1
|
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts. Nanotoxicology 2024; 18:565-581. [PMID: 39295432 PMCID: PMC11581909 DOI: 10.1080/17435390.2024.2404074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
We have previously demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused extensive interstitial fibrosis and inflammatory cell infiltration in mouse lungs. However, the underlying mechanisms of Nano-Co-induced pulmonary fibrosis remain unclear. In this study, we investigated the role of high-mobility group box 1 (HMGB1) in the epithelial cell-fibroblast crosstalk in Nano-Co-induced pulmonary fibrosis. Our results showed that Nano-Co exposure caused remarkable production and release of HMGB1, as well as nuclear accumulation of HIF-1α in human bronchial epithelial cells (BEAS-2B) in a dose- and a time-dependent manner. Pretreatment with CAY10585, an inhibitor against HIF-1α, significantly blocked the overexpression of HMGB1 in cell lysate and the release of HMGB1 in the supernatant of BEAS-2B cells induced by Nano-Co exposure, indicating that Nano-Co exposure induces HIF-1α-dependent HMGB1 overexpression and release. In addition, treatment of lung fibroblasts (MRC-5) with conditioned media from Nano-Co-exposed BEAS-2B cells caused increased RAGE expression, MAPK signaling activation, and enhanced expression of fibrosis-associated proteins, such as fibronectin, collagen 1, and α-SMA. However, conditioned media from Nano-Co-exposed BEAS-2B cells with HMGB1 knockdown had no effects on the activation of MRC-5 fibroblasts. Finally, inhibition of ERK1/2, p38, and JNK all abolished MRC-5 activation induced by conditioned media from Nano-Co-exposed BEAS-2B cells, suggesting that MAPK signaling might be a key downstream signal of HMGB1/RAGE to promote MRC-5 fibroblast activation. These findings have important implications for understanding the pro-fibrotic potential of Nano-Co.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Chi KN, Liu JW, Guan Y, Li QX, Yang T, Hu R, Yang YH. Effect of perylene assembly shapes on photoelectrochemical properties and ultrasensitive biosensing behaviors toward dopamine. Anal Bioanal Chem 2023; 415:5845-5854. [PMID: 37528268 DOI: 10.1007/s00216-023-04865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
In this study, a photoelectrochemical (PEC) sensor based on perylene diimide derivatives (PDIs) was developed for the ultrasensitive quantification of dopamine (DA). PDIs were able to form self-assembled semiconductor nanostructures by strong π-π stacking, suitable for photoactive substances. Moreover, the shape of the PDI significantly affected the PEC properties of these nanostructures. The results showed that amino PDI with two-dimensional (2D) wrinkled layered nanostructures exhibited superior PEC properties relative to one-dimensional (1D) nanorods and fiber-based nanostructures (methyl and carboxyl PDIs). Based on these results, a mechanism for PEC sensor action was then proposed. The presence of 2D amino-PDI resulted in accelerated charge separation and transport. Furthermore, dopamine acted as effective electron donor to cause an increase in photocurrent. The as-obtained sensor was then used to detect small molecules like DA. A blue light optimized sensor at an applied potential of 0.7 V showed a detection limit of 1.67 nM with a wide linear range of 5 nM to 10 μM. On the other hand, the sensor presented acceptable reliability in determining DA in real samples. A recovery rate between 97.99 and 101.0% was obtained. Overall, controlling the morphology of semiconductors can influence PEC performance, which is a useful finding for the future development of PEC sensors.
Collapse
Affiliation(s)
- Kuan-Neng Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Jia-Wen Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Qiu-Xia Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, People's Republic of China
| |
Collapse
|
3
|
Akhter F, Jamali AR, Abbasi MN, Mallah MA, Rao AA, Wahocho SA, Anees-Ur-Rehman H, Chandio ZA. A comprehensive review of hydrophobic silica and composite aerogels: synthesis, properties and recent progress towards environmental remediation and biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11226-11245. [PMID: 36513899 DOI: 10.1007/s11356-022-24689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The hydrophobicity of silica and composite aerogels has enabled them to acquire applications in a variety of fields. With remarkable structural, morphological, and physiochemical properties such as high porosity, surface area, chemical stability, and selectivity, these materials have gained much attention of researchers worldwide. Moreover, the hydrophobic conduct has enabled these aerogels to adsorb substances, i.e., organic pollutants, without collapsing the pore and network structure. Hence, considering such phenomenal properties and great adsorption potential, exploiting these materials for environmental and biomedical applications is trending. The present study explores the most recent advances in synthetic approaches and resulting properties of hydrophobic silica and composite aerogels. It presents the various precursors and co-precursors used for hydrophobization and gives a comparative analysis of drying methods. Moreover, as a major focus, the work presents the recent progress where these materials have shown promising results for various environmental remediation and biomedical applications. Finally, the bottlenecks in synthesis and applicability along with future prospects are given in conclusions.
