1
|
Vaz-Ramos J, Le Calvé S, Begin S. Polycyclic aromatic hydrocarbons in water environments: Impact, legislation, depollution processes and challenges, and magnetic iron oxide/graphene-based nanocomposites as promising adsorbent solutions. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137726. [PMID: 40024123 DOI: 10.1016/j.jhazmat.2025.137726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Environmental pollution is a big challenge of today's world, as population continues to grow, and industrialisation and urbanisation increase. Out of the different micropollutants in the atmosphere and aquatic environments, polycyclic aromatic hydrocarbons are of particular importance because they have known severe associated health risks to human life and they have high stability, leading to their persistence in the environment. They are generally present in the environment in low concentrations, but, even at these levels, they pose threats. This review thus focuses on this family of pollutants, on their occurrence and consequences, as well as the current methodologies employed to remove them from water environments and the challenges that remain. This work then focuses on the potential of magnetic iron oxide/graphene nanocomposites for the adsorption of PAHs, extensively discussing past and undergoing works, as well as the interactions between these adsorbents and PAHs.
Collapse
Affiliation(s)
- Joana Vaz-Ramos
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, Strasbourg 67087, France; Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, Strasbourg Cedex 2 67034, France
| | - Stéphane Le Calvé
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, Strasbourg 67087, France.
| | - Sylvie Begin
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, Strasbourg 67087, France; Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, Strasbourg Cedex 2 67034, France.
| |
Collapse
|
2
|
Shamloo E, Shokri S, Sadighara P, Fallahizadeh S, Ghasemi A, Abdi-Moghadam Z, Rezagholizade-shirvan A, Mazaheri Y. Application of nanomaterials for determination and removal of polycyclic aromatic hydrocarbons in food products: A review. Food Chem X 2024; 24:101833. [PMID: 39319098 PMCID: PMC11421272 DOI: 10.1016/j.fochx.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), toxic persistent pollutants, result in adverse impacts to human being health. Among the variety contaminant remediation approaches, nanotechnology was found promising in terms of its efficiency and exceptional size-dependent properties. Nanomaterials also possess high particular surface area, rapid dissolution characteristics, high sorption, magnetic -properties and quantum confinement. Nanoparticles (NPs) have been employed as sorbents in the assessment of PAHs, including carbon NPs, mesoporous silica NPs, metallic species, metal oxides, as well as magnetic and magnetized NPs. Magnetic nanocomposites have demonstrated high efficiency (>99 %) in removing PAHs from food products. Similarly, a magnetic chitosan/molybdenum disulfide nanocomposite exhibited excellent adsorption capacities for PAHs in milk samples. Present research was conducted on multiple academic platforms, including Google Scholar, Science Direct, Elsevier, Springer, Scopus, and PubMed from 2017 to 2024. Various combinations of keywords, such as "PAHs," "extraction," "removal," and "nanomaterials," were used in the search. The aim of this manuscript is to reviews the application of nanotechnologies for the elimination and extraction of PAHs from contaminated food products. The findings of this study offer novel insights into efficient and cost-saving approach and suggest the potential of NPs as promising agents for preconcentration and remediation of PAHs from variety food samples. Also, the obtained results will pave the way for future explorations that will lead to the achievement of maximum efficiency for the analysis and extraction of materials in more diverse matrices. Therefore, it is suggested to investigate the potential of various nanomaterials regarding various matrices in future.
Collapse
Affiliation(s)
- Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Samira Shokri
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Fallahizadeh
- School of Public Health, Yasuj University of Medical Sciences, Yasuj, Iran
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zohreh Abdi-Moghadam
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Yeganeh Mazaheri
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang MM, Li ZL, Wu H, Chen KY, Guo F, Zuo GF, He Y, Yin XB. Self-assembled Fe 3O 4-NH 2 @g-C 3N 4 composite for magnetic solid-phase extraction of benzophenones in sea water and lake water coupled with LC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132776. [PMID: 37844496 DOI: 10.1016/j.jhazmat.2023.132776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Magnetic solid-phase extraction (MSPE) was developed based on a well-designed Fe3O4-NH2 @g-C3N4 nanocomposite as sorbent for a mixture of six benzophenones (BPs) in environmental water samples. The composite fabricated via in-situ self-assembled g-C3N4 shell with homogeneous polymerization of cyanuric chloride and cyanuric acid on Fe3O4-NH2 core. While high adsorption capacity was derived from g-C3N4 via hydrophobic, π-π and hydrogen bonding interactions to the targets, the fast magnetic separation was realized with Fe3O4 core for less solvent consumption. In combination with LC-MS/MS, the Fe3O4-NH2 @g-C3N4 sorbent minimized the interfering components, reduced the matrix effects, and provided the enrichment factors of 121-150 for six BPs with relative standard deviations ≤ 9.7% even after 20 times extraction-desorption cycles. The present method gave the detection limits of 0.3-2.5 ng/L for six BPs with the linear ranges of 1.0-2000 ng/L, and the recoveries of 84.6%-104% in sea water and 86.2%-107% in lake water samples. Thus, the Fe3O4-NH2 @g-C3N4-based MSPE coupled with LC-MS/MS method provided a convenient, efficient, and reliable alternative to monitor trace BPs in environmental water samples.
