1
|
Hartati YW, Zein MIHL, Ibrahim AU, Kharismasari CY, Syafira RS, Irkham, Gunlazuardi J, Jiwanti PK. Advanced aptamer-based sensors for monitoring theophylline. Clin Chim Acta 2025; 571:120200. [PMID: 39971148 DOI: 10.1016/j.cca.2025.120200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Theophylline is a widely used bronchodilator for treating asthma-related symptoms like shortness of breath and chest tightness. However, its narrow therapeutic plasma range (20-200 μM) necessitates careful monitoring of blood levels to prevent toxicity. Various clinical laboratory techniques have been developed for detecting theophylline, including spectroscopy, high-performance liquid chromatography (HPLC), fluorescence polarization immunoassay, and radioimmunoassay. Despite their utility, these methods are limited by complex sample preparation, long processing times, large sample volumes, and high costs. Aptamer-based biosensors have emerged as a promising alternative, offering superior selectivity and specificity compared to conventional methods. This review evaluates the performance of aptamer-based sensors in terms of sensitivity, specificity, and limit of detection, comparing them to traditional techniques. Recent studies demonstrate the advantages of aptamer-based sensors, including their simplicity, rapid response time, and cost-effectiveness, which make them ideal for point-of-care applications. The review also explores the methodologies used in aptamer-based detection, highlighting key innovations and advances in the field. Findings from the literature show how aptamer-based sensors enhance the monitoring of theophylline levels, overcoming the limitations of traditional techniques. This is the first review dedicated to discussing aptamer-based techniques for theophylline monitoring, addressing a gap in current literature.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia.
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Universitã di Bologna, Bologna 40126, Italy
| | - Abdullahi Umar Ibrahim
- Department Department of Biomedical Engineering, Near East University, Mersin 10, Turkey; Department of Medical Biochemistry, Kaduna State University, Kaduna State, Nigeria
| | - Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ratu Shifa Syafira
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jakarta 16424, Indonesia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
2
|
Feng T, Kang Z, Yan S, Huang Y, Liu R. A novel fluorescent aptasensor for the detection of theophylline based on cryonase-driven signal amplification strategy. LUMINESCENCE 2023. [PMID: 38148177 DOI: 10.1002/bio.4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
In the study, we have developed an expedient and efficient method for the detection of theophylline based on the amplification of the signal intensity of fluorescence based on oxidized single-walled carbon nanohorns (oxSWCNHs)/cryonase. When theophylline was not present in the system, oxSWCNHs can adequately adsorb nucleic acid probes labeled by carboxyfluorescein (FAM). In the presence of theophylline, the nucleic acid probe forms the tertiary probe-theophylline complex, which detaches from the surface of the oxSWCNHs. Then, upon reaction with cryonase, the complex can release the FAM and theophylline into the next cycle. The fluorescence signal of the system exhibits a 1:N magnification, enabling quantitative detection of theophylline. The linear range was 30-150 ng/mL, and the limit of detection (LOD) was 6.04 ng/mL. At the same time, it can also be used to detect theophylline in mouse serum.
