1
|
Huang S, Zhang W, Li B, Li G, Ni W, Fang Y, Xiao Q. An innovative red-emitting nickel-doped carbon dot for simultaneous detection of Fe(III) and pyrophosphate ions, coupled with synergistic photothermal/photodynamic cancer therapy. Anal Chim Acta 2025; 1360:344138. [PMID: 40409908 DOI: 10.1016/j.aca.2025.344138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Multifunctional carbon dots (CDs) have gained prominence in biosensing, cell imaging, and nanomedicine due to their tunable fluorescence, excellent biocompatibility, and surface functionalizability. However, blue/green-emitting CDs suffer from limited tissue penetration and autofluorescence interference. Iron ions (Fe3+) and pyrophosphate ions (PPi) are crucial biomarkers in various biological processes, with deviations in their concentrations linked to various diseases including cancer. Therefore, the development of highly sensitive and selective sensors for Fe3+ and PPi detection is vital. To address these challenges, we present red-emitting nickel-doped carbon dots (Ni-CDs) synthesized via a simple one-pot hydrothermal method, offering advantages for deep-tissue imaging and therapeutics. RESULTS Herein, we report a one-pot hydrothermal synthesis of nickel-doped CDs (Ni-CDs) that exhibit both paramagnetic responsiveness and red fluorescence (λex/λem = 475 nm/630 nm). Using citric acid and p-phenylenediamine as raw materials, we successfully fabricated Ni-CDs with high fluorescence quantum yield of 24 % and uniform size distribution (5.13 ± 0.04 nm). The Ni-CDs serve as an "on-off-on" fluorescent sensor for simultaneous detection of Fe3+ and PPi with low detection limits of 0.051 μM and 0.31 μM, respectively. They demonstrate high sensitivity and selectivity in detecting Fe3+ in real water samples and PPi in human urine and blood samples. Furthermore, Ni-CDs exhibit good biocompatibility and enable real-time visualization of intracellular Fe3+ and PPi dynamics in cancer cells. Under 808 nm laser irradiation (1.5 W/cm2), Ni-CDs achieve high photothermal conversion efficiency of 59.1 % and generate cytotoxic reactive oxygen species, leading to synergistic photothermal/photodynamic cancer cell apoptosis of 98.8 %. SIGNIFICANCE This "two-in-one" theranostic platform based on Ni-CDs overcomes traditional limitations of conventional blue/green-emitting CDs, offering deep-tissue compatibility and minimized background interference, and multifunctional integration. Our methodology provides a generalized design strategy for wavelength-engineered CD hybrids, enabling innovative applications in point-of-care diagnostics and precision oncology. The multifunctional properties of Ni-CDs highlight their potential to revolutionize biomedical research and clinical practice.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| | - Wenqian Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Guixin Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Wei Ni
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Yi Fang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
2
|
Guo J, Wu J, Yang J, He J. A colorimetric and electrochemical dual-mode system for identifying and detecting varied Cr species based on fungus-like porous CoS nanosensor. Talanta 2025; 285:127379. [PMID: 39681056 DOI: 10.1016/j.talanta.2024.127379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
The differentiation of valence states plays a crucial role in determining the toxicity of chromium (Cr) in environmental samples. In this work, two modes of colorimetric and electrochemical analytical methods based on a fungus like porous CoS (FP CoS) nanosensor were developed for rapid, specific, and portable detection trace/ultra-trace chromium species (Cr(VI) and Cr(III)). The FP CoS exhibited peroxidase activity as a nanozyme for the colorimetric detection of Cr(VI), catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidation product (oxTMB) in the presence of Cr(VI) instead of unstable H2O2 as an oxidizer at room temperature over existing methods. Based on the promotion of colorimetric reaction by increasing in Cr(VI) concentration, an effective colorimetric detection of Cr(VI) method was established with a detection limit (LOD) low to 3.93 μg L-1 and unique selectivity for Cr(VI) over 21 interfering ions (containing 15 metal ions and 6 anions). Innovatively, Cr(VI) could be reduced to Cr(III) without TMB, then selectively enriched by redox reaction with FP CoS. Hence, Cr (III) can be selectively and effectively enriched by FP CoS applying voltage, and then detected using cyclic voltammetry, with a lower LOD of 0.116 μg L-1 and high sensitivity ignoring background interferences. By integrating the dual-mode detection channel, the FP CoS nanosensor offers a convenient and flexible method for simultaneously determining Cr(VI), Cr(III), and total chromium in diverse samples.