Collapse
Affiliation(s)
- Man-Man Wang
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Zi-Ling Li
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Han Wu
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Ke-Yan Chen
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Fan Guo
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Gui-Fu Zuo
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yu He
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China.
| |
Collapse
|
4
|
Qin X, Cui H, Zhou Q. Physisorption Behaviors of Organochlorine Pesticides on the InP 3 Monolayer from Theoretical Insight. ACS OMEGA 2023; 8:32168-32175. [PMID: 37692222 PMCID: PMC10483652 DOI: 10.1021/acsomega.3c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (BHC), aldrin, and chlordimeform are ubiquitous organochlorine pesticide (OCP) residues in the environment, which pose a great threat to human health and ecosystems due to their high toxicity and easy accumulation. Based on the density functional theory (DFT) calculations, a two-dimensional InP3 monolayer was selected as a sensing material to study the sensitivity detection and adsorption behaviors toward BHC, aldrin, chlordimeform, and DDT. The calculation results show that four pesticide molecules are adsorbed on the InP3 surface by physical interaction. The identified response values (69.1, -43.1%) for DDT and chlordimeform reveal the potential of the InP3 monolayer as a sensing material for the detection of these two pesticides, accompanied by the achievement of cyclic utilization by heating to 498 K. The most satisfactory result is the adsorption of BHC, owing to the admirable sensing response (62.7%) and short recovery time (1.8 s) at room temperature, which makes InP3 a promising pesticide sensor for BHC. However, the InP3 surface is unsuitable for aldrin sensing due to poor response (-1.9%). Our work gives theoretical insight into the good sensitivity and recycling of the InP3 monolayer as a new pesticide sensor to detect DDT, BHC, and chlordimeform, which further broadens the application prospect of the InP3 nanosheet into the sensitive detection of organochlorine pesticides in the ecological environment.
Collapse
Affiliation(s)
- Xin Qin
- Hunan
Key Laboratory of the Research and Development of Novel Pharmaceutical
Preparations, The Hunan Provincial University Key Laboratory of the
Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P.R. China
| | - Hao Cui
- College
of Artificial Intelligence, Southwest University, Chongqing 400715, P.R. China
| | - Qiulan Zhou
- Hunan
Key Laboratory of the Research and Development of Novel Pharmaceutical
Preparations, The Hunan Provincial University Key Laboratory of the
Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P.R. China
| |
Collapse
|
5
|
Jin R, Liu G, Zhou X, Zhang Z, Lin B, Liu Y, Qi Z, Zheng M. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
A facile molecularly imprinted column coupled to GC-MS/MS for sensitive and selective determination of polycyclic aromatic hydrocarbons and study on their migration in takeaway meal boxes. Talanta 2022; 243:123385. [DOI: 10.1016/j.talanta.2022.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
|
7
|
Rattanakunsong N, Jullakan S, Płotka-Wasylka J, Bunkoed O. A hierarchical porous composite magnetic sorbent of reduced graphene oxide embedded in polyvinyl alcohol cryogel for solvent assisted-solid phase extraction of polycyclic aromatic hydrocarbons. J Sep Sci 2022; 45:1774-1783. [PMID: 35304968 DOI: 10.1002/jssc.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022]
Abstract
A hierarchical porous composite magnetic sorbent was fabricated and applied to the dispersive solvent assisted-solid phase extraction of five polycyclic aromatic hydrocarbons. A sorbent was first prepared by incorporating graphene oxide, calcium carbonate and magnetite nanoparticles into a polyvinyl alcohol cryogel. The graphene oxide was converted to reduced graphene oxide using ascorbic acid and a hierarchical porous structure was produced by reacting hydrochloric acid with incorporated calcium carbonate to generate carbon dioxide bubbles which created a second network. Before extracting the target analytes, extraction solvent was introduced into the hierarchical pore network of the sorbent. The extraction was based on the partition between the analytes and introduced extraction solvent and the adsorption of analytes on reduced graphene oxide. The extraction efficiency was enhanced through π-π and hydrophobic interactions between polycyclic aromatic hydrocarbons and reduced graphene oxide and extraction solvent. The extracted polycyclic aromatic hydrocarbons were determined using HPLC coupled with fluorescence detector. The developed method was applied to extract polycyclic aromatic hydrocarbons in disposable diaper, coffee and tea samples and recoveries from 84.5 to 99.4% were achieved with relative standard deviations below 7%. The developed sorbent exhibited good reproducibility and can be reused for ten cycles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Natnaree Rattanakunsong
