1
|
Chen Y, Cheng L, Nesterenko P, Li B, Yang H, Li X, Li L, Chen B. Why hypochlorite in water cannot be detected by ion chromatography? JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138158. [PMID: 40184970 DOI: 10.1016/j.jhazmat.2025.138158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Free chlorine (FC), primarily existing as hypochlorite anion in alkaline water (pKa 7.5), could theoretically be analyzed by an ion chromatography (IC) system. However, the feasibility of direct FC detection by IC remains controversial in previous researches. To address this issue, this study systematically examined the fate of FC under varying IC eluent pH, anion exchange column (AEC) types, detectors, and suppression conditions. The results ultimately disprove it and show that the primary obstacle to direct FC analysis with IC system is its transformation: 31 %-41 % became Cl- and 59 %-69 % became immobile organic chloramines in AEC, due to its reaction with quaternary ammonium compounds (QACs) in AECs. Moreover, IC analysis of Cl- might be interfered by coexisting FC, although FC concentrations are typically much lower than Cl-. Eluent suppressor can also consume FC even when residual FC after AEC is limited. In contrast, variations in water pH do not affect FC stability, and a UV detector effectively distinguishes FC from other anions. This study hence for the first time elucidates several FC consumption mechanisms in IC system, which represent key barriers hindering FC analysis by IC, and accordingly provide some guidance on future efforts to develop novel AEC to overcome these barriers.
Collapse
Affiliation(s)
- Yuheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Longjie Cheng
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Pavel Nesterenko
- Department of Chemistry, Lomonosov Moscow State University, Vorob'evy Gory, GSP-3, Moscow 119899, Russian Federation
| | - Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haolin Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lan Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Hafez NS, Amer WA, Okba EA, Sakr MAS, Alganzory HH, Khalil SM, Ebeid EZM. Monocationic versus dicationic-based monomethine cyanine dyes for ultrasensitive colorimetric detection of hypochlorite ion in water. Sci Rep 2025; 15:5566. [PMID: 39955300 PMCID: PMC11830026 DOI: 10.1038/s41598-025-88839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Detecting residual chlorine as a hypochlorite ion (ClO-) in drinking water is crucial for ensuring disinfection effectiveness and safety. In the present study, we report two novel Quinolium Benzothiazole-Based Cyanine (3ethylbenzothiazol-2(3 H)-ylidene)methyl)-1-(4-iodobutyl)quinolin-1-ium tetrafluoroborate (IBTQ) and 1-(3-(4-(dimethylamino)pyridin-1-ium-1-yl)propyl)-4-((3-methylbenzothiazol-2(3 H)-ylidene)methyl)quinolin-1-ium diiodide (DMP-BTQ) hypochlorite (ClO-) sensors using UV- visible, colorimetric, and quartz crystal microbalance (QCM) techniques. The two sensors generate distinct absorption spectra, frequency shifts, and color changes that are visible to the naked eye. They exhibit high sensitivity and selectivity towards ClO-. The sensors have limits of detection (LOD) values in the range of 13.92 ppm and 0.127 ppm for IBTQ and DMP-BTQ, respectively, based on absorption performance with no interference of potential ions in drinking water. The method yields good recovery results, ranging from 97.4 to 103.0%, for ClO- detection in the studied water samples. In addition, the LOD for the QCM technique is 0.06 ppm for IBTQ and 0.045 ppm for DMP-BTQ with low quantification. The sensors can be loaded on paper strips for naked-eye detection of ClO- in domestic tap water and water treatment facilities. The sensors also provide low-cost, low cytotoxicity, high sensitivity, selectivity, and reusability of ClO- in water. The sensing mechanism was rationalized in terms of radical cation generation upon ClO- oxidizing action. The ease of cyanine oxidation was substantiated by quantum chemical studies including density functional theory (DFT) calculations, natural bond orbital (NBO) analysis, molecular electrostatic potential (MESP), and time-dependent density functional theory to support the experimental results.