Collapse
Affiliation(s)
- Faheem Akhter
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan.
| | - Abdul Rauf Jamali
- Materials Engineering Department, NED University of Engineering and Technology, Karachi, Pakistan
| | - Mahmood Nabi Abbasi
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Ahsan Atta Rao
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Shafeeque Ahmed Wahocho
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Hafiz Anees-Ur-Rehman
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Zubair Ahmed Chandio
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| |
Collapse
|
4
|
Rapid detection of nitrite based on nitrite-oxidizing bacteria biosensor and its application in surface water monitoring. Biosens Bioelectron 2022; 215:114573. [PMID: 35853327 DOI: 10.1016/j.bios.2022.114573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
Abstract
Timely and sensitive detection of nitrite is of great significance for human health protection and water pollution treatment. However, many biosensors can only determine the comprehensive toxicity of the water, and there are few electroactive biofilm (EAB) sensors for the specific detection of pollutants. Biofilms formed by bacteria with specific functions can improve the specificity of nitrite identification by biosensors. This study developed a novel, rapidly responding, high sensitivity (958.6 μAμM-1cm-2), wide detection range and anti-interference electrochemical biosensor based on electroactive nitrite-oxidizing bacteria. The biosensor could accurately detect nitrite in the range of 0.3-100 mg/L within 3 min by the cyclic voltammetry (CV) method. The bioelectrode could perform stable detection of nitrite over 200 cycles. The specificity of the biosensor for detecting nitrite was demonstrated by the presence of nitrite oxidizing bacteria (NOB) and nitrite oxidase enzyme (NXR) on the electrode biofilm. The biosensor performed well in wetlands and rivers, with an RSD <14.8% in the detection of nitrite at low concentrations, and further revealed the nitrification occurrence. Our study provided a feasible way for the development of a highly sensitive, rapidly responding and stable electrochemical biosensor, which also exhibited potential applications for long-term detection of nitrite and assessment of ecological function in surface water (rivers, lakes, wetlands, marshes, etc.).
Collapse
|
5
|
Çakar S, Çakıroğlu B, Şen Ş, Özacar M. A photo-sensitive BiVO4@Bi2O3@g-C3N4 sensor for the detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Abstract
The thermal catalytic conversion of biomass is currently a prevalent method for producing activated carbon with superb textural properties and excellent adsorption performance. However, activated carbon suffers severely from its poor thermal stability, which can easily result in spontaneous burning. In contrast, silica material is famed for its easy accessibility, high specific surface area, and remarkable thermal stability; however, its broader applications are restricted by its strong hydrophilicity. Based on this, the present review summarizes the recent progress made in carbon-silica composite materials, including the various preparation methods using diverse carbon (including biomass resources) and silica precursors, their corresponding structure–function relationship, and their applications in adsorption, insulation, batteries, and sensors. Through their combination, the drawbacks of the individual materials are circumvented while their original advantages are maintained. Finally, several bottlenecks existing in the field of carbon-silica composites, from synthesis to applications, are discussed in this paper, and possible solutions are given accordingly.
Collapse
|
7
|
Białas K, Moschou D, Marken F, Estrela P. Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Mikrochim Acta 2022; 189:172. [PMID: 35364739 PMCID: PMC8975783 DOI: 10.1007/s00604-022-05252-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/26/2022] [Indexed: 01/06/2023]
Abstract
Biosensors have attracted a great deal of attention, as they allow for the translation of the standard laboratory-based methods into small, portable devices. The field of biosensors has been growing, introducing innovations into their design to improve their sensing characteristics and reduce sample volume and user intervention. Enzymes are commonly used for determination purposes providing a high selectivity and sensitivity; however, their poor shelf-life is a limiting factor. Researchers have been studying the possibility of substituting enzymes with other materials with an enzyme-like activity and improved long-term stability and suitability for point-of-care biosensors. Extra attention is paid to metal and metal oxide nanoparticles, which are essential components of numerous enzyme-less catalytic sensors. The bottleneck of utilising metal-containing nanoparticles in sensing devices is achieving high selectivity and sensitivity. This review demonstrates similarities and differences between numerous metal nanoparticle-based sensors described in the literature to pinpoint the crucial factors determining their catalytic performance. Unlike other reviews, sensors are categorised by the type of metal to study their catalytic activity dependency on the environmental conditions. The results are based on studies on nanoparticle properties to narrow the gap between fundamental and applied research. The analysis shows that the catalytic activity of nanozymes is strongly dependent on their intrinsic properties (e.g. composition, size, shape) and external conditions (e.g. pH, type of electrolyte, and its chemical composition). Understanding the mechanisms behind the metal catalytic activity and how it can be improved helps designing a nanozyme-based sensor with the performance matching those of an enzyme-based device.