Collapse
Affiliation(s)
- Jianrong Guo
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Juan Wu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Li YF, Zhang X, Lu Q, Cao JZ, Gao S, Liu QZ, Cai XX, Zhao H. Cellulose-based yellow-green emitting carbon dots with large Stokes shift as effective "turn off-on" fluorescence platforms for Cr (VI) and AA dual efficacy detection. Anal Chim Acta 2024; 1324:343102. [PMID: 39218581 DOI: 10.1016/j.aca.2024.343102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hexavalent chromium (Cr (VI)) is highly carcinogenic to humans. Ascorbic acid (AA) deficiency can be hazardous to health. And the dual-effect fluorescence detection of them is an important research topic. Carbon dots (CDs) based on cellulose are excellent candidates for the fluorescence probes due to their low cost and environmental friendliness. But most of them exhibit shortwave emission, small Stokes shift and poor fluorescence performance, all of which limit their use. Therefore, there is an urgent need for cellulose CDs with longer emission wavelengths and larger Stokes shifts in dual-effect fluorescence detection of Cr (VI) and AA. RESULTS Under optimal conditions (180 °C, 12 h), we prepared cellulose-based nitrogen-doped carbon dots (N-CDs) by a simple one-step hydrothermal process, which display longer emission wavelengths (ex: 370 nm, em: 510 nm), larger Stokes shifts (140 nm) and high fluorescence quantum yield (QY: 19.27 %). The continuous "turn-off" and "turn-off-on" fluorescence detection platforms were constructed based on the internal filtering effect (IFE) between Cr6+ and N-CDs, and Cr6+ reduced to Cr3+ by AA at pH = 6. The platform has been successfully simultaneous detect Cr (VI) and AA with a wide range of 0.01-40 μM and 0.1-100 μM. And the lowest limits of detection (LOD) are 0.0303 μM and 0.072 μM, respectively. In the presence of some other metals, non-metal ions and water-soluble acids in the fruits, this fluorescent platform can demonstrate a high level of interference immunity. SIGNIFICANCE AND NOVELTY This represents the first yellow-green cellulose-based N-CDs with large Stokes shift for dual-effect detection of Cr (VI) and AA in real water samples and fresh fruits. The fluorescence detection platform has the advantage of low volume detection. Less than 2 mL of sample is required for testing and results are available in <5 min. This method is rare and supply a novel idea for the quantitative monitoring of Cr (VI) and AA.
Collapse
Affiliation(s)
- Yan-Feng Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xian Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Qian Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Jing-Zhen Cao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Sheng Gao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qin-Ze Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xiao-Xia Cai
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Hui Zhao
- School of Chemistry Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Yin HY, Li Q, Liu TH, Liu J, Qin YT, Wang Y, Zhai WL, Cai XB, Wang ZG, Zhu W. Multifunctional In-MOF and Its S-Scheme Heterojunction toward Pollutant Decontamination via Fluorescence Detection, Physical Adsorption, and Photocatalytic REDOX. Inorg Chem 2024; 63:1816-1827. [PMID: 38232749 DOI: 10.1021/acs.inorgchem.3c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A novel doubly interpenetrated indium-organic framework of 1 has been assembled by In3+ ions and highly conjugated biquinoline carboxylate-based bitopic connectors (H2L). The isolated 1 exhibits an anionic framework possessing channel-type apertures repleted with exposed quinoline N atoms and carboxyl O atoms. Owing to the unique architecture, 1 displays a durable photoluminescence effect and fluorescence quenching sensing toward CrO42-, Cr2O72-, and Cu2+ ions with reliable selectivity and anti-interference properties, fairly high detection sensitivity, and rather low detection limits. Ligand-to-ligand charge transition (LLCT) was identified as the essential cause of luminescence by modeling the ground state and excited states of 1 using DFT and TD-DFT. In addition, the negatively charged framework has the ability to rapidly capture single cationic MB, BR14, or BY24 and their mixture, including the talent to trap MB from the (MB + MO) system with high selectivity. Moreover, intrinsic light absorption capacity and band structure feature endow 1 with effective photocatalytic decomposition ability toward reactive dyes RR2 and RB13 under ultraviolet light. Notably, after further polishing the band structure state of 1 by constructing the S-scheme heterojunction of In2S3/1, highly efficient photocatalytic detoxification of Cr(VI) and degradation of reactive dyes have been fully achieved under visible light. This finding may open a new avenue for designing novel multifunctional MOF-based platforms to address some intractable environmental issues, i.e., detection of heavy metal ions, physical capture of pony-sized dyes, and photochemical decontamination of ultrastubborn reactive dyes and highly toxic Cr(VI) ions from water.