Collapse
Affiliation(s)
- Nermeen S Hafez
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Wael A Amer
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Chemistry Department, College of Science, Bahrain University, Sakhir, 32038, Bahrain
| | - Ehab A Okba
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A S Sakr
- Center of Basic Science, Misr University for Science and Technology, 6th of October City, Egypt
| | | | - Sohaila M Khalil
- Immunology and Parasitology Division, Zoology Department, Faculty of Science, Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Tanta, Egypt
| | - El-Zeiny M Ebeid
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
4
|
Ghohestani E, Tashkhourian J, Hemmateenejad B. Rapid detection and quantification of milk adulterants using a nanoclusters-based fluorescent optical tongue. Food Chem 2024; 456:139973. [PMID: 38852440 DOI: 10.1016/j.foodchem.2024.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
A paper-based sensor array consisting of eight nanoclusters (NCs) combined with multivariate analysis was used as a rapid method for the determination of animal sources of milk; goat, camel, sheep and cow. It was also used to detect and quantify three adulterants including sodium hypochlorite, hydrogen peroxide and formaldehyde in milk. The changes in fluorescence intensity of the NCs were quantified using a smartphone when the sensor array was immersed in the milk samples. The device generated a specific colorimetric signature for milk samples from different animals and for different adulterants. This allowed simultaneous identification of animal and adulterant sources with 100% accuracy. The device was found to be capable of accurately measuring the level of contaminants with a detection limit as low as 0.01% using partial least squares regression. In conclusion, a paper-based optical tongue device has been developed for the detection of adulterants in milk with point-of-need capability.
Collapse
|
5
|
AlQarni AO, Mahmoud AM, Ali R, El-Wekil MM. Colorimetric and fluorometric dual-mode determination of hypochlorite based on redox-mediated quenching. RSC Adv 2023; 13:32492-32501. [PMID: 37928853 PMCID: PMC10624236 DOI: 10.1039/d3ra05870k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
We have successfully created a dual-modal probe, labeled as of iron(ii)-ortho-phenanthroline/N, S@g-CDs, which combines both fluorometric and colorimetric techniques for the accurate and sensitive detection of hypochlorite (ClO-). The mechanism behind this probe involves the fluorescence quenching interaction between nitrogen and sulfur co-doped green emissive carbon dots (N, S@g-CDs) and the iron(ii)-ortho-phenanthroline chelate, utilizing both the inner filter effect and redox processes. As the concentration of ClO- increases, the iron(ii) undergo oxidation to iron(iii) as follows: Fe(ii) + 2HClO = Fe(iii) + Cl2O + H2O, leading to the restoration of N, S@g-CDs fluorescence. Simultaneously, the color of the system transitions gradually from red to colorless, enabling colorimetric measurements. In the fluorometric method with an excitation wavelength of 370 nm, the ClO- concentration exhibits a wide linear correlation with fluorescence intensity ranging from 0.07 to 220 μM. The detection limit achieved in this method is 0.02 μM (S/N = 3). In contrast, the colorimetric method exhibits a linear range of 1.12 to 200 μM, with a detection limit of 0.335 μM (S/N = 3). The proposed selective absorbance for this method is 510 nm. The probe has been effectively utilized for the detection of ClO- in various samples, including water and milk samples. This successful application showcases its potential for determining ClO- in complex matrices, highlighting its broad range of practical uses.