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sirintorn Jullakan
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdańsk, Poland
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
8
|
Hamidi S. Recent Advances in Solid-Phase Extraction as a Platform for Sample Preparation in Biomarker Assay. Crit Rev Anal Chem 2022; 53:199-210. [PMID: 35192409 DOI: 10.1080/10408347.2021.1947771] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Low levels of biomarkers and the complexity of bio sample make the analytical assay of several biomarkers a challenging issue. Suitable sample preparation run remain a vital part of the puzzle of diagnostic level. Enhancing the detection limit of bioanalytical methods start during the sample preparation procedure. A robust sample preparation method is needed to evaluate the number of biomarkers. As worldwide environmental issues attract expanding consideration, all the more harmless to the ecosystem investigations are liked. Solid-phase extraction (SPE) is an appealing strategy among the sample treatment methods due to the versatility of sorbent materials, less solvent consumption, and compatibility with analytical devices. Miniaturization of the SPE gives the chance to integrate the other analytical steps in a single run, known as an easy-to-use and effective method. SPE utilizes various SPE sorbent beds such as packed beads, porous polymer monoliths, molecularly imprinted polymers, membranes, or other magnetic form microstructures to achieve high surface-to-volume ratio and appropriate chemical properties effective extraction. Also, SPE is the methodology of interest to fulfill high recovery and efficiency demands. In this review, we intend to explain more recent methods for the rational design of SPE and miniaturized SPE to determine biomarkers from biological media. The headlines are subdivided into (1) packing materials in SPE, (2) setups for sample preparation by magnetic SPE, and (3) and future perspective for the application of SPE in sample preparation for analysis of biomarkers.
Collapse
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Abdar A, Amiri A, Mirzaei M. Semi-automated solid-phase extraction of polycyclic aromatic hydrocarbons based on stainless steel meshes coated with metal-organic framework/graphene oxide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
He XQ, Cui YY, Zhang Y, Yang CX. Fabrication of magnetic polydopamine@naphthyl microporous organic network nanosphere for efficient extraction of hydroxylated polycyclic aromatic hydrocarbons and p-nitrophenol from wastewater samples. J Chromatogr A 2021; 1651:462347. [PMID: 34166861 DOI: 10.1016/j.chroma.2021.462347] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Herein, we report the fabrication of a novel, well-defined core-double-shell-structured magnetic Fe3O4@polydopamine@naphthyl microporous organic network (MON), Fe3O4@PDA@NMON, for the efficient magnetic extraction of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and p-nitrophenol (p-Npn) from wastewater samples. The hierarchical nanospheres were designed and constructed with the Fe3O4 nanoparticle core, the inner shell of a polydopamine (PDA) layer, and the outer shell of a porous naphthyl MON (NMON) coating, allowing efficient and synergistic extraction of OH-PAHs and p-Npn via hydrophobic, hydrogen bonding, and π-π interactions. The Fe3O4@PDA@NMON nanospheres were well characterized and employed as an efficient sorbent for magnetic solid-phase extraction (MSPE) coupled with high performance liquid chromatography (HPLC) for analyzing of OH-PAHs and p-Npn. Under optimal conditions, the Fe3O4@PDA@NMON-based-MSPE-HPLC-UV method afforded wide linear range (0.18-500 μg L-1), low limits of detection (0.070 μg L-1 for p-Npn, 0.090 μg L-1 for 2-OH-Nap, 0.090 μg L-1 for 9-OH-Fluo and 0.055 μg L-1 for 9-OH-Phe, respectively), large enrichment factors (92.6-98.4), good precisions (intra-day and inter-day relative standard deviations (RSDs); <6.4%, n=6) and less consumption of the adsorbent. Furthermore, trace OH-PAHs and p-Npn with concentrations of 0.29-0.80 μg L-1 were successfully detected in various wastewater samples. Fe3O4@PDA@NMON also functioned as a good adsorbent to enrich a wide scope of trace contaminants containing hydrogen bonding sites and aromatic structures, highlighting the potential of functional MONs in sample pretreatment.
