1
|
Xiang D, Li N, Liu L, Yu H, Li X, Zhao T, Liu D, Gong X. Development and validation of enzyme-linked immunosorbent assays for the measurement of infliximab and anti-drug antibody levels. Heliyon 2023; 9:e21858. [PMID: 38034789 PMCID: PMC10682623 DOI: 10.1016/j.heliyon.2023.e21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Infliximab and its anti-drug antibody (ADA) serum concentrations exhibit a strong correlation with clinical response and loss of response. The use of therapeutic drug monitoring to measure the concentration of infliximab and ADA can facilitate clinical decision-making, helping patients attain optimal therapeutic effects. However, there are still limitations to the existing infliximab and its ADA detection methods. Therefore, this study aimed to develop and validate enzyme-linked immunosorbent assay (ELISA)-based methods for measuring infliximab and its ADA levels in human plasma according to the general recommendations for immunoassays. Free infliximab is bound by recombinant TNF-α and detected using HRP-labeled anti-human antibody. The ADA is captured by on-plate-coated infliximab and recognized by biotin-labeled infliximab. Two bridging ELISA assays were developed and after assay optimization and validation, these assays have been applied in ten patients with inflammatory bowel disease (IBD). In infliximab detection assay, a standard curve ranging from 0.10 μg/mL to 8.0 μg/mL with great precision and accuracy has been established. Drug tolerance of the ADA assay was that 100 ng/mL ADA could tolerate at least 5.0 μg/mL infliximab in the plasma using a commercially available monoclonal anti-infliximab antibody as the positive control. The ADA screening and confirmatory assays achieved a sensitivity of 36.74 ng/mL and 37.15 ng/mL, respectively. All other assay characteristics met the requirements. The mean concentration of infliximab in eight patients with IBD was 7.88 (1.87-21.1) μg/mL, and the ADA levels were all negative. Moreover, the concentrations of infliximab in the remaining two patients were below the LLOQ and the ADAs were positive. Thus, accurate and sensitive ELISA methods have been developed and validated for the detection of infliximab and its ADA concentrations and have been successfully applied to clinical therapeutic drug monitoring.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ninghong Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pharmacy, Nanchang First Hospital, Nanchang, 330008, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiping Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tinghui Zhao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Akyol E, Ulusoy Hİ, Yilmaz E, Polat Ü, Soylak M. Application of magnetic solid-phase extraction for sensitive determination of anticancer drugs in urine by means of diamino benzidine tetrachlorohydrate modified magnetic nanoparticles. Pharmacol Rep 2023; 75:456-464. [PMID: 36840823 DOI: 10.1007/s43440-023-00465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND The analysis of drug active molecules and residues in the treatment of cancer is important for the sustainability of human life and therapeutic effects. For this purpose, a new magnetic sorbent was developed to use in solid phase extraction prior to conventional high-performance liquid chromatography (HPLC) analysis of Paclitaxel (PAC) and Gemcitabine (GEM) molecules. METHODS In this study, a separation and pre-concentration approach based on magnetic solid phase extraction (MSPE) was proposed for PAC and GEM by means of using a newly synthesized magnetic sorbent. After the MSPE procedure, an HPLC system with a diode array detector (DAD) was used to analyze trace amounts of PAC and GEM anticarcinogenic drugs in urine samples. Surface modification of magnetic Fe3O4 nanoparticles was carried out by diaminobenzidinetetrachloro hydrate (DABTC) for the first time and a useful sorbent was obtained for MSPE experiments. RESULTS In the proposed method, PAC and GEM molecules were retained on the c in the presence of a pH 5.0 medium and desorbed to 300 μL of acetonitrile: methyl alcohol (1:1) eluent phase before HPLC-DAD analysis. Under the optimized conditions, the limit of detection (LOD) values for PAC and GEM were 1.38 and 1.44 ng mL-1 while the enhancement factor for PAC and GEM were 139.5 and 145.3, respectively. The relative standard deviations (RSD %) for PAC and GEM were below 3.50% in inter-day repeated experiments by means of model solutions containing 100 ng mL-1 drug active ingredients. CONCLUSIONS Synthesis and characterization of DABTC-Fe3O4 nanoparticles were performed using suitable methodologies. Optimization of MSPE was done step by step. And finally, the developed method was successfully applied to urine samples with quantitative recoveries in the range of 99.0% and 105.0%.