Collapse
Affiliation(s)
- Ali O AlQarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University Najran 11001 Saudi Arabia
| | - Ramadan Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk Tabuk 71491 Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University Assiut Branch 71526 Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| |
Collapse
|
6
|
Lignin-derived dual-function red light carbon dots for hypochlorite detection and anti-counterfeiting. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Wang ZX, Hu L, Li XQ, Jia YL, Wang T, Wang W. Boron-enriched rice-like homologous carbon nanoclusters with a 51.5% photoluminescent quantum yield for highly sensitive determination of endogenous hydroxyl radicals in living cells. J Mater Chem B 2023; 11:1523-1532. [PMID: 36688312 DOI: 10.1039/d2tb02409h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exploring the ultrahigh quantum efficiency of a carbon-based probe via a green and simple technique, and utilisation of its sensing ability for highly bioactive molecule detection is still highly challenging. Herein, we prepared a novel boron-enriched rice-like homologous carbon nanoclusters (BRCNs) with an ultrahigh quantum efficiency of ∼51.5% by introduction of a conjugated structure attached to the CN bond and an electron-withdrawing boron active centre. Unexpectedly, the BRCNs obtained showed a stable dispersion of rice-like carbon nanograins, composed of small carbon dot assembled nanoclusters with an average diameter size of ∼30 nm, and containing boron units of ∼24.68 at%. What's exciting is that the BRCNs obtained exhibited an "on-off-on" three-state emission with the addition of an hydroxyl radical (OH˙) and its antioxidants. Thus, two distinctive fluorescent responses for OH˙ and antioxidants based on the BRCN probe had been developed, and the mechanism has been determined using TEM, XPS, FT-IR, FL, UV-vis spectrophotometry, UPS and fluorescent lifetimes. The OH˙, generated from the Fenton's reagent, preferentially attack the electron-deficient vacancy p orbit of the boron atom in the surface of the BRCNs, which results in the boron atom being easily substituted/attacked by OH˙, and leading to spontaneous aggregation induced quenching (AIQ) due to the existence of a strong intermolecular hydrogen bond between denatured BRCNs. Furthermore, the proposed method was also successfully applied to monitor endogenous OH˙ generation in HeLa cells by confocal imaging, which could be used for elucidating OH˙-induced oxidative damage to biological tissues and proteins.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
8
|
Zhong Y, Guo L, Lu Z, Wang D. 3-Aminophenylboronic acid-functionalized molybdenum disulfide quantum dots for fluorescent determination of hypochlorite. Mikrochim Acta 2022; 190:7. [PMID: 36471018 DOI: 10.1007/s00604-022-05598-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A simple method is reported for hypochlorite determination based on fluorescence 3-aminophenylboronic acid-functionalized molybdenum disulfide quantum dots (B-MoS2 QDs). B-MoS2 QDs with strong fluorescence at 380 nm have been successfully synthesized by the amidation reaction between APBA and hydrothermal MoS2 QDs. Hypochlorite sensing was proposed utilizing the fluorescent quenching effect of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB) on B-MoS2 QDs and the fast redox reaction between hypochlorite and TMB. The fluorescent quenching effect of TMB to B-MoS2 QDs was proved to be caused by static dynamic quenching and inner filter effect. A good linear relationship was obtained in the hypochlorite concentration range from 1 to 20 μM, and the limit of detection (LOD) was 36.8 nM. The proposed fluorescent detection assay was simple and fast, taking only 5 min at room temperature. Satisfactory results were obtained in the standard spike recovery tests on tap water and milk samples, which indicate high potential in constructing fluorescent bio-detection assays.