Collapse
Affiliation(s)
- Huan-Yu Yin
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Qing Li
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
- Key Laboratory of Functional Textile Materials and Products, Ministry of Education, School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Tian-Hui Liu
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Jie Liu
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Ying-Tong Qin
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Yang Wang
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Wei-Li Zhai
- Key Laboratory of Functional Textile Materials and Products, Ministry of Education, School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Xin-Bin Cai
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Zhi-Gang Wang
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| | - Wei Zhu
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, P. R. China
| |
Collapse
|
5
|
Ahmad N, Muhammad N, Chen H, Wang J, Wei C, Khan M, Yang R. Rational design of nitrogen (N), boron (B), and phosphorous (P) tri-doped carbon nano-spheres as advanced anode materials for sodium-ion batteries with an ultra-long lifespan. J Colloid Interface Sci 2023; 650:1725-1735. [PMID: 37506414 DOI: 10.1016/j.jcis.2023.07.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Developing improved anode materials is critical to the performance enhancement and the lifespan prolonging of sodium-ion batteries (SIBs). In this context, carbon-based nanostructures have emerged as a promising candidate. In this work, we have synthesized N, B, and P tri-doped carbon (NBPC) spheres using a one-step carbonization method. The as-prepared NBPC exhibits exceptional properties, including an expanded layer space, sufficient structural defects, and enhanced electrical conductivity. These characteristics synergistically contribute to the remarkable rate capability and ultra-long lifespan when NBPC is employed as an anode material for SIBs. The as-prepared NBPC demonstrates a reversible capacity of 290.6 mAh/g at 0.05 A/g, with a capacity retention of 98.4% after 800 cycles. Furthermore, NBPC exhibits an impressively ultra-long cycle life of 2400 cycles at 1.0 A/g with a reversible capacity of 140.2 mAh/g. First principle calculations confirm that the introduction of N, B, and P heteroatoms in carbon enhances the binding strength of sodium ions within NBPC. This work presents a novel approach for fabricating advanced anode materials, enabling the development of long-life SIBs for practical applications.
Collapse
Affiliation(s)
- Nazir Ahmad
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China; Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei, Anhui 230026, China
| | - Nisar Muhammad
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong Chen
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
| | - Ji Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
| | - Chaohui Wei
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Majid Khan
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China.
| |
Collapse
|
6
|
Liu Z, Shan C, Wei G, Wen J, Jiang L, Hu G, Fang Z, Tang T, Li M. A Novel Non-Metallic Photocatalyst: Phosphorus-Doped Sulfur Quantum Dots. Molecules 2023; 28:molecules28083637. [PMID: 37110871 PMCID: PMC10141183 DOI: 10.3390/molecules28083637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, a novel phosphorus-doped sulfur quantum dots (P-SQDs) material was prepared using a simple hydrothermal method. P-SQDs have a narrow particle size distribution as well as an excellent electron transfer rate and optical properties. Compositing P-SQDs with graphitic carbon nitride (g-C3N4) can be used for photocatalytic degradation of organic dyes under visible light. More active sites, a narrower band gap, and stronger photocurrent are obtained after introducing P-SQDs into g-C3N4, thus promoting its photocatalytic efficiency by as much as 3.9 times. The excellent photocatalytic activity and reusability of P-SQDs/g-C3N4 are prospective signs of its photocatalytic application under visible light.
Collapse
Affiliation(s)
- Ziyi Liu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Chuanfu Shan
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guiyu Wei
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianfeng Wen
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Li Jiang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guanghui Hu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Zhijie Fang
- School of Electronics Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Tao Tang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
7
|
Azami M, Wei J, Valizadehderakhshan M, Jayapalan A, Ayodele OO, Nowlin K. Effect of Doping Heteroatoms on the Optical Behaviors and Radical Scavenging Properties of Carbon Nanodots. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:7360-7370. [PMID: 37113457 PMCID: PMC10123816 DOI: 10.1021/acs.jpcc.3c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Heteroatom doping is regarded as a promising method for controlling the optoelectronic properties of carbon nanodots (CNDs), notably their fluorescence and antioxidation activities. In this study, phosphorous (P) and boron (B) are doped at different quantities in the CNDs' structures to investigate their effects on the optical and antioxidation properties. Both the dopants can enhance light absorption and fluorescence, yet via different approaches. After doping, the UV-vis absorption of high P%-CNDs demonstrated a slight blue shift (348-345 nm), while the high B%-CNDs showed a minor red shift (348-351 nm), respectively. The fluorescence emission wavelength of doped CNDs changes marginally while the intensity increases significantly. Structural and composition characterizations show elevated levels of C=O on the surface of high P%-CND compared to low P%-CNDs. In B-doped CNDs, more NO3 - functional groups and O-C=O bonds and fewer C-C bonds form at the surface of high B%-CNDs compared to the low B%-CNDs. A radical scavenging study using 2,2-diphenyl-1-picrylhydrazyl (DPPH) was carried out for all CNDs. It was found that the high B%-CNDs exhibited the highest scavenging capacity. The effects of the atomic properties of dopants and the resulting structures of CNDs, including atomic radius, electronegativity, and bond lengths with carbon, on the optoelectronic property and antioxidative reactions of CNDs are comprehensively discussed. It suggests that the effect of P-doping has a major impact on the carbogenic core structure of the CNDs, while the B-doping mainly impacts the surface functionalities.