Collapse
Affiliation(s)
- Katarzyna Białas
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Despina Moschou
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Frank Marken
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK.,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath, BA2 7AY, UK. .,Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
8
|
Sukanya, Kumara Swamy B, Shashikumara J, Sharma S. Poly (yellow PX4R) carbon paste electrode sensor for paracetamol: A voltammetric study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Alsaiari M, Saleem A, Alsaiari R, Muhammad N, Latif U, Tariq M, Almohana A, Rahim A. SiO 2/Al 2O 3/C grafted 3-n propylpyridinium silsesquioxane chloride-based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite in food products. Food Chem 2022; 369:130970. [PMID: 34500207 DOI: 10.1016/j.foodchem.2021.130970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The excessive uptake of nitrite is perilous and detrimental for human health that prone to cancer disease. Herein, described the synthesis of SiO2/Al2O3/C material through the sol-gel procedure followed by grafting with 3-n propylpyridinium silsesquioxane chloride organic ligand for enhancing electrochemical activity. H-NMR, 13C NMR, and 29Si studies were performed for confirmation of surface functionalization through the grafting technique. The surface morphology was evaluated through SEM and TEM techniques. The material showed an irregular and flakes-like structure that exhibited more compactness and conglomerate structure with no segregation in phase was observed after grafting. The elemental composition was confirmed from EDX analysis. The electrochemical measurements were performed with cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and chronoamperometry. The prepared hybrid inorganic-organic composite Si/C/Al/SiPy+Cl- was applied for the modification of the glassy carbon (GC) electrode and assessed as a sensor for nitrite determination. The sensor showed the low limit of detection (0.01 μM), low limit of quantification (0.08 μM), wide linear response range (0.2-280 μM), and high sensitivity (410 μA·μM-1). It gave a quick response time of <1 s in the presence of 70 μM nitrite. The fabricated sensor showed high sensitivity, chemical stability, and insignificant interference from co-existing species present in sausage meat and food industry discharges. The repeatability of the sensor was evaluated as 2.5 % R.S.D.; for n = 10 at 50 μM nitrite.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia.
| | - Amina Saleem
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Raiedhah Alsaiari
- Promising Centre for sensors and electronic devices (PCSED), Advanced materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Najran, Saudi Arabia
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University KPK, Pakistan
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan
| | - Muhammad Tariq
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Abdulaziz Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O.BOX 800, Riyadh, 11421, Saudi Arabia
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, 54000, Pakistan.
| |
Collapse
|
10
|
Lin Z, Cheng S, Li H, Li L. A novel, rapidly preparable and easily maintainable biocathode electrochemical biosensor for the continuous and stable detection of nitrite in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150945. [PMID: 34655619 DOI: 10.1016/j.scitotenv.2021.150945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrite is a highly toxic and pathogenic pollutant that is widely distributed in various nitrogenous wastewaters. Therefore, there is an urgent need for fast and stable nitrite detection to avoid water pollution and protect human health. In this study, we developed a novel rapidly preparable and easily maintainable biocathode electrochemical biosensor (BEB) using nitrite-reducing bacteria as the detectors to realize continuous nitrite monitoring in wastewater. The preparation of the biocathode was shortened by the polarity inversion method to less than 6 d. The BEB could detect nitrite solution samples in the range of 0.1- 16.0 mg NO2--N L-1 within 1.7 min. The BEB was also successfully used to detect nitrite in real wastewater with a relative error < 4.0% and a relative standard deviation < 5.8%. In addition, the BEB could be easily maintained by an operation mode of microbial fuel cells and stably detected nitrite for at least 150 tests. Our study provided a feasible and convenient way to develop electrochemical biosensors based on the biocathode for continuous and stable monitoring of pollutants in wastewater.