Collapse
Affiliation(s)
- Yaping Zhong
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| | - Lijuan Guo
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
9
|
Nitrogen-Doped and Surface Functionalized CDs: Fluorescent Probe for Cellular Imaging and Environmental Sensing of ClO–. J Fluoresc 2022; 32:1591-1600. [DOI: 10.1007/s10895-022-02952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
10
|
Yang Z, Xu T, Zhang X, Li H, Jia X, Zhao S, Yang Z, Liu X. Nitrogen-doped carbon quantum dots as fluorescent nanosensor for selective determination and cellular imaging of ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120941. [PMID: 35114635 DOI: 10.1016/j.saa.2022.120941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 05/28/2023]
Abstract
The carbon nanomaterial based fluorescent probes have been widely applied in biological imaging. In the current research, we propose an interesting strategy for selective sensing of hypochlorite (ClO-) by a water-soluble and highly fluorescent nanosensor based on the N-doped carbon quantum dots (CDs) which was fabricated by a facile and environmental friendly hydrothermal approach from polyvinyl pyrrolidone, L-arginine and tryptophan. The structural characteristics of the probe were measured by multitudinous methods which proved the nanometer spherical structure of the probe and the successfully N-doping. Fluorescent investigation demonstrated that the probe is not only highly stable under interferences of pH, ionic strength, and irradiation, but also significantly selective toward ClO- amongst a variety of attractive bioactive species through the fluorescent quenching process which was correlative with the concentration of ClO- and linearly in the range of 0.1-50 μmol·L-1 with the sensitivity of 0.03 μmol·L-1. The probe can also be further illustrated in a prospective application for determination of ClO- in environmental water through both solution response and filer paper sensing. Moreover, the positive biocompatibility and ignorable cytotoxicity made the probe a promising effective agent for detection and visualizing ClO- in living cells which can facilitate the understanding the oxidative stress from the overexpressing ClO-.
Collapse
Affiliation(s)
- Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China.
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Xu Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Shunsheng Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Zaiwen Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China; Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, PR China
| |
Collapse
|
11
|
Zhang H, Gong ZM, Li Y, Yang FQ. A simple and green method for direct determination of hydrogen peroxide and hypochlorite in household disinfectants based on personal glucose meter. Enzyme Microb Technol 2022; 155:109996. [PMID: 35085872 DOI: 10.1016/j.enzmictec.2022.109996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
A convenient and green method was developed using a personal glucose meter (PGM) for direct determination of hydrogen peroxide and hypochlorite in household disinfectants based on the acetylthiocholine iodide (ATCI)-mediated reaction. In this method, acetylcholinesterase catalyzes the hydrolysis of ATCI to generate thiocholine iodide, which can trigger the reduction of K3[Fe(CN)6] to K4[Fe(CN)6] and generate a PGM detectable signal. When the hydrogen peroxide or hypochlorite is pre-incubated with the ATCI, the yield of thiocholine will be decreased because the iodine molecules can initiate the oxidation of thiocholine to disulphides, leading to a lower PGM readout. Thus, the hydrogen peroxide or hypochlorite can be directly quantified by PGM as simple as detecting glucose in blood. After being systematically investigated, the optimum conditions of the PGM method are as follows: 5.0 min of enzymatic reaction time, 6.0 mM final concentration of ATCI solution, and 10.0 min of reaction time between ATCI/H2O2 and thiocholine. Moreover, the recoveries of hydrogen peroxide in real sample spiked with three different concentrations (final concentrations of 5.0, 10.0, and 20.0 mM) are in the range of 96.3-108.4%. The recoveries of hypochlorite in real sample spiked with three different concentrations (final concentrations of 1.0, 5.0, and 10.0 mM) are in the range of 99.4-117.0%. These results indicate that the developed method can be employed for the detection of hydrogen peroxide and hypochlorite in household disinfectants.
Collapse
Affiliation(s)
- Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Zhao-Miao Gong
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yan Li
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
12
|
Wei Y, Yang Y, Chen B, Yang B. Green detection of trace cyanuric acid and free chlorine together via ion chromatography. CHEMOSPHERE 2022; 292:133378. [PMID: 34952027 PMCID: PMC8691421 DOI: 10.1016/j.chemosphere.2021.133378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Chlorinated cyanurates (CCAs) are a type of disinfectants currently used worldwide for fight of Coronavirus. However, CCAs upon dosed into water can release not only free chlorine (FC), a strong disinfectant, but also cyanurate (CYA), a persistent compound potentially harmful to human and environment. Therefore, detecting CYA and FC in water are very important not only for ensuring sufficient disinfection but also for monitoring the impacts of FC and CYA on receiving watershed. However, conventional analytical methods for them are mostly based on colorimetric methods, which have high method detection limits (MDLs) and rely on chemical reactions that are likely sensitive to coexisting chemicals. To overcome these issues, we herein proposed a facile and reaction-free method to detect CYA and FC together in just one run by ion chromatography (IC) equipped with both conductivity and ultraviolet absorbance detectors. The method features obvious advantages over colorimetric methods in being lower MDLs (3.6 μg/L for CYA and 9.0 μg/L for FC), environmental-friendly (i.e., no organic solvent involved), and more resistant to alkaline solution. With this method, trace levels of CYA (i.e., 34-44 μg/L), which were nondetectable by conventional method, were found in two river water samples, implying that the local environment was already polluted by CCAs during the pandemic period. Overall, this study demonstrates a robust tool that may assist better understanding and monitoring the fate and transport of trace CCA derivatives in water.
