1
|
Moutcine A, Laghlimi C, Ziat Y, El Bahraoui S, Belkhanchi H, Jouaiti A. Advanced design of chemically modified electrodes for the electrochemical analysis of uric acid and xanthine. J Pharm Biomed Anal 2025; 253:116536. [PMID: 39476436 DOI: 10.1016/j.jpba.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 12/31/2024]
Abstract
This study reviews advances in chemical detection methods applied to the metabolic products known as uric acid (UA) and xanthine (XA), which are residues of purine metabolism, with XA being an important intermediate preceding UA. UA and XA play crucial roles in maintaining physiological homeostasis in organisms. Chemical modification of electrodes is a widely used method to address the issues of poor sensitivity and selectivity encountered with bare electrodes. This article reviews various materials commonly used to modify electrode surfaces for the detection of uric acid and xanthine, focusing on properties that enhance electrocatalytic activity. We highlight recent trends in detecting these compounds using electrochemical methods with microfabricated devices and explore cutting-edge modification techniques involving novel nanomaterials, carbon derivatives, metallic nanoparticles, and polymers. The review includes a comparative analysis of these materials, addressing their strengths, limitations, and recent advancements, such as in carbon-based materials and metal-organic frameworks (MOFs). Finally, we critically examine the challenges and future prospects of electrochemical detection of UA and XA in real samples, offering strategies to address these issues. The challenges associated with determination of UA and XA in real samples are also discussed.
Collapse
Affiliation(s)
- Abdelaziz Moutcine
- Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
| | - Charaf Laghlimi
- ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Younes Ziat
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Soumia El Bahraoui
- Université du Québec à Chicoutimi, Canada; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Hamza Belkhanchi
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Ahmed Jouaiti
- Laboratory of Sustainable Development, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
2
|
Guye ME, Appiah-Ntiamoah R, Dabaro MD, Kassahun SK, Kim H. Tailoring phases of ferrihydrite/α-Fe 2O 3@C nanocomposites using syringyl and guaiacyl-rich biomass-derived carbon nanodots for electrochemical application. Int J Biol Macromol 2024; 281:136285. [PMID: 39378923 DOI: 10.1016/j.ijbiomac.2024.136285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Biomass-derived carbon nanodots (CNDs) hold promise as effective reducing agents for metal oxide nanoparticles yet understanding the intricate interplay with CND structure remains challenging. This study explores the impact of lignin types, specifically syringyl (S), and guaiacyl (G) units in CNDs on metal oxide phases and their electrochemical activity toward dopamine oxidation. We design phases of ferrihydrite/α-Fe2O3@C nanocomposites, using hazelnut carbon nanodots (HS-CNDs (S-rich)) and beetroot carbon nanodots (BS-CNDs (G-rich)) via a one-pot hydrothermal technique. Our findings show S units in HS-CNDs promote α-FeOOH/α-Fe2O3@CHS, while G units in BS-CNDs favor α (β)-FeOOH/α-Fe2O3@CBS. In contrast to α(β)-FeOOH/α-Fe2O3@CBS, α-FeOOH/α-Fe2O3@CHS exhibits superior electrochemical performance in dopamine oxidation due to its larger electrochemical active surface area, higher absorbance capacity, and shortened electron transfer length. Moreover, α-FeOOH/α-Fe2O3@CHS nanocomposites demonstrate remarkable dopamine selectivity, achieving rapid detection response in 10 s with a low LOD of 4 nM within a broad linear range (0.05-0.3 μM), demonstrating impressive reproducibility (97.5 %), stability (96.4 %), and works in real-time human urine detection with a recovery rate of ranging from 94.57 % and 102.2 %. Therefore, the utilization of biomass-derived CNDs, particularly S and G units-rich CNDs, in tailoring the phases of ferrihydrite/α-Fe2O3@C nanocomposites for electrochemical dopamine detection is promising.