Collapse
Affiliation(s)
- Emin Akyol
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Application and Research Center, Ernam Erciyes University, Kayseri, Turkey
| | - Ümmügülsüm Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Nihal S, Guppy-Coles K, Gholami MD, Punyadeera C, Izake EL. Towards Label-free detection of viral disease agents through their cell surface proteins: Rapid screening SARS-CoV-2 in biological specimens. SLAS DISCOVERY 2022; 27:331-336. [PMID: 35667647 PMCID: PMC9166287 DOI: 10.1016/j.slasd.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.
Collapse
|
4
|
Rashid MA, Muneer S, Alhamhoom Y, Islam N. Rapid Assay for the Therapeutic Drug Monitoring of Edoxaban. Biomolecules 2022; 12:biom12040590. [PMID: 35454179 PMCID: PMC9027065 DOI: 10.3390/biom12040590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Edoxaban is a direct oral anticoagulant (DOAC) that has been recently indicated for the treatment of pulmonary embolism (PE) in SARS-CoV-2 infections. Due to its pharmacokinetic variability and a narrow therapeutic index, the safe administration of the drug requires its therapeutic drug monitoring (TDM) in patients receiving the treatment. In this work, we present a label-free method for the TDM of edoxaban by surface enhanced Raman spectroscopy (SERS). The new method utilises the thiol chemistry of the drug to chemisorb its molecules onto a highly sensitive SERS substrate. This leads to the formation of efficient hotspots and a strong signal enhancement of the drug Raman bands, thus negating the need for a Raman reporter for its SERS quantification. The standard samples were run with a concentration range of 1.4 × 10−4 M to 10−12 M using a mobile phase comprising of methanol/acetonitrile (85:15 v/v) at 291 nm followed by the good linearity of R2 = 0.997. The lowest limit of quantification (LOQ) by the SERS method was experimentally determined to be 10−12 M, whereas LOQ for HPLC-UV was 4.5 × 10−7 M, respectively. The new method was used directly and in a simple HPLC-SERS assembly to detect the drug in aqueous solutions and in spiked human blood plasma down to 1 pM. Therefore, the SERS method has strong potential for the rapid screening of the drug at pathology labs and points of care.
Collapse
Affiliation(s)
- Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
- Correspondence:
| | - Saiqa Muneer
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Nazrul Islam
- Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
5
|
Hassanain WA, Theiss FL, Izake EL. Label-free identification of Erythropoietin isoforms by surface enhanced Raman spectroscopy. Talanta 2022; 236:122879. [PMID: 34635259 DOI: 10.1016/j.talanta.2021.122879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023]
Abstract
We present a sensitive label-free surface enhanced Raman spectroscopy (SERS) method for the discrimination between the recombinant and endogenous human Erythropoietin (EPO) isoforms. The proposed methodology comprises a lectin-functionalised extractor chip for the extraction of the recombinant human EPO (rhuEPO) and the endogenous EPO (enEPO) from blood plasma. The disulfide bond molecular structure of the purified isoforms was modified to chemisorb the biomolecules onto a SERS substrate in a unified orientation, thus maximizing the reproducibility and sensitivity of the SERS measurements. The acquired SERS spectra of the EPO isoforms showed diagnostic Raman bands that allowed for the discrimination between rhuEPO and enEPO. The method was also used for the SERS quantification of rhuEPO and enEPO down to 0.1 pM and 0.5 pM, respectively. The SERS determination of the protein isoforms was cross validated against ELISA. The new SERS method has strong potential for the rapid screening of rhuEPO doping in athletes and for the therapeutic drug monitoring of rhuEPO treatment in cancer patients.
Collapse
Affiliation(s)
- Waleed A Hassanain
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, 4001, Australia
| | - Frederick L Theiss
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, 4001, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, 4001, Australia.