Collapse
Affiliation(s)
- Xin-Qiao He
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yuan-Yuan Cui
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Huang P, Kou H, Wang X, Zhou Z, Du X, Lu X. Porous cage-like hollow magnetic carbon-doped CoO nanocomposite as an advanced sorbent for magnetic solid-phase extraction of nine polycyclic aromatic hydrocarbons. Talanta 2021; 227:122149. [PMID: 33714461 DOI: 10.1016/j.talanta.2021.122149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
In this study, porous cage-like hollow magnetic carbon-doped CoO nanocomposite (CoO@C) was successfully synthesized using a metal-organic frameworks (MOFs) as precursor by one-step calcination method in this work. The obtained nanoporous composite showed excellent magnetic response by taking advantage of the magnetism of CoO even without the Fe3O4, making it an advanced sorbent for magnetic solid-phase extraction (MSPE). The Co-MOF and CoO@C were characterized by XRD, TGA, SEM, TEM, vibrating sample magnetometry, and FT-IR spectroscopy. Based on this, a method using CoO@C for MSPE coupled with HPLC was established for the analysis of nine polycyclic aromatic hydrocarbons (PAHs) from various real water samples. The amount of sorbent, extraction times, extraction temperature, desorption times, oscillation rate, and elution volume were optimized. Under the optimal conditions, the method had good relative standard deviations (RSDs) of 1.1%-6.5% and a satisfying linearity range of 0.5-1000 μg L-1. The low LOD and LOQ for nine PAHs were found to be 0.06-1.30 μg L-1 and 0.19-4.30 μg L-1, respectively. The experimental results indicated that the prepared nanocomposite showed excellent adsorption capacity compared to other commercial sorbents and has potential applications for the removal of hazardous pollutants from environmental samples.
Collapse
Affiliation(s)
- Pengfei Huang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Haixia Kou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xuemei Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| | - Zheng Zhou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xinzhen Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| |
Collapse
|
12
|
Adeola AO, Forbes PBC. Advances in water treatment technologies for removal of polycyclic aromatic hydrocarbons: Existing concepts, emerging trends, and future prospects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:343-359. [PMID: 32738166 DOI: 10.1002/wer.1420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
In the last two decades, environmental experts have focused on the development of several biological, chemical, physical, and thermal methods/technologies for remediation of PAH-polluted water. Some of the findings have been applied to field-scale treatment, while others have remained as prototypes and semi-pilot studies. Existing treatment options include extraction, chemical oxidation, bioremediation, photocatalytic degradation, and adsorption (employing adsorbents such as biomass derivatives, geosorbents, zeolites, mesoporous silica, polymers, nanocomposites, and graphene-based materials). Electrokinetic remediation, advanced phytoremediation, green nanoremediation, enhanced remediation using biocatalysts, and integrated approaches are still at the developmental stage and hold great potential. Water is an essential component of the ecosystem and highly susceptible to PAH contamination due to crude oil exploration and spillage, and improper municipal and industrial waste management, yet comprehensive reviews on PAH remediation are only available for contaminated soils, despite the several treatment methods developed for the remediation of PAH-polluted water. This review seeks to provide a comprehensive overview of existing and emerging methods/technologies, in order to bridge information gaps toward ensuring a green and sustainable remedial approach for PAH-contaminated aqueous systems. PRACTITIONER POINTS: Comprehensive review of existing and emerging technologies for remediation of PAH-polluted water. Factors influencing efficiency of various methods, challenges and merits were discussed. Green nano-adsorbents, nano-oxidants and bio/phytoremediation are desirous for ecofriendly and economical PAH remediation. Adoption of an integrated approach for the efficient and sustainable remediation of PAH-contaminated water is recommended.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Jia XX, Yao ZY, Gao ZX, Fan ZC. The Role of Suspension Array Technology in Rapid Detection of Foodborne Pollutants: Applications and Future Challenges. Crit Rev Anal Chem 2021; 52:1408-1421. [PMID: 33611988 DOI: 10.1080/10408347.2021.1882833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China.,Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