Collapse
Affiliation(s)
- Mahsa Azami
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Jianjun Wei
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Mehrab Valizadehderakhshan
- Joint
School of Nanoscience and Nanoengineering (JSNN), North Carolina Agricultural and Technical State University, Greensboro, North Carolina 27401, United States
| | - Anitha Jayapalan
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Olubunmi O Ayodele
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Kyle Nowlin
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
8
|
Inner-filter Effect Induced Fluorescence Quenching of Carbon Dots for Cr(VI) Detection with High Sensitivity. J Fluoresc 2022; 32:2343-2350. [PMID: 36156168 DOI: 10.1007/s10895-022-03028-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Carbon dots (CDs) were used to develop a sensitive sensing technique for detecting Cr(VI). CDs were made using a hydrothermal technique from citric acid and glutamic acid. These prepared CDs emitted blue fluorescence under excitation of 350 nm (λem = 420 nm), and the fluorescence quantum yield was 48.41%. Transmission electron microscope was used to examine the morphology of the CDs, which had an average size of 2.21 ± 0.39 nm. The elementary composition and bonding structure of the CDs were conducted by XPS and FT-IR spectrum. Cr(VI) quenched the fluorescence of CDs through a static quenching effect and an inner filter effect, allowing Cr(VI) to be detected quantitatively. This approach was used to detect Cr(VI) in two samples of water, with the findings demonstrating that it is reliable and accurate. The fluorescence intensity change was linearly related to the concentration of Cr(VI) in the range from 0.5 to 400 μM, with the detection limit being 0.10 μM. This approach has the virtues of wide detection range, low cost and fast response. The strategy has a great application prospect for detecting Cr(VI) in practical samples.
Collapse
|
9
|
Mei X, Wang D, Wang S, Li J, Dong C. Synthesis of intrinsic dual-emission type N,S-doped carbon dots for ratiometric fluorescence detection of Cr (VI) and application in cellular imaging. Anal Bioanal Chem 2022; 414:7253-7263. [PMID: 35980424 DOI: 10.1007/s00216-022-04277-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
In this paper, intrinsic dual-emission fluorescent carbon dots (CDs) doped with N and S atoms have been firstly fabricated. The characterization results show that CDs are successfully synthesized with two separate fluorescence emissions at 468 nm and 628 nm, respectively. The strong and selective interaction of Cr (VI) ions with CDs lead to obvious fluorescence decrease of CDs at 468 nm, which is caused by a mixed quenching mechanism. At the same time, the fluorescence at 628 nm increase. Interestingly, the CDs solution show obvious color change under the daylight and UV light, so visualization detection of Cr (VI) can be realized in water samples. Based on the data of the emission intensity ratios of F468/F628, Cr (VI) can be detected from 3.8 to 38.9 μM combined with the linear correlation coefficient of 0.998, and the lowest detection concentration is 47.2 nM. The platform is satisfactorily applied to the detection of Cr (VI) ions in water samples. In addition, the CDs could be applied as fluorescent probes for cell imaging with dual fluorescent emission.
Collapse
Affiliation(s)
- Xiping Mei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Dongxiu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Songbai Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Junfen Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
10
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Huang S, Yao J, Ning G, Li B, Mu P, Xiao Q. Ultrasensitive ratiometric fluorescent probes for Hg( ii) and trypsin activity based on carbon dots and metalloporphyrin via a target recycling amplification strategy. Analyst 2022; 147:1457-1466. [DOI: 10.1039/d1an02287c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ultrasensitive ratiometric fluorescent probe was developed for Hg(ii) and trypsin based on CDs and TPPS via a target recycling amplification strategy. The detection limits of Hg2+ and trypsin were 0.086 nM and 0.013 ng mL−1.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Jiandong Yao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
12
|
Laddha H, Yadav P, Jain Y, Sharma M, Reza M, Agarwal M, Gupta R. One-pot microwave-assisted synthesis of blue emissive multifunctional N-S-P co-doped carbon dots as a nanoprobe for sequential detection of Cr(VI) and ascorbic acid in real samples, fluorescent ink and logic gate operation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Liao S, Ding Z, Wang S, Tan F, Ge Y, Cui Y, Tan N, Wang H. Fluorescent nitrogen-doped carbon dots for high selective detecting p-nitrophenol through FRET mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119897. [PMID: 33989974 DOI: 10.1016/j.saa.2021.119897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
A facile, friendly and one-step hydrothermal protocol was used to synthesize nitrogen-doped carbon dots (N-CDs) by utilizing hexamethylenetetramine and ethanediamine as the carbon and nitrogen sources. It demonstrated good water solubility and fluorescence properties were stable, whether in acidic or alkaline. Quantum yield (QY) of N-CDs was 8.3% at an excitation wavelength of 325 nm with maximum emission at 425 nm. The fluorescence of N-CDs achieved very high fluorescence quenching of 60% in the detection of p-nitrophenol (p-NP) in aqueous medium via fluorescence resonance energy transfer (FRET) mechanisms. Under optimum conditions, fluorescence probs of N-CDs had strong selectivity to p-NP, and the fluorescence intensity was linearly proportional to p-NP concentration from 0.5 to 70.0 μM with a detection limit of 0.201 μM. The corresponding cell experiments were also performed, indicating that the prepared N-CDs possessed low cytotoxicity and good biocompatibility. Meanwhile, the N-CDs can be used for the determination of p-NP in river water and industrial wastewater.