Collapse
Affiliation(s)
- Yiya Wei
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Yang Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Bingcheng Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
13
|
Pang X, Yan R, Li L, Wang P, Zhang Y, Liu Y, Liu P, Dong W, Miao P, Mei Q. Non-doped and non-modified carbon dots with high quantum yield for the chemosensing of uric acid and living cell imaging. Anal Chim Acta 2022; 1199:339571. [DOI: 10.1016/j.aca.2022.339571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
|
14
|
Gao Y, Liu Y, Zhang H, Lu W, Jiao Y, Shuang S, Dong C. One-pot synthesis of efficient multifunctional nitrogen-doped carbon dots with efficient yellow fluorescence emission for detection of hypochlorite and thiosulfate. J Mater Chem B 2022; 10:8910-8917. [DOI: 10.1039/d2tb01695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CD-based ratiometric fluorescence probes are of great significance for visual detection, but accomplishing this goal is still a particularly challenging task.
Collapse
Affiliation(s)
- Yifang Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030006, China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Huilin Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuan Jiao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
15
|
Cheng S, Zhang J, Liu Y, Wang Y, Xiao Y, Zhang Y. High quantum yield nitrogen and boron co-doped carbon dots for sensing Ag +, biological imaging and fluorescent inks. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5523-5531. [PMID: 34761756 DOI: 10.1039/d1ay01582f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, bright blue-green fluorescent nitrogen and boron co-doped carbon dots (N, B-CDs) with a quantum yield (QY) up to 33.04% were synthesized viahydrothermal treatment from ammonium citrate tribasic and 3-aminophenylboronic acid. The synthesized N, B-CDs showed outstanding water solubility. According to the principle of the static quenching effect (SQE), the synthesized N, B-CDs were utilized as an efficient sensor for sensing Ag+. The linear range and limit of detection (LOD) of the sensor for Ag+ are 0.99-26.04 μM and 9.03 nM (3σ/m). The proposed method was successfully adopted to detect Ag+ in environmental water, which is of great significance to environmental detection. Furthermore, due to the excellent fluorescence performance, the N, B-CDs were found to be an effective tool for biological imaging and as a fluorescent ink, which widens the horizons for the multifunctional applications of N, B-CDs.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Junqiu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yaoming Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
16
|
Pang X, Li L, Wang P, Zhang Y, Dong W, Mei Q. Adenine-derived carbon dots for the chemosensing of hypochlorite based on fluorescence enhancement. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ding YJ, Jin X, Wang ZX, Wang W. Green Emission Carbon Nanodots as Fluorescence Turn-on Probe for Detecting Picolinic Acid. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Meng Y, Zhang H, Li M, Lu W, Liu Y, Gong X, Shuang S, Dong C. A facile synthesis of long-wavelength emission nitrogen-doped carbon dots for intracellular pH variation and hypochlorite sensing. Biomater Sci 2021; 9:2255-2261. [PMID: 33533378 DOI: 10.1039/d0bm02047h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracellular pH and hypochlorite (ClO-) concentration play an important role in life activities, so there is an urgent need to develop a valid strategy to monitor pH and ClO- in biological systems with high sensitivity and specificity. In this study, we report long-wavelength emission nitrogen-doped carbon dots (N-CDs) and their potential applications in intracellular pH variation, ClO- sensing and cell imaging. The N-CDs were prepared via a facile one-pot hydrothermal method of neutral red (NR) and glutamine (Gln). N-CDs exhibited a pH-sensitive response in the range of 4.0-9.0 and a good linear relationship in the range of 5.6-7.4, which indicated that N-CDs are an ideal agent for monitoring pH fluctuations in living cells. In addition, ClO- was capable of reducing the photoluminescence