Collapse
Affiliation(s)
- Meseret Ethiopia Guye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Mintesinot Dessalegn Dabaro
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Shimelis Kebede Kassahun
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa 1000, Ethiopia
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
3
|
Kamble BB, Sharma KK, Sonawane KD, Tayade SN, Grammatikos S, Reddy YVM, Reddy SL, Shin JH, Park JP. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv Colloid Interface Sci 2024; 333:103284. [PMID: 39226798 DOI: 10.1016/j.cis.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
Collapse
Affiliation(s)
- Bhagyashri B Kamble
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| | - Kiran Kumar Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Sotirios Grammatikos
- ASEMlab - Laboratory of Advanced and Sustainable Engineering Materials, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
| | - Y Veera Manohara Reddy
- Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway; Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110026, India.
| | - S Lokeswara Reddy
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, TN, India
| | - Jae Hwan Shin
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea.
| |
Collapse
|
4
|
Chen R, Zhou Y, Li X. Fe 3 C/nanocarbon-Enabled Lithium Dendrite Mitigation in Lithium-Sulfur batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308261. [PMID: 38037693 DOI: 10.1002/smll.202308261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Indexed: 12/02/2023]
Abstract
Lithium dendrite-induced short circuits and material loss are two major obstacles to the commercialization of lithium-sulfur (Li-S) batteries. Here, a nanocarbon composite consisting of cotton-derived Fe3 C-encapsulated multiwalled carbon nanotubes (Fe3 C-MWCNTs) and graphene effectively traps polysulfides to suppress lithium dendrite growth is reported. Machine learning combined with molecular dynamics (MD) simulations unveils a new polysulfide-induced lithium dendrite formation mechanism: the migration of polysulfides away from the anode drags out lithium protrusions through localized lattice distortion of the lithium anode and traps lithium ions in the surrounding electrolyte, leading to lithium dendrite formation. The Li-S battery, constructed using the composite of cotton-derived Fe3 C-MWCNTs and graphene that serves as both the sulfur host and the anode interlayer, exhibits exceptional cycling stability, impressive capacity retention, and effective mitigation of lithium dendrite formation. The findings offer valuable strategies to prevent lithium dendrite formation and enhance understanding of lithium dendrite growth in Li-S batteries.
Collapse
Affiliation(s)
- Ruoxi Chen
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA, 22904-4746, USA
| | - Yucheng Zhou
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA, 22904-4746, USA
| | - Xiaodong Li
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA, 22904-4746, USA
| |
Collapse
|
5
|
Cobalt nanoparticles decorated bamboo-like N-doped carbon nanotube as nanozyme sensor for efficient biosensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abdelwahab A, Farghali AA, Enaiet Allah A. Synergy between iron oxide sites and nitrogen-doped carbon xerogel/diamond matrix for boosting the oxygen reduction reaction. NANOSCALE ADVANCES 2022; 4:837-848. [PMID: 36131831 PMCID: PMC9418389 DOI: 10.1039/d1na00776a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 06/15/2023]
Abstract
The innovative design and facile synthesis of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR) are crucial in the field of fuel cells. Herein, the facile synthesis of an iron oxide@nitrogen-doped carbon diamond (FeO x @NCD) composite via an effective pyrolysis strategy is reported. The properties of this electrocatalyst, including a high density of active sites, nitrogen doping, accessible surface area, well dispersed pyramidal morphology of the iron oxide, and the porous structure of the carbon matrix, promote a highly active oxygen reduction reaction (ORR) performance. The electrocatalyst exhibits outstanding stability, with a half-wave potential of 0.692 V in alkaline solution (0.1 M KOH), as well as a limiting current density of -31.5 mA cm-2 at 0.17 V vs. RHE. This study highlights the benefits of hybridizing sp2 carbon xerogel and sp3 diamond carbon allotropes with iron oxide to boost the ORR activity. The proposed strategy opens up an avenue for designing advanced carbon-supported metal oxide catalysts that exhibit excellent electrocatalytic performance.
Collapse
Affiliation(s)
- Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abeer Enaiet Allah
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
8
|
Sakthivel A, Chandrasekaran A, Soosaimanickam C, Li CZ, Alwarappan S. WS 2 quantum dots harvesting via sonication assisted liquid exfoliation for the electrochemical sensing of xanthine. NEW J CHEM 2022. [DOI: 10.1039/d2nj03446h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
WS2 quantum dots (QDs) were prepared by sonication assisted liquid exfoliation in dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO).