14
|
|
15
|
Tan SC, Lee HK. Fully automated graphitic carbon nitride-based disposable pipette extraction-gas chromatography-mass spectrometric analysis of six polychlorinated biphenyls in environmental waters. J Chromatogr A 2020; 1637:461824. [PMID: 33383240 DOI: 10.1016/j.chroma.2020.461824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023]
Abstract
A fully automated online emulsification-enhanced disposable pipette extraction-gas chromatography-mass spectrometry (EE-DPX-GC-MS) method has been developed for the extraction of six polychlorinated biphenyls (PCBs) from environmental waters. An in-house prepared material, graphitic carbon nitride (g-C3N4), was used as sorbent in a home-packed DPX device. The six PCBs studied include PCB 10, 28, 52, 153, 138 and 180. g-C3N4 was characterized successfully by X-ray diffraction, elemental analysis, scanning electron microscopy, Fourier-transform infrared and Raman spectroscopy. As a C-N analogue of graphite, the two-dimensional structure of g-C3N4 allows rapid analyte adsorption and desorption to take place. With a significant number of nitrogen functionalities in g-C3N4, the material dispersed well in aqueous sample, increasing the active surface area of contact between the sorbent and the sample. When coupled with a pre-emulsification step, PCBs in each portion of sample could be efficiently extracted by g-C3N4 within 20 s of gentle turbulence. Under the most favorable conditions, the automated online EE-DPX-GC-MS method achieved wide dynamic working ranges with good linearity (r2 ≥ 0.998) for all analytes. Limits of detection ranging between 4.35 and 7.82 ng L-1 were attained, with enrichment factors of between 34 and 57 and relative standard deviations (RSDs) for intra- and inter-day precision of ≤ 8.95% and ≤ 12.6%, respectively. Absolute recoveries were between 69.3% and 109%. The fully automated online EE-DPX-GC-MS approach was applied to industrial wastewaters and reservoir waters where good relative recoveries of PCBs of between 89.3% and 105% were obtained, with RSDs ≤ 11.6%.
Collapse
Affiliation(s)
- Sze Chieh Tan
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing #04-02, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Hian Kee Lee
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing #04-02, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
16
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
17
|
Li N, Zhao T, Du L, Zhang Z, Nian Q, Wang M. Fast and simple determination of estrogens in milk powders by magnetic solid-phase extraction using carbon nitride composites prior to HPLC. Anal Bioanal Chem 2020; 413:215-223. [PMID: 33068132 DOI: 10.1007/s00216-020-02993-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
A graphitic carbon nitride (g-C3N4/Fe3O4)-based magnetic solid-phase extraction (MSPE) approach was established for fast and simple analysis of estrogens in milk powders. The composites were characterized by X-ray diffractometer, scanning electron microscope, and Brunauer-Emmett-Teller surface area and pore size distribution analyzer. Compared with the bulk g-C3N4, g-C3N4/Fe3O4 gave a narrower distribution of mesopores and provided an enhanced surface area from 77.1 to 113.7 m2/g. Polar analytes of estrogens were selected as model compounds and the extraction of four estrogens was achieved in n-hexane using 15 mg of adsorbent within only 2 min. Possible extraction mechanism of g-C3N4/Fe3O4 for these estrogens was explored in terms of the polarity of the analytes and the adsorption performance of the adsorbent. The hydrophobicity and the hydrogen-bond interaction between the estrogens and g-C3N4 were responsible for the efficient adsorption. Combined with HPLC, MSPE with the prepared adsorbent gave the enhancement factors of 20 to 24 and the linear ranges of 2-200 μg/kg for 17β-estradiol and 17α-ethinylestradiol, 1.5-150 μg/kg for estrone, and 3-300 μg/kg for hexestrol. The detection limits and quantification limits for the estrogens in milk powders were 0.5-0.9 μg/kg and 1.5-3.0 μg/kg, respectively. The recoveries varied from 75.1 to 97.2%, with the intra-day and inter-day precisions ≤ 14.2%. Furthermore, the enrichment of the analytes and the clean-up of fat and protein interferences were achieved simultaneously with one-step g-C3N4-based MSPE. The present method was convenient, fast, and sensitive, and therefore could be successfully applied for the determination of estrogens in milk powders. Graphical abstract.