Collapse
Affiliation(s)
- Sen Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China.
| | - Zui Ding
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Fangyu Tan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yi Ge
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yaqing Cui
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Ni Tan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China.
| |
Collapse
|
14
|
Tall A, Antônio Cunha F, Kaboré B, d'Angeles do E. S. Barbosa C, Rocha U, Sales TO, Fonseca Goulart MO, Tapsoba I, Carinhanha Caldas Santos J. Green emitting N, P-doped carbon dots as efficient fluorescent nanoprobes for determination of Cr(VI) in water and soil samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Liu Y, Su X, Chen L, Liu H, Zhang C, Liu J, Hao J, Shangguan Y, Zhu G. Green preparation of carbon dots from Momordica charantia L. for rapid and effective sensing of p-aminoazobenzene in environmental samples. ENVIRONMENTAL RESEARCH 2021; 198:111279. [PMID: 33961826 DOI: 10.1016/j.envres.2021.111279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
p-Aminoazobenzene (pAAB) is a hazardous azo dye that causes considerable harm to human health and the environment. The development of novel and sensitive sensors for the rapid detection of pAAB is in high demand. In this study, a simple fluorescent sensor for pAAB detection is designed based on carbon dots (CDs) which are prepared using green carbon source of Momordica charantia L. via a facile hydrothermal approach. The fluorescence spectra of CDs exhibit considerable overlap with the absorption band of pAAB, and the fluorescence is specifically suppressed in the presence of pAAB ascribed to the inner filter effect. Good and wide linearity is observed in the pAAB concentration range of 0.01-12.5 μg mL-1 with a lower detection limit of 3.9 ng mL-1. The established method achieves good results with a rapid analysis of pAAB in different practical water and soil samples. The as-constructed fluorescent sensor provides a simple, rapid, economical and eco-friendly platform and possesses prospective applications for the effective, selective and sensitive detection of pAAB in the environmental field.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Letian Chen
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Huanjia Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chunyuan Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jiali Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jiayi Hao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Shangguan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
16
|
Huang Q, Bao Q, Wu C, Hu M, Chen Y, Wang L, Chen W. Carbon dots derived from Poria cocos polysaccharide as an effective “on-off” fluorescence sensor for chromium (VI) detection. J Pharm Anal 2021; 12:104-112. [PMID: 35573881 PMCID: PMC9073324 DOI: 10.1016/j.jpha.2021.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
Chromium is a harmful contaminant showing mutagenicity and carcinogenicity. Therefore, detection of chromium requires the development of low-cost and high-sensitivity sensors. Herein, blue-fluorescent carbon quantum dots were synthesized by one-step hydrothermal method from alkali-soluble Poria cocos polysaccharide, which is green source, cheap and easy to obtain, and has no pharmacological activity due to low water solubility. These carbon quantum dots exhibit good fluorescence stability, water solubility, anti-interference and low cytotoxicity, and can be specifically combined with the detection of Cr(VI) to form a non-fluorescent complex that causes fluorescence quenching, so they can be used as a label-free nanosensor. High-sensitivity detection of Cr(VI) was achieved through internal filtering and static quenching effects. The fluorescence quenching degree of carbon dots fluorescent probe showed a good linear relationship with Cr(VI) concentration in the range of 1–100 μM. The linear equation was F0/F = 0.9942 + 0.01472 [Cr(VI)] (R2 = 0.9922), and the detection limit can be as low as 0.25 μM (S/N = 3), which has been successfully applied to Cr(VI) detection in actual water samples herein. Carbon dots was synthesized from alkaloid-soluble Poria cocos polysaccharide, which used for Cr (VI) detection. High sensitivity and selectivity detection of Cr(VI) based on internal filtering effect and static quenching mechanism. The method analysis speed is quick, sensitive, raw materials for convenient, inexpensive. The method has been applied to the determination of Cr(VI) in actual samples with satisfactory recovery.