Collapse
Affiliation(s)
- Tingting Feng
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhechen Kang
- Second Clinical Medical College, Hainan Medical University, Haikou, China
| | - Shuzhu Yan
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yu Huang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Rui Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
3
|
Dou S, Liu M, Zhang F, Li B, Zhang Y, Li F, Guo Y, Sun X. Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium. Mikrochim Acta 2023; 190:403. [PMID: 37728643 DOI: 10.1007/s00604-023-05973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
An unsophisticated fluorescence-enabled strategy is brought forward to process the highly sensitive fluorescence detection of Salmonella typhimurium (S. typhimurium) which based on polyethyleneimine (PEI)-templated silver/copper nanoclusters (Ag/CuNCs) (λ excitation = 334 nm and λ emission = 466 nm) with cryonase-assisted target recycling amplification. The Ag/CuNCs nanoclusters are synthesized as fluorescent materials due to their strong and stable fluorescence characteristics and are modified with S. typhimurium aptamers to form aptamer-Ag/CuNCs probes. The probes can be adsorbed on the surface of quenching agents-polydopamine nanospheres (PDANSs), thereby inducing fluorescence quenching of the probes. Once the aptamers are bound to the target, the aptamers/targets complexes are separated from the PDANSs surface, and the Ag/CuNCs recover the fluorescence signal. The released complexes will immediately be transformed into a substrate digested by cryonase (an enzyme that can digest all types of nucleic acids), and the released targets are bound to another aptamers to initiate the next round of cleavage. This reaction will be repeated continuously until all relevant aptamers are consumed and all Ag/CuNCs are released, resulting in a significant amplification of the fluorescence signal and improved sensitivity. Using Ag/CuNCs as fluorescent probes combined with cryonase-assisted amplification strategy, the fluorescence aptasensor is constructed with detection limits as low as 3.8 CFU mL-1, which is tenfold better than without the cryonase assistance. The method developed has been applied to milk, orange juice, chicken, and egg white samples with excellent selectivity and accuracy providing an approach for the early and rapid detection of S. typhimurium in food.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Fengjuan Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Baoxin Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yuhao Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Falan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| |
Collapse
|
4
|
Lin Y, Tao X, Gao S, Li N, Dai Z. Highly sensitive and stable fluorescent aptasensor based on an exonuclease III-assisted amplification strategy for ATP detection. Anal Biochem 2023:115210. [PMID: 37329966 DOI: 10.1016/j.ab.2023.115210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Fluctuations in intracellular adenosine triphosphate (ATP) concentration are closely associated with some cancer diseases. Thus, it is a worthwhile undertaking to predict sickness by monitoring changes in ATP levels. However, the detection limits of current fluorescent aptamer sensors for ATP detection are in the range of nmol L-1 to μmol L-1. It has become crucial to employ amplification strategies to increase the sensitivity of fluorescent aptamer sensors. In the current paper, a duplex hybrid aptamer probe was developed based on exonuclease III (Exo III)-catalyzed target recycling amplification for ATP detection. The target ATP forced the duplex probe configuration to change into a molecular beacon that can be hydrolyzed with Exo III to achieve the target ATP cycling to amplify the fluorescence signal. Significantly, many researchers ignore that FAM is a pH-sensitive fluorophore, leading to the fluorescence instability of FAM-modified probes in different pH buffers. The negatively charged ions on the surface of AuNPs were replaced by new ligands bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) to improve the drawback of FAM instability in alkaline solutions in this work. The aptamer probe was designed to eliminate the interference of other similar small molecules, showing specific selectivity and providing ultra-sensitive detection of ATP with detection limits (3σ) as low as 3.35 nM. Such detection limit exhibited about 4-500-fold better than that of the other amplification strategies for ATP detection. Thus, a relatively general high sensitivity detection system can be established according to the wide target adaptability of aptamers, which can form specific binding with different types of targets.
Collapse
Affiliation(s)
- Yushuang Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xuejiao Tao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Suhan Gao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Nan Li
- School of Chemistry, Tiangong University, Tianjin, 300387, China.