of N-CDs based on static quenching. The linear range is 1.5-112.5 μM and 112.5-187.5 μM, and the LOD is 0.27 μM. Besides, the as-fabricated N-CDs have been smoothly achieved to monitor pH and ClO- in PC-12 living cells due to their great biocompatibility and lower cytotoxicity, demonstrating their promising applications in the biomedical field. Compared with other CD-based methods, the as-proposed N-CDs have a longer fluorescence emission, which makes them potentially valuable in biological systems. The results pave a way towards the construction of long-wavelength carbon-based nanomaterials for fluorescence sensing and cell imaging.
Collapse
Affiliation(s)
- Yating Meng
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, No. 92 Wucheng rd., Taiyuan 030006, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang X, Qu J, Ding SN. Photoluminescent sea urchin-shaped carbon-nanobranched polymers as nanoprobes for the selective and sensitive assay of hypochlorite. RSC Adv 2021; 11:8134-8141. [PMID: 35423326 PMCID: PMC8695118 DOI: 10.1039/d0ra07608b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/03/2021] [Indexed: 01/14/2023] Open
Abstract
This work reports donor-acceptor type sea urchin-like carbon nanobranched polymers (SUCNPs). As a novel carbon-based nanomaterial, SUCNPs were effectively synthesized for the first time through a facile and economical solvothermal approach employing uric acid and l-cysteine as nitrogen/sulfur sources. The nitrogen-rich structure of the heterocylic aromatic polymer led to a blue fluorescence at the excitation/emission maxima of 350/436 nm with robust photostability. SUNCPs showed highly selective ability towards hypochlorite (ClO-) against other relevant interfering substances. Upon exposure to a growing concentration of ClO-, SUCNPs fluorescence presented a gradual rise with a remarkable blue shift by virtue of the inhibition of photoinduced charge transfer (PCT) process. A linear relationship was established between the fluorescence intensity ratio (I 401 nm/I 436 nm) and the ClO- concentration in the range of 0.1-200 μM. The detection limit was as low as 30 nM (3σ/k). The "turn-on" type nanoprobe was further used in real samples and paper-based analytical chips efficiently, implying its application in a sophisticated and convenient platform.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 China
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Jian Qu
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 China
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
20
|
N, P-co-doped carbon dots as a dual-mode colorimetric/ratiometric fluorescent sensor for formaldehyde and cell imaging via an aminal reaction-induced aggregation process. Mikrochim Acta 2020; 187:355. [PMID: 32468159 DOI: 10.1007/s00604-020-04337-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/17/2020] [Indexed: 01/17/2023]
Abstract
Novel colorimetric and ratiometric fluorometric dual-mode N, P-co-doped carbon nanodots, BPEI-CDs, for highly sensitive and selective detection of formaldehyde (FA) were successfully prepared from N-(phosphonomethyl)iminodiacetic acid (PMIDA) and branched polyethyleneimine (BPEI). The treatment of FA caused a remarkable linear enhancement of ratiometric fluorescence (F501 nm/F408 nm) in a wide range of 0-40 μM with a detection limit (LOD) of 0.47 μM (3σ/k), along with distinct color changes from colorless to light yellow. Mechanistic study shows that this electron-rich system, formed by the cooperative roles of N and P, promoted the FA-induced Schiff bases formation reaction, which contributed to the CD aggregation-induced emission (AIE) "turn-on" response and enhancement of π-conjugation-induced bathochromic behaviors. Furthermore, N, P-co-doped BPEI-CDs were successfully applied to the determination of FA in bean sprout samples. Using the standard addition method, the recoveries ranged from 96.9 to 101.8%, and the relative standard deviation (RSD) was in the range 2.23 to 3.21%. The application for intracellular FA sensing further verified that this novel nanoprobe may offer a new venue for the design of simple, low-cost, and sensitive biosensors. Graphical abstract.