Collapse
|
17
|
Shen TY, Jia PY, Chen DS, Wang LN. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119282. [PMID: 33316652 DOI: 10.1016/j.saa.2020.119282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 05/25/2023]
Abstract
Carbon quantum dots (CQDs), owing to their characteristic luminescent properties, have become a new favorite in the field of luminescence. They have been widely used in light emitting diode, ion detection, cell-imaging, ect. Herein a facile synthesis method of nitrogen-doped carbon quantum dots (N-CQDs) has been developedviaa one-step hydrothermal of glucose and m-phenylenediamine. The chemical composition, surface functional groups, and crystal structure of so prepared N-CQDs were systematically characterized. The characterizations indicate that nitrogen has been chemically doped in the CQDs and the N-CQDs crystallize in a graphene structure. Photoluminescence (PL) measurements show that the N-CQDs emit strong blue emission under the irradiation of ultraviolet. The emission is excitation-dependent, is resistant to photo bleaching and high ionic strength, and slightly decreases with the increase of temperature. The quantum yield of them is about 17.5%. The PL intensity of N-CQDs quenches linearly with the increase of the concentrations of Fe3+(0.5-1.0 mM) and CrO42-(0.3-0.6 mM), which are a kind of excellent fluorescent probe for the detection of Fe3+ and CrO42-. The quenching mechanism of Fe3+ and CrO42-is verified to be a static quenching mechanism based on inner filter effect. The N-CQDs are also found to be a good cell-imaging reagent of Hela cells.
Collapse
Affiliation(s)
- Tong-Yang Shen
- School of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26, Hexing Road, Harbin 150040, PR China
| | - Pei-Yun Jia
- School of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26, Hexing Road, Harbin 150040, PR China.
| | - Da-Shu Chen
- School of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26, Hexing Road, Harbin 150040, PR China
| | - Li-Na Wang
- School of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26, Hexing Road, Harbin 150040, PR China
| |
Collapse
|
18
|
Sousa HBA, Martins CSM, Prior JAV. You Don't Learn That in School: An Updated Practical Guide to Carbon Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:611. [PMID: 33804394 PMCID: PMC7998311 DOI: 10.3390/nano11030611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Carbon quantum dots (CQDs) have started to emerge as candidates for application in cell imaging, biosensing, and targeted drug delivery, amongst other research fields, due to their unique properties. Those applications are possible as the CQDs exhibit tunable fluorescence, biocompatibility, and a versatile surface. This review aims to summarize the recent development in the field of CQDs research, namely the latest synthesis progress concerning materials/methods, surface modifications, characterization methods, and purification techniques. Furthermore, this work will systematically explore the several applications CQDs have been subjected to, such as bioimaging, fluorescence sensing, and cancer/gene therapy. Finally, we will briefly discuss in the concluding section the present and future challenges, as well as future perspectives and views regarding the emerging paradigm that is the CQDs research field.
Collapse
Affiliation(s)
| | | | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (H.B.A.S.); (C.S.M.M.)
| |
Collapse
|
19
|
Abstract
Optical sensors are always fascinating for chemists due to their selectivity, sensitivity, robustness and cost-effective nature.
Collapse
Affiliation(s)
- Hafiz Muhammad Junaid
- Institute of Chemistry
- University of the Punjab
- Quaid-e-Azam Campus
- Lahore 54590
- Pakistan
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry
- University of Sindh
- Jamshoro
- Pakistan
| | - Madeeha Batool
- Institute of Chemistry
- University of the Punjab
- Quaid-e-Azam Campus
- Lahore 54590
- Pakistan
| |
Collapse
|
20
|
Wang D, Li P, Li J, Dong C. An efficient fluorescent nano-sensor of N-doped carbon dots for the determination of 2,4,6-trinitrophenol and other applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5195-5201. [PMID: 33090130 DOI: 10.1039/d0ay01702g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
N-Doped carbon dots (CDs) had been simply produced by a one-pot synthesis process using amygdalic acid and threonine. The resulting product was water-soluble and exhibited strong luminescence emission with a fluorescence quantum yield of 19.25%. The emission of CDs was obviously and selectively decreased upon adding 2,4,6-trinitrophenol (TNP). It was proved that the fluorescence resonance energy transfer was the main mechanism for quenching. An efficient fluorescence probe with satisfied sensitivity for TNP determination was found. The range of the linear response for TNP detection was 0.5-40.0 μmol L-1, and the limit of detection was 20 nmol L-1. The content of trace TNP in water samples was successfully detected with this method. The CDs were also applied in HepG2 cell imaging and the fabrication of fluorescent films by dispersing the solid freeze-drying CD (SCD) powder into PMMA, which exhibited some application value in biology and photovoltaics.