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
5
|
Shi L, Tang Q, Yang B, Li B, Yang C, Jin Y. Acid-accelerated hydrolysis of NaBH 4: a gas-generation reaction for diverse gas pressure biosensing. Mikrochim Acta 2023; 190:69. [PMID: 36694073 DOI: 10.1007/s00604-023-05655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Gas pressure biosensing is a promising portable analysis method. The gas-generation reaction is crucial to its sensitivity, speed, repeatability, and usability. However, very few gas-generation reactions are available for sensitive, safe, and diverse biosensing. Herein, acid-accelerated hydrolysis of sodium borohydride (NaBH4) was explored for the first time to achieve portable and diverse gas pressure biosensing. The slow hydrolysis and hydrogen generation of NaBH4 in alkaline medium is accelerated with increasing acidity, which increased the gas pressure in a small and sealed tube within 10 min. Thus, a label-free bioassay is easily and specifically achieved once analytes can in-situ generate acid to accelerate the hydrolysis rate of NaBH4, such as glucose, acetylcholine (ACh), adenosine triphosphate (ATP) and others. More importantly, analytes without acid generation could be quantitatively and selectively detected by combining target recognition with acid-generated biochemical reactions for enzyme-linked gas pressure biosensing. Inspired by this, aflatoxin B1 (AFB1)-aptamer interaction-triggered strand displacement reaction was combined with glucose oxidation by glucose oxidase (GOD) to detect AFB1 as low as 7.1 pM. Therefore, acid-accelerated hydrolysis of NaBH4 is powerful for developing portable, cheap, and diverse gas pressure biosensing. It opens up a new way for cheap, universal, and portable biosensing.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
6
|
Li P, Zhan H, Tao S, Xie Z, Huang J. Bio-inspired aptamers decorated gold nanoparticles enable visualized detection of malathion. Front Bioeng Biotechnol 2023; 11:1165724. [PMID: 36937762 PMCID: PMC10020530 DOI: 10.3389/fbioe.2023.1165724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Biosensors always respond to the targets of interest in a specific manner, employing biological or bio-mimic recognition elements such as antibodies and aptamers. Inspired by target recognition in nature, an aptamer-mediated, gold nanoparticle-based sensing approach is developed in this work for effective determination of malathion. The sensing system consists of negatively charged aptamer probes, and polycationic proteins, protamine, as well as exceptional colorimetric nanoprobes, barely gold nanoparticles (AuNPs). Protamine molecules bound to aptamer probes hinder the aggregation of AuNPs, while no such inhibition is maintained when aptamer-specific malathion is introduced into the solution, thus leading to the solution colour change from red to blue observable by the naked eye. The assay is accomplished via a mix-and-measure step within 40 min with a detection limit as low as 1.48 μg/L (3σ/s rule). The assay method also exhibits high selectivity and good applicability for the quantification of malathion in tap water with recovery rates of 98.9%-109.4%. Additionally, the good detection accuracy is also confirmed by the high-performance liquid chromatography method. Therefore, the non-enzymatic, label- and device-free characteristics make it a robust tool for malathion assay in agricultural, environmental, and medical fields.
Collapse
Affiliation(s)
- Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang,China
| | - Haonan Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
| | - Sijian Tao
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
| | - Zhuohao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang,China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou,China
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang,China
- *Correspondence: Jiahao Huang,
| |
Collapse
|
7
|
A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets. J Fluoresc 2022; 32:2189-2198. [DOI: 10.1007/s10895-022-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
|
8
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
10
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
11
|
Chen M, Li Y, Li P, Guo W, Yang Y, Wu X, Ye Y, Huang J. Ligation-dependent rolling circle amplification method for ATP determination with high selectivity and sensitivity. Analyst 2021; 146:6605-6614. [PMID: 34586110 DOI: 10.1039/d1an01115d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is highly demanded to develop methods for the reliable detection of ATP, which plays an extremely important role in clinical diagnosis, biomedical engineering, and food chemistry. However, the methods currently available for ATP sensing strongly rely on the utilization of expensive and sophisticated instruments or the use of ATP aptamers with mediocre sensitivity and selectivity. To circumvent these drawbacks, we herein propose an efficient method for ATP detection by integrating highly specific ATP-dependent ligation reaction with dual-stage signal amplification techniques executed by rolling circle amplification (RCA) and the subsequently fabricated DNAzymes ready for the catalytic cleavage and fluorescence signal generation from molecular beacons (MBs). The detection limit is down to 35 pM with a linear range from 0.05 nM to 200 nM. More importantly, the sensing strategy can effectively discriminate ATP from its analogues and the results from the spiked human serum albumin (HSA) samples further confirm the reliability for practical applications. Considering the high sensitivity and selectivity, wash-free and isothermal convenience, and the simplicity in probe design, the strategy reported herein paves a new avenue for the effective determination of ATP and other biomolecules in fundamental and applied research.