Collapse
|
21
|
Jiao Y, Meng Y, Lu W, Gao Y, Liu Y, Gong X, Liu Y, Shuang S, Dong C. Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta 2020; 219:121170. [PMID: 32887093 DOI: 10.1016/j.talanta.2020.121170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
A facile strategy for the preparation of nitrogen and phosphorus co-doped carbon dots (N, P-CDs) with long-wavelength emission is attractively proposed in one-pot hydrothermal strategy. The resulting N, P-CDs hold exceptional optical features and display excitation wavelength-independent properties with the emission wavelength at 590 nm, which enable it with the satisfactory relative quantum yield (QY) of 15.6% in long-wavelength region. In addition, the proposed N, P-CDs demonstrates specific selectivity towards ClO- over other competitive reactive oxygen species and exhibits rapid fluorescence response time to ClO-. Moreover, the N, P-CDs exhibits low-cytotoxicity and excellent cell membrane permeability for recognizing ClO- in SMMC-7721 cells, which demonstrates their enormous potential in biological system.
Collapse
Affiliation(s)
- Yuan Jiao
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yating Meng
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yifang Gao
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yang Liu
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Shaomin Shuang
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, And School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
22
|
Kumaravel S, Balamurugan T, Jia SH, Lin HY, Huang ST. Ratiometric electrochemical molecular switch for sensing hypochlorous acid: Applicable in food analysis and real-time in-situ monitoring. Anal Chim Acta 2020; 1106:168-175. [DOI: 10.1016/j.aca.2020.01.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
|
23
|
Zhang H, Gao Y, Jiao Y, Lu W, Shuang S, Dong C. Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO−. Analyst 2020; 145:2212-2218. [DOI: 10.1039/c9an02570g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ratiometric fluorescent N,S co-doped carbon dots (N,S-CD) probe for ClO− has been facilely obtained via a one-step hydrothermal method.
Collapse
Affiliation(s)
- Huilin Zhang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yifang Gao
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yuan Jiao
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Wenjing Lu
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
24
|
Guo L, Liu Y, Qu F, Liu Z, Kong R, Chen G, Fan W, Xia L. Luminescent metal organic frameworks with recognition sites for detection of hypochlorite through energy transfer. Mikrochim Acta 2019; 186:740. [PMID: 31686245 DOI: 10.1007/s00604-019-3806-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
A luminescent metal organic framework (LMOF) of type UiO-66-NH2 was chosen for specific and sensitive detection of trace levels of hypochlorite. Hypochlorite causes the quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm), and this finding forms the basis for a fluorometric assay for hypochlorite. The method overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite. Compared with other fluorescent probes for sensing hypochlorite, UiO-66-NH2 has a comparable detection limit of 0.3 μmol L-1 and a broad linearity relationship in the range of 1-8 μmol L-1. The probe was successfully applied to the detection of hypochlorite in complex water samples and living Hela cells. Graphical abstract Schematic representation of hypochlorite induced quenching of the blue fluorescence of nano-UiO-66-NH2 (with excitation/emission maxima at 325/430 nm) through energy transfer. It overcomes disadvantages of conventional redox-probes which are interfered by oxidants with oxidation capability stronger than that of hypochlorite.
Collapse
Affiliation(s)
- Lan Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Yuan Liu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Rongmei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Guang Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Wenjing Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Lian Xia
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| |
Collapse
|