| |
Collapse
|
6
|
Chen N, Yuan Y, Lu P, Wang L, Zhang X, Chen H, Ma P. Detection of carbamazepine in saliva based on surface-enhanced Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:7673-7688. [PMID: 35003859 PMCID: PMC8713680 DOI: 10.1364/boe.440939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/12/2023]
Abstract
Carbamazepine (CBZ) is a commonly used drug for the treatment of epilepsy. Due to the narrow effective range, CBZ concentration was usually monitored with blood draw from patients. Frequent blood draw is inconvenient and causes physical and psychological pain. Therefore, highly-sensitive, rapid, label-free, and non-invasive drug detection methods can be alternatives to bring a relief. In this work, we have proposed a method for the non-invasive detection of CBZ using surface-enhanced Raman spectroscopy (SERS). Gold-silver core-shell nanomaterial substrates were prepared and optimized. Salivary CBZ concentration was measured with SERS as a non-invasive alternative to blood draw. The results showed that there was a linear relationship between SERS response and CBZ concentration in the entire measured range of 10-1 ∼ 10-8 mol/L. The detection limit of this method was 1.26 × 10-9 mol/L. Satisfactory repeatability and stability were also demonstrated. Due to its high sensitivity and ease of operation, the proposed method can serve as an alternative to blood draw for non-invasively monitoring CBZ concentration. It also has great potentials in many other applications of biomedical sciences.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Optical Technology and
Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai 200093,
China
| | - Yanbing Yuan
- Key Laboratory of Optical Technology and
Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai 200093,
China
| | - Ping Lu
- Key Laboratory of Optical Technology and
Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai 200093,
China
| | - Luyao Wang
- Key Laboratory of Optical Technology and
Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai 200093,
China
| | - Xuedian Zhang
- Key Laboratory of Optical Technology and
Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai 200093,
China
- Shanghai Institute of Intelligent Science
and Technology, Tongji University, Shanghai
200092, China
| | - Hui Chen
- Key Laboratory of Optical Technology and
Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai 200093,
China
| | - Pei Ma
- Key Laboratory of Optical Technology and
Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University
of Shanghai for Science and Technology, Shanghai 200093,
China
| |
Collapse
|
7
|
Muneer S, Sarfo DK, Ayoko GA, Islam N, Izake EL. Gold-Deposited Nickel Foam as Recyclable Plasmonic Sensor for Therapeutic Drug Monitoring in Blood by Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2020; 10:nano10091756. [PMID: 32899949 PMCID: PMC7558188 DOI: 10.3390/nano10091756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
A sensitive and recyclable plasmonic nickel foam sensor has been developed for surface-enhanced Raman spectroscopy (SERS). A simple electrochemical method was used to deposit flower-shaped gold nanostructures onto nickel foam substrate. The high packing of the gold nanoflowers onto the nickel foam led to a high enhancement factor (EF) of 1.6 × 1011. The new SERS sensor was utilized for the direct determination of the broad-spectrum β-lactam carbapenem antibiotic meropenem in human blood plasma down to one pM. The sensor was also used in High Performance Liquid Chromatography (HPLC)-SERS assembly to provide fingerprint identification of meropenem in human blood plasma. Moreover, the SERS measurements were reproducible in aqueous solution and human blood plasma (RSD = 5.5%) and (RSD = 2.86%), respectively at 200 µg/mL (n = 3), and successfully recycled using a simple method, and hence, used for the repeated determination of the drug by SERS. Therefore, the new sensor has a strong potential to be applied for the therapeutic drug monitoring of meropenem at points of care and intensive care units.
Collapse
Affiliation(s)
- Saiqa Muneer
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Daniel K. Sarfo
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Godwin A. Ayoko
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia;
| | - Emad L. Izake
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
8
|
Gholami MD, Sonar P, Ayoko GA, Izake EL. A SERS quenching method for the sensitive determination of insulin. Drug Test Anal 2020; 13:1048-1053. [PMID: 32311837 DOI: 10.1002/dta.2808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
In this work, we utilise the disulphide bond structure of insulin and a new benzothiazole Raman probe for the detection of human insulin using surface-enhanced Raman spectroscopy (SERS). The disulphide bond structure of the insulin was reduced to generate free sulfhydryl terminal groups. When reacted with benzothiazole-functionalised gold nanoparticles, the reduced protein desorbs the Raman probe and causes its Raman signal intensity to quench. Using this approach, insulin was quantified in the concentration range of 1 × 10-14 -1 × 10-8 M by SERS quenching. The limit of quantification of insulin by the SERS quenching method was found to be 1 × 10-14 M (0.01 pM or 58 pg/L), which satisfies the requirements for monitoring its blood concentration in patients. Because many proteins and peptides have disulphide bonds in their molecular structures, the new SERS quenching method has a strong potential for the rapid determination of ultralow concentrations of proteins in formulations and biological fluids.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- School of Chemistry and Physics, Queensland University of Technology (QUT), Queensland, Brisbane, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Queensland, Brisbane, Australia.,Centre for Material Science, Queensland University of Technology (QUT), Queensland, Brisbane, Australia
| | - Godwin A Ayoko
- School of Chemistry and Physics, Queensland University of Technology (QUT), Queensland, Brisbane, Australia.,Centre for Material Science, Queensland University of Technology (QUT), Queensland, Brisbane, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Queensland University of Technology (QUT), Queensland, Brisbane, Australia.,Centre for Material Science, Queensland University of Technology (QUT), Queensland, Brisbane, Australia
| |
Collapse
|