Collapse
Affiliation(s)
- Mingjian Chen
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Wanni Guo
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yuxin Yang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yu Ye
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Health Care Group, Huangshi 435002, P. R. China. .,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi 435002, P. R. China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China. .,Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, P. R. China
| |
Collapse
|
12
|
Huang G, Su C, Wang L, Fei Y, Yang J. The Application of Nucleic Acid Probe-Based Fluorescent Sensing and Imaging in Cancer Diagnosis and Therapy. Front Chem 2021; 9:705458. [PMID: 34141699 PMCID: PMC8204288 DOI: 10.3389/fchem.2021.705458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 01/27/2023] Open
Abstract
It is well known that cancer incidence and death rates have been growing, but the development of cancer theranostics and therapeutics has been a challenging work. Recently, nucleic acid probe-based fluorescent sensing and imaging have achieved remarkable improvements in a variety of cancer management techniques, credited to their high sensitivity, good tolerance to interference, fast detection, and high versatility. Herein, nucleic acid probe-based fluorescent sensing and imaging are labeled with advanced fluorophores, which are essential for fast and sensitive detection of aberrant nucleic acids and other cancer-relevant molecules, consequently performing cancer early diagnosis and targeted treatment. In this review, we introduce the characteristics of nucleic acid probes, summarize the development of nucleic acid probe-based fluorescent sensing and imaging, and prominently elaborate their applications in cancer diagnosis and treatment. In discussion, some challenges and perspectives are elaborated in the field of nucleic acid probe-based fluorescent sensing and imaging.
Collapse
Affiliation(s)
- Ge Huang
- Department of Medicine, University of South China, Hengyang, China.,Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Chen Su
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Lijuan Wang
- Department of Medicine, University of South China, Hengyang, China.,Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Yanxia Fei
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Jinfeng Yang
- Department of Anesthesiology and Pain Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| |
Collapse
|
13
|
Gao J, Li Y, Li W, Zeng C, Xi F, Huang J, Cui L. 2'- O-Methyl molecular beacon: a promising molecular tool that permits elimination of sticky-end pairing and improvement of detection sensitivity. RSC Adv 2020; 10:41618-41624. [PMID: 35516551 PMCID: PMC9057772 DOI: 10.1039/d0ra07341e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023] Open
Abstract
An innovative 2'-O-methyl molecular beacon (MB) has been designed and prepared with improved thermal stability and unique nuclease resistance. The employment of 2'-O-methyl MBs helps efficiently suppress the background signal, while DNase I is responsible for the signal amplification and elimination of sticky-end pairing. The coupled use of 2'-O-methyl MBs and DNase I makes it possible to develop an enzyme-aided strategy for amplified detection of DNA targets in a sensitive and specific fashion. The analysis requires only mix-and-measure steps that can be accomplished within half an hour. The detection sensitivity is theoretically determined as 27.4 pM, which is nearly 200-fold better than that of the classic MB-based assay. This proposed sensing system also shows desired selectivity. All these features are of great importance for the design and application of MBs in biological, chemical, and biomedical fields.
Collapse
Affiliation(s)
- Jiafeng Gao
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Yang Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Wenqin Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Chaofei Zeng
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| | - Jiahao Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University Guangzhou 510515 P. R. China
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University Hangzhou 310008 P. R. China
| |
Collapse
|
14
|
Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2020; 221:121610. [PMID: 33076140 DOI: 10.1016/j.talanta.2020.121610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotropes including carbon nanotubes and graphenes have been widely used for development of different Nano-biosensors for a diverse list of analytes because of their great physiochemical features such as high tensile strength, ultra-light weight, unique electronic construction, high thermo-chemical stability, and an appropriate capacity for electron transfer. Because of these exceptional properties, scientists have developed an immense interest in these nanomaterials. In this case, there are important reports to show the effective Nano-carbon based biosensors in the detection of NTI drugs and the present review will critically summarize the available data in this field.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
15
|
Zeng C, Gao J, Lou Y, Cui L. Enzyme-free and protein-assisted dual-amplified fluorescence anisotropy for sensitive miRNA detection in tumor cells. Talanta 2020; 218:121179. [PMID: 32797926 DOI: 10.1016/j.talanta.2020.121179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023]
Abstract
We here report a double amplification strategy to construct a fluorescence anisotropy sensor for microRNA analysis in practical biological samples. In this strategy, one target can trigger cyclic catalyzed hairpin assembly (CHA), with streptavidin incorporated as an amplifier of molar mass to enhance the signal intensity. The proposed strategy has a good linearity in the range of 5 pM - 0.5 nM with a detection limit down to 2.3 pM. More importantly, by using fluorescence anisotropy as the signal output, the strategy can be used directly for detection of miRNA in practical samples without any tedious sample pretreatment, holding the practical value in real biological systems.