Collapse
Affiliation(s)
- Dongxiu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | | | | | | |
Collapse
|
21
|
Bright Mn-doped carbon dots for the determination of permanganate and L-ascorbic acid by a fluorescence on-off-on strategy. Mikrochim Acta 2020; 187:659. [PMID: 33201322 DOI: 10.1007/s00604-020-04604-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
A one-pot hydrothermal synthesis of manganese-doped carbon dots (Mn-CDs) is reported for fluorescent "on-off-on" determination of Mn(VII) and L-ascorbic acid (L-AA) in aqueous solution and living cells. Mn-CDs were prepared by using sulfanilic acid, tetrakis(hydroxymethyl)phosphonium chloride, and Mn(II) chloride as precursors. Mn-CDs were characterized by several spectroscopic methods and microscopic techniques. Mn-CDs show distinctly long fluorescence lifetime (12.39 ± 0.07 ns) and high absolute fluorescence quantum yield (around 37%) with excitation and emission wavelengths of 362 and 500 nm, respectively. Mn-CDs exhibit no significant cytotoxicity to human cervical carcinoma HeLa cells and human embryonic kidney HEK-293T cells at 200 μg mL-1 level after 48 h incubation. The fluorescence of Mn-CDs at 500 nm (excited at 362 nm) is quenched efficiently by Mn(VII) and can be further recovered after the addition of L-AA, resulting in a fluorescent "on-off-on" assay for the determination of Mn(VII) and L-AA. Under optimal experimental conditions, the linear response covers the 3 to 150 μM Mn(VII) concentration range and the 3 to 140 μM L-AA concentration range. This method offers relatively low detection limits of 0.66 μM for Mn(VII) and 0.90 μM for L-AA. This strategy was applied to visual determination of Mn(VII) and L-AA in living HeLa cells with satisfying results. Graphical abstract Schematic presentation of bright Mn-CD-based fluorescence "on-off-on" assay for both Mn(VII) and L-AA. This fluorescent assay possessed low detection limit of 0.66 μM for Mn(VII) and 0.90 μM for L-AA. This strategy was applied for visual determination of Mn(VII) and L-AA in living HeLa cells with satisfying results.
Collapse
|
22
|
Liu X, Zhang S, Xu H, Wang R, Dong L, Gao S, Tang B, Fang W, Hou F, Zhong L, Aldalbahi A. Nitrogen-Doped Carbon Quantum Dots from Poly(ethyleneimine) for Optical Dual-Mode Determination of Cu 2+ and l-Cysteine and Their Logic Gate Operation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47245-47255. [PMID: 32955238 DOI: 10.1021/acsami.0c12750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, nitrogen-doped carbon quantum dots from poly(ethyleneimine) (PQDs) were synthesized by a low-cost and facile one-step hydrothermal method without other reagents. A quantum yield (QY) of up to 23.2% with maximum emission at 460 nm under an excitation wavelength of 340 nm was ascribed to the high nitrogen doping (20.59%). The PQDs selectively form a blue complex with Cu2+ accompanied by strong quenching of the fluorescence emission. Meanwhile, the PQD-Cu2+ complex exhibited selective fluorescence recovery and color disappearance on exposure to l-cysteine (Cys). The electron transfer from amino or oxygen groups on the PQDs to Cu2+ leads to fluorescence quenching, and a chromogenic reaction of the cuprammonium complex results in a color change. The strong affinity between Cys and Cu2+ causes the detachment of Cu2+ from the surface of PQDs, so the color of the solution disappears and the fluorescence of PQDs recovers. Under the optimized condition, the proposed sensor was applied to detect Cu2+ in the linear range of 0-280 μM. A detection limit of 4.75 μM is achieved using fluorescence spectroscopy and 4.74 μM by monitoring the absorbance variation at 272 nm. For Cys detection, the linear range of 0-800 μM with detection limits of 28.11 μM (fluorescence determination) and 19.74 μM (peak shift determination at 272 nm) was obtained. Meanwhile, the PQD-Cu2+ system exhibits distinguishable responses to other biothiols such as l-glutathione (GSH) and dl-homocysteine (Hcy). Based on the multimode signals, an "AND" logic gate was constructed successfully. Interestingly, besides Cu2+, Fe3+ can also quench the fluorescence of PQDs and the PQD-Fe3+ system exhibits superior selectivity for Cys detection. Most importantly, the proposed assay is not only simple, cheap, and stable but also suitable for detecting Cu2+ and Cys in some real samples.