Collapse
Affiliation(s)
- Arunkumar Sakthivel
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamilnadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Anitha Chandrasekaran
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamilnadu, India
| | | | - Chen-Zhong Li
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamilnadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
9
|
Wang J, Khorasani Motlagh M, Noroozifar M, Kerman K, Kraatz H. Ferrocene‐Functionalized Multiwalled Carbon Nanotubes for the Simultaneous Determination of Dopamine, Uric Acid, and Xanthine. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junyan Wang
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Mozhgan Khorasani Motlagh
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Meissam Noroozifar
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
| | - Kagan Kerman
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St., Toronto M5S 3H6 Ontario Canada
| | - Heinz‐Bernhard Kraatz
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail, Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St., Toronto M5S 3H6 Ontario Canada
| |
Collapse
|
10
|
A versatile sensing platform based on FeOOH nanorod/expanded graphite for electrochemical quantification of bioanalytes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Vinoth S, Shalini Devi K, Pandikumar A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116274] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Guan H, Peng B, Gong D, Han B, Zhang N. Electrochemical Enhanced Detection of Uric Acid Based on Peroxidase‐like Activity of Fe
3
O
4
@Au. ELECTROANAL 2021. [DOI: 10.1002/elan.202100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Huanan Guan
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Bo Peng
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Dezhuang Gong
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Bolin Han
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| | - Na Zhang
- College of Food Engineering Harbin University of Commerce No.1, Xuehai Road Harbin 150028 People's Republic of China
| |
Collapse
|
14
|
Prasert K, Sutthibutpong T. Unveiling the Fundamental Mechanisms of Graphene Oxide Selectivity on the Ascorbic Acid, Dopamine, and Uric Acid by Density Functional Theory Calculations and Charge Population Analysis. SENSORS (BASEL, SWITZERLAND) 2021; 21:2773. [PMID: 33920002 PMCID: PMC8071017 DOI: 10.3390/s21082773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/05/2023]
Abstract
The selectivity of electrochemical sensors to ascorbic acid (AA), dopamine (DA), and uric acid (UA) remains an open challenge in the field of biosensing. In this study, the selective mechanisms for detecting AA, DA, and UA molecules on the graphene and graphene oxide substrates were illustrated through the charge population analysis from the density functional theory (DFT) calculation results. Our substrate models contained the 1:10 oxygen per carbon ratio of reduced graphene oxide, and the functionalized configurations were selected according to the formation energy. Geometry optimizations were performed for the AA, DA, and UA on the pristine graphene, epoxy-functionalized graphene, and hydroxyl-functionalized graphene at the DFT level with vdW-DF2 corrections. From the calculations, AA was bound to both epoxy and hydroxyl-functionalized GO with relatively low adsorption energy, while DA was adsorbed stronger to the electronegative epoxy groups. The strongest adsorption of UA to both functional groups corresponded to the largest amount of electron transfer through the pi orbitals. Local electron loss created local electric fields that opposed the electron transfer during an oxidation reaction. Our analysis agreed with the results from previous experimental studies and provided insight into other electrode modifications for electrochemical sensing.
Collapse
Affiliation(s)
- Kittiya Prasert
- Theoretical and Computational Physics Group, Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand;
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Thana Sutthibutpong
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| |
Collapse
|
15
|
Zhang Y, Poli L, Garratt E, Foster S, Roch A. Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:279-287. [PMID: 36654673 PMCID: PMC9586241 DOI: 10.1089/3dp.2020.0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This work details a polyolefin-elastomer-based binder system to prepare fused filament fabrication (FFF) filaments and print cores for coils for electrical engines. The processability, homogeneity, and thermal properties of the polyolefin-elastomer-based filaments are explored. A two-step debinding and sintering process was established for manufacturing dense iron parts. Results indicate the developed filaments possess superior printing and sintering (at 900°C) performance, yielding only 20% weight loss by polymer decomposition and 14 vol.% shrinkage. This indicates that the FFF technique potentially enables printing of innovative electric motor designs. The designed FFF filaments could be loaded with 80 wt.% Fe powder while keeping a decent melt-viscosity for the printing process. Due to the high metal loading, dense iron parts could be sintered without bending or deformation.