Collapse
Affiliation(s)
- Chaofei Zeng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Jiafeng Gao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Yifei Lou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China
| | - Liang Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
| |
Collapse
|
16
|
Chen TW, Chinnapaiyan S, Chen SM, Ali MA, Elshikh MS, Mahmoud AH. A feasible sonochemical approach to synthesize CuO@CeO 2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter. ULTRASONICS SONOCHEMISTRY 2020; 63:104903. [PMID: 31951999 DOI: 10.1016/j.ultsonch.2019.104903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A nanostructured and high conductive cupric oxide (CuO NPs) with hierarchical CeO2 sheets-like structure was synthesized by a facile sonochemical approach. Furthermore, CuO/CeO2 nanostructure is synthesized by high-intensity ultrasonic probe (Ti-horn, 50 kHz and 100 W) at ambient air. Moreover, the synthesized CuO/CeO2 material was characterized by various analytical techniques including FESEM, EDX, XRD and electrochemical methods. Then, the synthesized CuO/CeO2 composite was applied for the electrocatalytic detection of dopamine using CV and DPV techniques. In addition, the CuO/CeO2 modified electrode has good electrocatalytic performance with high linear range from 0.025 to 98.5 µM towards the determination of dopamine drug and high sensitivity of the CuO/CeO2 modified drug sensor was calculated as 16.34 nM and 4.823 μA·µM-1·cm-2, respectively. Moreover, a repeatability, reproducibility and stability of the CuO@CeO2 mixture modified electrode were analyzed towards the determination of dopamine biomolecule. Interestingly, the real time application of CuO@CeO2 modified electrode was established in different serum and drug samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - M Ajmal Ali
- Department of Botany, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Hossam Mahmoud
- Department Zoology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Chen TW, Chinnapaiyan S, Chen SM, Hossam Mahmoud A, Elshikh MS, Ebaid H, Taha Yassin M. Facile sonochemical synthesis of rutile-type titanium dioxide microspheres decorated graphene oxide composite for efficient electrochemical sensor. ULTRASONICS SONOCHEMISTRY 2020; 62:104872. [PMID: 31806555 DOI: 10.1016/j.ultsonch.2019.104872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 μA·µM-1·cm-2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Improving the sensitivity and selectivity of a DNA probe using graphene oxide-protected and T7 exonuclease-assisted signal amplification. Anal Bioanal Chem 2020; 412:3029-3035. [PMID: 32206848 DOI: 10.1007/s00216-020-02556-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The accurate analysis of single-nucleotide polymorphisms is of great significance for clinical detection and diagnosis. Based on the hybridization hindrance caused by graphene oxide (GO) and hairpin probe, we report a T7 Exo-assisted cyclic amplification technique to distinguish single-base mismatch for highly sensitive and selective detection of mutant-type DNA. When the mutant-type target is completely complementary to the probe, the T7 Exo hydrolyzes the probe and releases the fluorescent molecule from the GO surface, resulting in a fluorescence signal. Conversely, when the wild-type mismatch target is present, the weak hybridization prevents the release of FAM-labeled probe from the GO surface. Therefore, the FAM-labeled probe cannot be degraded efficiently by T7 Exo, and the fluorescence is still quenched by GO. The detection limit of the proposed method can be as low as 34 fM due to the cyclic signal amplification. The experimental results showed that the established method could be used to detect single-nucleotide polymorphisms accurately and sensitively at low cost.