Collapse
Affiliation(s)
- Na Li
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Tengwen Zhao
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Li Du
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Ziyang Zhang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Qixun Nian
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China
| | - Manman Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
| |
Collapse
|
18
|
Wang X, Wang J, Du T, Kou H, Du X, Lu X. Zn (II)-imidazole derived metal azolate framework as an effective adsorbent for double coated solid-phase microextraction of sixteen polycyclic aromatic hydrocarbons. Talanta 2020; 214:120866. [DOI: 10.1016/j.talanta.2020.120866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
|
19
|
Qi Y, Wan M, Abd El-Aty AM, Li H, Cao L, She Y, Shao Y, Jin F, Wang S, Wang J. A "half" core-shell magnetic nanohybrid composed of zeolitic imidazolate framework and graphitic carbon nitride for magnetic solid-phase extraction of sulfonylurea herbicides from water samples followed by LC-MS/MS detection. Mikrochim Acta 2020; 187:279. [PMID: 32314246 DOI: 10.1007/s00604-020-04243-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
A "half" core-shell g-C3N4/Fe3O4@ZIF-8 nanohybrid, in which Fe3O4 and zeolite imidazolate framework-8 (ZIF-8) constructed the core-shell structure, was successfully fabricated via a versatile in situ growth strategy. This nanohybrid was employed for simultaneous magnetic solid-phase extraction (MSPE) of trace levels of fifteen target sulfonylurea herbicides (SUHs) in environmental water samples followed by LC-MS/MS detection. C3N4 nanosheets were first prepared by liquid exfoliation of bulk g-C3N4, after which Fe3O4 nanoparticles were uniformly deposited onto the surface of C3N4 nanosheets, and ZIF-8 nanoparticles were grown on the surface of g-C3N4/Fe3O4 by anchoring Zn2+ on g-C3N4/Fe3O4. Owing to the synergistic effect, the hybridization of C3N4 and ZIF-8 endowed the nanohybrid with higher multi-target adsorption ability for SUHs compared to pure C3N4 or ZIF-8. The separation as well as the enrichment processes were facilitated using Fe3O4 as a magnetic core. The influence of various parameters on MSPE efficiency, including adsorbent dosage, extraction time, solution pH, and desorption solvent and its volume, was investigated in detail. Under optimal conditions, the MSPE coupled with LC-MS/MS exhibited good linearity ranging from 0.5 to 100 μg L-1 with correlation coefficients (R2) ≥ 0.9919, high sensitivity with low limits of detection (LODs) of 0.005-0.141 μg L-1 and satisfactory recoveries of 67.4-105.5% with relative standard deviations (RSDs) < 9.8%. These results indicate that this method is reliable for the determination of SUHs in different matrices and the in situ growth strategy is a promising approach for constructing effective adsorbents. Graphical abstract Schematic representation of a "half" core-shell magnetic nanohybrid composed of zeolitic imidazolate framework (ZIF-8) and graphitic carbon nitride (g-C3N4) for magnetic solid-phase extraction (MSPE) of trace level determination of fifteen sulfonylurea herbicides (SUHs) in environmental water samples using LC-MS/MS detection.
Collapse
Affiliation(s)
- Yan Qi
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mengfei Wan
- College of Grain, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Hui Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Liping Cao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China
| | - Shanshan Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China.
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing, 100081, People's Republic of China.
| |
Collapse
|
20
|
Tan SC, Lee HK. Graphitic carbon nitride as sorbent for the emulsification-enhanced disposable pipette extraction of eight organochlorine pesticides prior to GC-MS analysis. Mikrochim Acta 2020; 187:129. [DOI: 10.1007/s00604-019-4107-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
|
21
|
Electrospun core-shell nanofibers as an adsorbent for on-line micro-solid phase extraction of monohydroxy derivatives of polycyclic aromatic hydrocarbons from human urine, and their quantitation by LC-MS. Mikrochim Acta 2019; 187:57. [DOI: 10.1007/s00604-019-4007-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
|