Collapse
Affiliation(s)
- Xuerui Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Ruru Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lina Dong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shanmin Gao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Boyang Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weina Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Faju Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Linlin Zhong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Sai L, Jiao S, Yang J. Ultraviolet Carbon Nanodots Providing a Dual-Mode Spectral Matching Platform for Synergistic Enhancement of the Fluorescent Sensing. Molecules 2020; 25:molecules25112679. [PMID: 32527028 PMCID: PMC7321151 DOI: 10.3390/molecules25112679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022] Open
Abstract
The sensing of chromium(VI) (Cr(VI)) is highly desired, due to its toxic and carcinogenic effects upon human health. Fluorescent probes, especially carbon nanodots (CNDs), have been widely used for Cr(VI) sensing via the inner filter effect (IFE). However, improving the sensitivity of these probes remains a difficult issue. In this work, CNDs derived from β-Lactoglobulin were applied as an ultrasensitive fluorescent probe for Cr(VI). With 260 nm excitation, the CNDs showed multi-band emission, including an ultraviolet 360 nm peak. The spectral matching of the CNDs with Cr(VI) led to synergistic suppression of both the excitation and emission light in the fluorescent sensing. As a consequence, the CNDs showed high sensitivity toward Cr(VI), the detection limit reaching as low as 20 nM. Moreover, taking advantage of the multi-emissive property of the CNDs, the synergistic effect was proven in an IFE-based sensing system, which might be extended to the design of other kinds of fluorescent probes.
Collapse
Affiliation(s)
- Liman Sai
- Department of Physics, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China;
| | - Shuping Jiao
- School of Mechanics and Engineering Science, Shanghai University, Yanchang Road 149, Shanghai 200444, China;
| | - Jianwen Yang
- Department of Physics, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China;
- Correspondence: ; Tel.: +86-131-6252-2661
| |
Collapse
|
24
|
Pan M, Xie X, Liu K, Yang J, Hong L, Wang S. Fluorescent Carbon Quantum Dots-Synthesis,Functionalization and Sensing Application in FoodAnalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E930. [PMID: 32403325 PMCID: PMC7279393 DOI: 10.3390/nano10050930] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Carbon quantum dots (CQDs) with stable physicochemical properties are one of theemerging carbon nanomaterials that have been studied in recent years. In addition to the excellentoptical properties such as photoluminescence, photobleaching resistance and light stability, thismaterial also has favorable advantages of good biocompatibility and easy functionalization, whichmake it an ideal raw material for constructing sensing equipment. In addition, CQDs can combinedwith other kinds of materials to form the nanostructured composites with unique properties, whichprovides new insights and ideas for the research of many fields. In the field of food analysis,emerging CQDs have been deeply studied in food composition analysis, detection and monitoringtrace harmful substances and made remarkable research progress. This article introduces andcompares the various methods for CQDs preparation and reviews its related sensing applicationsas a new material in food components analysis and food safety inspection in recent years. It isexpected to provide a significant guidance for the further study of CQDs in the field of foodanalysis and detection. CQDs; synthesis; fluorescent sensing; food analysis.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
25
|
Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Mikrochim Acta 2020; 187:263. [PMID: 32270303 DOI: 10.1007/s00604-020-04232-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
A new and efficient assay is proposed for the photometric determination of Cr6+ by employing polyethylenimine-stabilized Ag nanoclusters (PEI-AgNCs) as an oxidoreductase mimic. Cr6+ with certain oxidicability is able to specifically react with 3,3',5,5'-tetramethylbenzidine (TMB), giving a color change from colorless to blue indicating the presence of Cr6+. However, the redox kinetics is so slow that the sensitivity obtained for Cr6+ determination is very poor. It is interestingly found that PEI-AgNCs can act as an oxidoreductase-like nanozyme to significantly promote the sluggish reaction, making it possible to rapidly detect toxic Cr6+ with remarkably enhanced performance. With the use of PEI-AgNCs, fast and convenient determination of Cr6+ was realized, with a limit of detection as low as 1.1 μM. Additionally, the proposed assay exhibited excellent selectivity; other ions, including Cr3+, hardly affected the determination of Cr6+. Graphical abstract Polyethylenimine-stabilized silver nanoclusters (PEI-AgNCs) act as an oxidoreductase mimic to catalyze the redox reaction of Cr6+ and 3,3',5,5'-tetramethylbenzidine (TMB), enabling the high-performance colorimetric determination of toxic Cr6+.
Collapse
|
26
|
Hu Y, Zhang J, Li G, Xing H, Wu M. Highly Sensitive Fluorescent Determination of Chromium(VI) by the Encapsulation of Cadmium Telluride Quantum Dots (CdTe QDs) into Zeolitic Imidazolate Framework-8 (ZIF-8). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1712724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yufeng Hu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Junpeng Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Gang Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Hanwen Xing
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Minghuo Wu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| |
Collapse
|
27
|
Wang D, Zhang L, Li P, Li J, Dong C. Convenient synthesis of carbon nanodots for detecting Cr( vi) and ascorbic acid by fluorimetry. NEW J CHEM 2020. [DOI: 10.1039/d0nj04495d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon nanodots (CDs) were simply synthesized from Sophora flavescens Ait. “On–off–on” fluorescent probes for the sensitive and selective detections of Cr(iv) and ascorbic acid (AA) were founded and well applied in real samples.
Collapse
Affiliation(s)
- Dongxiu Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Lin Zhang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Pengxia Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Junfen Li
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|