Collapse
|
19
|
Li YT, Yang YY, Sun YX, Cao Y, Huang YS, Han S. Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline. Mikrochim Acta 2020; 187:203. [DOI: 10.1007/s00604-020-4201-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
|
20
|
Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R, He Q. Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta 2020; 187:179. [PMID: 32076868 DOI: 10.1007/s00604-020-4128-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
Small molecules are key targets in molecular biology, environmental issues, medicine and food industry. However, small molecules are challenging to be detected due to the difficulty of their recognition, especially in complex samples, such as in situ in cells or animals. The emergence of graphene/aptamer probes offers an excellent opportunity for small molecule quantification owing to their appealing attributes such as high selectivity, sensitivity, and low cost, as well as the potential for probing small molecules in living cells or animals. This paper (with 130 refs.) will review the application of graphene/aptamer probes for small molecule detection. We present the recent progress in the design and development of graphene/aptamer probes enabling highly specific, sensitive and rapid detection of small molecules. Emphasis is placed on the success in their development and application for monitoring small molecules in living cells and in vivo systems. By discussing the key advances in this field, we wish to inspire more research work of the development of graphene/aptamer probes for both on-site or in situ detection of small molecules and its applications for investigating the functions of small molecules in cells in a dynamic way. Graphical abstract Graphene/aptamer probes can be used to construct different platforms for detecting small molecules with high specificity and sensitivity, both in vitro and in situ in living cells and animals.
Collapse
Affiliation(s)
- Yi Dong
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Xiaoya Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jiangtao Feng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Medical, Sichuan University, Chengdu, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China.
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
A carbon nanoparticle and DNase I-Assisted amplified fluorescent biosensor for miRNA analysis. Talanta 2020; 213:120816. [PMID: 32200921 DOI: 10.1016/j.talanta.2020.120816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/24/2022]
Abstract
Nucleic acid-based biosensors have become powerful tools in biomedical applications. But the stability issue seriously limits their wide applications. Fortunately, the emergence of carbon nanoparticles (CNPs), which can effectively protect DNA probes from enzymatic digestion and unspecific protein binding, provides a good solution. In this work, a DNase I-aided cyclic enzymatic amplification method (CEAM) for microRNA analysis has been developed based on the coupling use of nucleic acid probes with specific molecular recognition ability as well as CNPs with excellent biostability. The method is simple and sensitive, with a detection limit down to 3.2 pM. Furthermore, satisfactory results are achieved for miRNA analysis in breast cancer cell lysate, demonstrating the applicability in disease diagnosis. The ingenious combination of CNPs and nucleic acid probes can open a new chapter in the development of versatile analytical strategies that holds great potentials for clinical diagnosis, food safety, and environmental monitoring.
Collapse
|
22
|
Petrucci R, Chiarotto I, Mattiello L, Passeri D, Rossi M, Zollo G, Feroci M. Graphene Oxide: A Smart (Starting) Material for Natural Methylxanthines Adsorption and Detection. Molecules 2019; 24:E4247. [PMID: 31766549 PMCID: PMC6930464 DOI: 10.3390/molecules24234247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to - interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10-10 mol L-1 and 1.8 × 10-9 mol L-1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.
Collapse
Affiliation(s)
- Rita Petrucci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| | | | | | | | | | | | - Marta Feroci
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria (SBAI), Sapienza University of Rome, via Antonio Scarpa, 14, 00161 Roma, Italy; (I.C.); (L.M.); (D.P.); (M.R.); (G.Z.)
| |
Collapse
|
23
|
Gong X, Yu C, Zhang Y, Sun Y, Ye L, Li J. Carbon nanoparticle-protected RNA aptasensor for amplified fluorescent determination of theophylline in serum based on nuclease-aided signal amplification. RSC Adv 2019; 9:33898-33902. [PMID: 35528922 PMCID: PMC9073590 DOI: 10.1039/c9ra06798a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
A carbon nanoparticle (CNP) and Cryonase-aided method that realizes the amplified fluorescent detection of theophylline was proposed.
Collapse
Affiliation(s)
- Xiaoyu Gong
- Longgang District People's Hospital of Shenzhen
- Shenzhen
- P. R. China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
| | - Chi Yu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Yichang Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Yuan Sun
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Lin Ye
- Department of General Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Juan Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| |
Collapse
|