photophysical properties and bactericidal functionality of these hybrid structures on various bacterial strains. We found that our structures provide the efficient generation of superoxide anions under the action of visible light due to electron transfer from QDs to titania nanoparticles with ~60% efficiency. We also tested the antibacterial activity of hybrid structures on five strains of bacteria. The formed structures combined with visible light irradiation effectively inhibit the growth of Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis bacteria, the last of which is a photosensitive causative agent model of tuberculosis.
Collapse
|
10
|
An S, Shang N, Chen B, Kang Y, Su M, Wang C, Zhang Y. Co-Ni layered double hydroxides wrapped on leaf-shaped copper oxide hybrids for non-enzymatic detection of glucose. J Colloid Interface Sci 2021; 592:205-214. [DOI: 10.1016/j.jcis.2021.02.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
|
11
|
Long Y, Zheng W, Yi D, Pan Y, Zheng H. Enhancing the peroxidase activity and decreasing the protease activity of ficin with rational modification and its application to one-step colorimetric detection of glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119091. [PMID: 33126136 DOI: 10.1016/j.saa.2020.119091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Ficin has dual enzyme activity, i.e., protease and peroxidase-like activity. In some respects, its application is limited by the protease activity of ficin. Herein, we used tris (2-carboxyethyl) phosphine hydrochloride (TCEP) to break the three pairs of disulfide bonds of ficin, and then blocked the free thiol groups with N-ethylmaleimide (NEM) to synthesize ficin-TN. The results showed that ficin-TN had increased peroxidase-like activity and reduced protease activity. According to this phenomenon, we have exploited a colorimetric method with high sensitivity and selectivity for the one-step detection of glucose. Comparing with ficin, ficin-TN has wider detection range (0.1-300 μM) and lower detection limit (88 nM), and our method is simpler and more timesaving than other two-step methods. Furthermore, the actual appliances of ficin-TN for glucose detection in human serum have been illustrated with satisfied result, suggesting that its promising utilization in various fields.
Collapse
Affiliation(s)
- Yijuan Long
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wen Zheng
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Danyang Yi
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yadi Pan
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huzhi Zheng
- The Key Laboratory of Luminescent and Real-time Analysis (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
12
|
Zhang AR, Zhong H, Li XR, Bao ZL, Cheng ZP, Zhang YJ, Chen P, Zhang ZC, Zhang LL, Qian HY. Preparation and characterization of COOH-G/Au@Ag nanocomposites and its electrogenerated chemiluminescence sensing for glucose. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Han S, Gao Y, Li L, Lu B, Zou Y, Zhang L, Zhang J. Synergistic Enhancement Effects of Carbon Quantum Dots and Au Nanoclusters for Cathodic ECL and Non‐enzyme Detections of Glucose. ELECTROANAL 2020. [DOI: 10.1002/elan.201900645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuang Han
- College of Applied ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Yuan Gao
- College of Applied ChemistryShenyang University of Chemical Technology Shenyang 110142 China
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Lin Li
- School of ScienceHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Beibei Lu
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Yongxing Zou
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Ling Zhang
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
- School of ScienceHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| | - Jiaheng Zhang
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen China 518055
| |
Collapse
|
14
|
Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun (Camb) 2020; 56:14553-14569. [DOI: 10.1039/d0cc05650b] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the development of electrocatalysts for non-enzymatic glucose detection. The sensing mechanism and influencing factors are discussed, and the perspectives and challenges are also addressed.
Collapse
Affiliation(s)
- Ming Wei
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Yanxia Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haitao Zhao
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yonglan Luo
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xifeng Shi
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan 250014
- China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
15
|
Electrochemiluminescent immunoassay for neuron specific enolase by using amino-modified reduced graphene oxide loaded with N-doped carbon quantum dots. Mikrochim Acta 2019; 186:817. [PMID: 31749073 DOI: 10.1007/s00604-019-3986-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
An ultrasensitive electrochemiluminescence based sandwich immunoassay is presented for determination of neuron specific enolase. The method uses silver-cysteine nanowires as the capture probe and a composite made of amino-modified reduced graphene oxide and nitrogen-doped carbon quantum dots as the signal probe. It was synthesized by covalent coupling of amino-modified reduced graphene oxide to the carboxy groups of nitrogen-doped carbon quantum dots. The nanowires possess a large specific surface and abundant functional groups which facilitate immobilizing the primary antibody (Ab1). The amino-modified reduced graphene oxide is employed as a carrier for loading a large number of the quantum dots and secondary antibody (Ab2). This increases the electrochemiluminescence intensity of quantum dots. Response to neuron specific enolase is linear in the 0.55 fg·mL-1 to 5.5 ng·mL-1 concentration range. It has a detection limit of 0.18 fg·mL-1 (at S/N = 3). The relative standard deviation (for n = 6) is less than 2.9%. The assay is highly sensitive, reproducible, selective and stable. Graphical abstractA novel electrochemiluminescence immunosensor is described that uses amino-modified reduced graphene oxide (amino-rGO), nitrogen-doped carbon quantum dots (N-CQDs) and silver-cysteine nanowires (SCNWs). It was applied to the determination of neuron specific enolase (NSE). Bovine serum albumin: BSA;1-ethyl-3-(3-dimethylaminopropyl)carbodiimide: (EDC;, N-hydroxysuccinimide: NHS.
Collapse
|
16
|
Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019; 186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes. Graphical abstract Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.
Collapse
Affiliation(s)
- Alireza Sanati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Keyvan Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sahar Sadat Mahshid
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, M4N 3M5, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
17
|
Photoelectrochemical determination of the activity of histone acetyltransferase and inhibitor screening by using MoS2 nanosheets. Mikrochim Acta 2019; 186:663. [DOI: 10.1007/s00604-019-3756-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
|