Collapse
Affiliation(s)
- Yaozhong Zhang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Lucrezia Poli
- Department of 3D Printing, Fraunhofer Center for Coatings and Diamond Technologies, East Lansing, Michigan, USA
| | - Elias Garratt
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, Michigan, USA
| | - Shanelle Foster
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Aljoscha Roch
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, Michigan, USA
- Address correspondence to: Aljoscha Roch, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
16
|
Cui Y, Li J, Liu M, Tong H, Liu Z, Hu J, Qian D. Convenient synthesis of three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide for non-enzymatic electrochemical sensing of xanthine. Mikrochim Acta 2020; 187:589. [PMID: 33033940 DOI: 10.1007/s00604-020-04570-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 11/28/2022]
Abstract
A novel hybrid with three-dimensional (3D) hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide (CuS@Pd/N-RGO) has been prepared by a facile wet-chemical route without utilizing any template molecules and surfactants. The characterization results reveal that the 3D flower-like structure of CuS "core" is composed of interconnecting nanoplates, which is conductive to the loading of Pd nanoparticles' "shell" and results in the robust interaction between the core and shell for the formation of CuS@Pd cauliflowers. Anchoring such appealing CuS@Pd cauliflowers on the two-dimensional N-RGO can efficaciously inhibit the aggregation of CuS@Pd cauliflowers and accelerate the kinetics of xanthine oxidation. Benefiting from the multi-functional properties and unique morphology, the sensor constructed by CuS@Pd/N-RGO exhibits excellent performance for non-enzymatic detection of xanthine including a wide detection range of 0.7-200.0 μM (0.94 V vs. SCE), a low detection limit of 28 nM (S/N = 3), high reproducibility (relative standard deviation (RSD) = 4.1%), and commendable stability (retained 90% of the initial electrochemical responses after storage for 30 days), which is amongst the best of various electrochemical sensors reported for xanthine assays till date. Reliable and satisfying recoveries (95-105%, RSD ≤ 4.1%) are achieved for xanthine detection in real samples. The inspiring results make the uniquely structural CuS@Pd/N-RGO greatly promising in non-enzymatic electrochemical sensing applications. Graphical abstract A high-performance non-enzymatic xanthine sensor has been constructed by the three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide.
Collapse
Affiliation(s)
- Ying Cui
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, People's Republic of China
| | - Junhua Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, People's Republic of China
- Hunan Provincial Key Laboratory of Chemical Power Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Mengqin Liu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, People's Republic of China
| | - Haixia Tong
- Institute of Chemical and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Zeng Liu
- Cangzhou Dahua Group Co., Ltd, Cangzhou, 061000, People's Republic of China
| | - Jiawen Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Dong Qian
- Hunan Provincial Key Laboratory of Chemical Power Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Phthalocyanines are aromatic or macrocyclic organic compounds and attract great attention due to their numerous properties. They have many high-tech applications in different areas of the industry such as dyestuffs, thermal printing screens, photovoltaic solar cells, membrane catalytic reactors, semiconductor materials and gas sensors. In the last decade, electrochemical sensor studies have accelerated with the catalytic lighting. It plays a dominant role in the development and implementation of new generation sensors. The aim of this study is to review the electrochemical methods based on electrode modification with phthalocyanines and to shed light on new application areas of phthalocyanines. The focal point was based on the sensor applications of phthalocyanines in the determination of drugs, pesticides, organic materials and metals etc. by electrochemical methods. Experimental conditions and some validation parameters of the sensor applications such as metal phthalocyanine types, indicator electrodes, selectivity, working ranges, detection limits, and analytical applications were discussed. Consequently, this is the first review dealing with the applications of phthalocyanines in electrochemical sensors for the sensitive determination of analytes in a variety of matrices.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hulya Silah
- Department of Chemistry, Faculty of Art & Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Monodispersed gold nanoparticles entrapped in ordered mesoporous carbon/silica nanocomposites as xanthine oxidase mimic for electrochemical sensing of xanthine. Mikrochim Acta 2020; 187:543. [PMID: 32880716 DOI: 10.1007/s00604-020-04494-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Monodispersed Au nanoparticles in ordered mesoporous carbon/silica (Au/OMCS) nanocomposites were prepared by the solvent evaporation induced self-assembly. Au/OMCS nanocomposites were characterized through XRD, BET, and TEM. The obtained nanocomposites exhibit uniform mesopores with the size of 18 ± 2 nm. And ultrafine Au nanoparticles with the size of 3~7 nm are well dispersed in the cavities. An ultrasensitive nanoenzyme sensor was fabricated based on a Au/OMCS-modified electrode. The Au/OMCS-modified electrode displays high xanthine oxidase-like catalytic activity evaluated through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DPV response currents are linearly dependent on concentrations of xanthine (Xa) in the range 0.10-20 μM, along with a high sensitivity of 6.84 μA μM-1 cm-2 and very low detection limit of 0.006 μM (S/N = 3) under the optimal working potential of 0.64 V vs. SCE. Interference experiments show that the nanoenzyme sensor has no obvious responses to most potentially interfering species at a potential of 0.64 V. The fabricated sensor has been applied to the determination of Xa in spiked urine samples with recoveries ranging from 98.26 to 101.4%. Graphical abstract.