Collapse
Affiliation(s)
- Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
11
|
Khan MI, Muhammad N, Tariq M, Nishan U, Razaq A, Saleh TA, Haija MA, Ismail I, Rahim A. Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co 2O 4) nanostructure. Mikrochim Acta 2021; 189:37. [PMID: 34958414 DOI: 10.1007/s00604-021-05142-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co3O4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure's bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co2O4/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co2O4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM-1 cm-2), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor's selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.
Collapse
Affiliation(s)
- Muhammad Inam Khan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, Islamabad, 54000, Pakistan
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, Islamabad, 54000, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KPK, Pakistan
| | - Muhammad Tariq
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Aamir Razaq
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, Islamabad, 54000, Pakistan
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Issam Ismail
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road Lahore, Islamabad, 54000, Pakistan.
| |
Collapse
|
12
|
Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection. Mikrochim Acta 2021; 188:230. [PMID: 34117945 DOI: 10.1007/s00604-021-04884-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The synthesis of novel architecture comprising perylene diimide (PDI)-MXene (Ti3C2TX)-integrated graphitic pencil electrode for electrochemical detection of dopamine (DA) is reported. The good electron passage between PDI-MXene resulted in an unprecedented nano-adduct bearing enhanced electrocatalytic activity with low-energy electronic transitions. The anionic groups of PDI corroborated enhanced active surface area for selective binding and robust oxidation of DA, thereby decreasing the applied potential. Meanwhile, the MXene layers acted as functional conducive support for PDI absorption via strong H-bonding. The considerable conductivity of MXene enhanced electron transportation thus increasing the sensitivity of sensing interface. The inclusively engineered nano-adduct resulted in robust DA oxidation with ultra-sensitivity (38.1 μAμM-1cm-2), and low detection limit (240 nM) at very low oxidation potential (-0.135 V). Moreover, it selectively signaled DA in the presence of physiological interferents with wide linearity (100-1000 μM). The developed transducing interface performed well in human serum samples with RSD (0.1 to 0.4%) and recovery (98.6 to 100.2%) corroborating the viability of the practical implementation of this integrated system. Graphical abstract Schematic illustration of the oxidative process involved on constructed sensing interface for the development of a non-enzymatic dopamine sensor.
Collapse
|
13
|
Shafi PM, Joseph N, Karthik R, Shim JJ, Bose AC, Ganesh V. Lemon juice-assisted synthesis of LaMnO3 perovskite nanoparticles for electrochemical detection of dopamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Kang K, Wang B, Ji X, Liu Y, Zhao W, Du Y, Guo Z, Ren J. Hemin-doped metal-organic frameworks based nanozyme electrochemical sensor with high stability and sensitivity for dopamine detection. RSC Adv 2021; 11:2446-2452. [PMID: 35424163 PMCID: PMC8693727 DOI: 10.1039/d0ra08224d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
This study reports a new type of artificial nanozyme based on Hemin-doped-HKUST-1 (HKUST-1, also referred to as MOF-199; a face-centered-cubic MOF containing nanochannels) as a redox mediator for the detection of dopamine (DA). Hemin-doped-HKUST-1 was successfully synthesized by one-pot hydrothermal method, which was combined with reduced graphene oxide (rGO) modified on a glassy carbon electrode (GCE) to construct a sensor (Hemin-doped HKUST-1/rGO/GCE). The morphology and structure of Hemin-doped-HKUST-1 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and infrared spectra (IR) techniques. The Hemin-doped HKUST-1/rGO nanozyme showed an excellent electrocatalytic activity for DA oxidation, which is due to the enhanced Hemin activity through the formation of a metal-organic framework (MOFs) and the synergy between the Hemin-doped HKUST-1 and rGO in nanozyme. The resulted sensor exhibited a high sensitivity of 1.224 μA μM-1, with a lower detection limit of 3.27 × 10-8 M (S/N = 3) and a wide linear range of 0.03-10 μM for DA detection. In addition, due to the stabilizing effect of MOFs on heme, the sensor showed satisfactory stability and has been successfully applied to the detection of DA in serum samples, indicating that this work has potential value in clinical work.