Collapse
|
19
|
Electrochemical sensor based on dual-template molecularly imprinted polymer and nanoporous gold leaf modified electrode for simultaneous determination of dopamine and uric acid. Mikrochim Acta 2020; 187:496. [PMID: 32803450 DOI: 10.1007/s00604-020-04413-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
A novel electrochemical sensor based on dual-template molecularly imprinted polymer (MIP) with nanoporous gold leaf (NPGL) was established for the simultaneous determination of dopamine (DA) and uric acid (UA). NPGL acts as an enlarged loading platform to enhance sensing capacity, and the MIP layer was synthesized in situ in the presence of monomer and dual templates (DA and UA) to provide specific recognition. Under the optimal conditions, the sensor shows a good linear range of 2.0~180 μM for DA at a working potential of 0.15 V (vs. Ag/AgCl) and 5.0~160 μM for UA at 0.35 V (vs. Ag/AgCl), with the respective detection limit of 0.3 μM and 0.4 μM (S/N = 3). Good selectivity of the sensor to its dual templates was confirmed as the sensing signals are significantly different between templates and interfering species. The responses maintained higher than 96% of the initial values after 30-day storage, and the day-to-day relative standard deviation is less than 3.0%. Real sample simultaneous determination of DA and UA was conducted with bovine serum, and the results were in good agreement with those from high-performance liquid chromatography. It can be concluded that this work offers a reliable, facile, fast, and cost-effective method of simultaneous quantification of two or more chem-/bio-molecules. Graphical abstract.
Collapse
|
20
|
Arroquia A, Acosta I, Armada MPG. Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110602. [DOI: 10.1016/j.msec.2019.110602] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
|
21
|
A sensitive method to determine dopamine in the presence of uric acid based on In 2O 3 nanosheet arrays grown on 3D graphene. Mikrochim Acta 2020; 187:218. [PMID: 32166530 DOI: 10.1007/s00604-020-4199-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
A nonenzymatic voltammetric assay for dopamine (DA) was developed based on the combination of three-dimensional graphene (3D Gr) and indium oxide nanosheet arrays (In2O3 NSAs). 3D Gr was prepared by chemical vapor deposition (CVD), and In2O3 NSAs were grown on its surface by hydrothermal synthesis. The results show that 3D Gr maintains a good porous structure (200 μm), and the pore size of In2O3 NSAs is 0.50 μm. Differential pulse voltammetry (DPV) is mainly used to determine the electrochemical properties of In2O3 NSAs/3D Gr. It possesses a sensitivity of 2.69 μA·μM-1·cm-2 towards DA (5-60 μM) at 0.14 V, and the detection limit (LOD) is 0.10 μM (S/N = 3). The recoveries obtained for spiked samples in the real sample detection is 105 (± 8)%. Graphical abstractSchematic representation of DA sensitive detection by growing In2O3 nanosheets arrays on three-dimentional graphene modified ITO.
Collapse
|
22
|
Zhang L, Liu C, Wang Q, Wang X, Wang S. Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C 3N 4) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid. Mikrochim Acta 2020; 187:149. [PMID: 31989275 DOI: 10.1007/s00604-019-4081-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/10/2019] [Indexed: 01/24/2023]
Abstract
Two-dimensional porous graphitic carbon nitride (g-C3N4) nanosheets were synthesized by low-cost and direct thermal oxidation. Porous g-C3N4 assembled with graphene oxide (GO) was immobilized on a glassy carbon electrode. The sensor was applied to simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) with high performance. Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical and electrocatalytic properties. The results indicate that the electrochemical sensor possesses high specific surface area, hierarchical pore structure and excellent signal response to AA, DA and UA. The oxidation potentials are well separated at around 0.15, 0.34 and 0.46 V for AA, DA and UA respectively. The determination limits for AA, DA and UA are 3.7 μM, 0.07 μM and 0.43 μM, respectively. The sensor was applied to tracking the three analytes in spiked serum samples with recovery 95.1~105.5% and relation standard deviations of less than 5%. Graphical abstract Schematic representation of porous graphitic carbon nitride nanosheet embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid.
Collapse
Affiliation(s)
- Lihui Zhang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, People's Republic of China
| | - Candi Liu
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, People's Republic of China
| | - Qiwen Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, People's Republic of China
| | - Xiaohong Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, People's Republic of China
| | - Shengtian Wang
- Faculty of Chemistry, Northeast Normal University, Renmin Street 5268, Changchun, 130024, People's Republic of China.
| |
Collapse
|