Collapse
Affiliation(s)
- Kai Kang
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Beibei Wang
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
- Hebei Key Laboratory of Forensic Medicine Shijiazhuang 050017 PR China
| | - Yuheng Liu
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Wenrui Zhao
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Yaqing Du
- School of Pharmacy, Hebei Medical University Shijiazhuang 050017 PR China +86-311-86265593
| | - Zhiyong Guo
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 PR China
| | - Jujie Ren
- Department of Chemistry, School of Sciences, Hebei University of Science and Technology Shijiazhuang 050018 PR China
| |
Collapse
|
15
|
Ahmad P, Khan MI, Akhtar MH, Muhammad G, Iqbal J, Rahim A, Muhammad N. Single-step synthesis of magnesium-iron borates composite; an efficient electrocatalyst for dopamine detection. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Ahmad T, Iqbal J, Bustam MA, Zulfiqar M, Muhammad N, Al Hajeri BM, Irfan M, Anwaar Asghar HM, Ullah S. Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128292] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Mikhraliieva A, Zaitsev V, Tkachenko O, Nazarkovsky M, Xing Y, Benvenutti EV. Graphene oxide quantum dots immobilized on mesoporous silica: preparation, characterization and electroanalytical application. RSC Adv 2020; 10:31305-31315. [PMID: 35520679 PMCID: PMC9056381 DOI: 10.1039/d0ra04605a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
Because of its high surface area and combination of various functional groups, graphene oxide (GO) is currently one of the most actively studied materials for electroanalytical applications. It is not practical to utilize self-supported GO on its own and thus it is commonly integrated with different supporting carriers. Having a large lateral size, GO can only wrap the particles of the support and thus can significantly reduce the surface area of porous materials. To achieve synergy from the high surface area and polyfunctional nature of GO, and the rigid structure of a porous support, the lateral size of GO must essentially be decreased. Recently reported graphene oxide quantum dots (GOQDs) can fulfil this task. Here we report the successful preparation of an SiO2-GOQDs hybrid, where GOQDs have been incorporated into the mesoporous network of silica. The SiO2-GOQDs emit a strong luminescence with a band maximum at 404 nm. The Raman spectrum of SiO2-GOQDs shows two distinct peaks at 1585 cm−1 (G-peak) and 1372 cm−1 (D-peak), indicating the presence of a graphene ordered basal plane with aromatic sp2-domains and a disordered oxygen-containing structure. Covalent immobilization of GOQDs onto aminosilica via such randomly structured oxygen fragments was proven with the help of Fourier transform infrared spectroscopy, solid-state cross-polarization magic angle spinning 13C nuclear magnetic resonance, and X-ray photoelectron spectroscopy. SiO2-GOQDs were used as a modifier of a carbon paste electrode for differential pulse voltammetry determination of two antibiotics (sulfamethoxazole and trimethoprim) and two endocrine disruptors (diethylstilbestrol (DES) and estriol (EST)). The modified electrodes demonstrated a significant signal enhancement for EST (370%) and DES (760%), which was explained by a π–π stacking interaction between GOQDs and the aromatic system of the analytes. Graphene oxide quantum dots incorporated into a mesoporous silica network have been used as a modifier of a carbon paste electrode for the determination of antibiotics and hormones.![]()
Collapse
Affiliation(s)
- Albina Mikhraliieva
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Marquês de São Vicente, 225 22451-900 Rio de Janeiro Brazil
| | - Vladimir Zaitsev
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Marquês de São Vicente, 225 22451-900 Rio de Janeiro Brazil .,National University of Kyiv-Mohyla Academy 2 Skovorody vul. Kyiv 04070 Ukraine
| | - Oleg Tkachenko
- Materials Chemistry Department, V. N. Karazin Kharkiv National University 4 Svoboda Square Kharkiv 61022 Ukraine.,Institute of Chemistry, UFRGS PO Box 15003, CEP Porto Alegre RS 91501-970 Brazil
| | - Michael Nazarkovsky
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Marquês de São Vicente, 225 22451-900 Rio de Janeiro Brazil
| | - Yutao Xing
- Laboratório de Microscopia Eletrônica de Alta Resolução, Centro de Caracterização Avançada para Indústria de Petróleo (LaMAR/CAIPE), Universidade Federal Fluminense 24210-346 Niterói RJ Brazil
| | - Edilson V Benvenutti
- Materials Chemistry Department, V. N. Karazin Kharkiv National University 4 Svoboda Square Kharkiv 61022 Ukraine
| |
Collapse
|