1
|
Qiao Z, Liu Y, Hou S, Bai Y, Zhen S, Yang S, Xu H. Spherical fluorinated covalent organic polymer for highly efficient and selective extraction of fipronil and its metabolites in soil. Talanta 2024; 274:126033. [PMID: 38581855 DOI: 10.1016/j.talanta.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Covalent organic polymers (COPs) have garnered considerable attention as promising adsorbents of online solid phase extraction (online SPE). Morphology modulation provides an appealing solution to enhance adsorption efficiency and reduce back-pressure in the absorbent. However, the synthesis of COPs with regular geometric shapes and specific adsorption selectivity remains challenging. In this study, a uniform spherical fluorinated COP (F-sCOP, average diameter: 2.14 μm) was successfully synthesized by Schiff base reaction of 1,3,5-triformylphoroglucinol (TP) and 2,2'-bis(trifluoromethyl)benzidine (TFMB). The F-sCOP had a large surface area (BET: 346.2 m2 g-1), remarkable enrichment capacity (enrichment factors: 186-782), high selectivity toward fipronil and its metabolites (adsorption efficiency >93.1%), and admirable service life (>60 times). Based on the adsorbent, a novel μ-matrix cartridge extraction-online-μ-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) method was constructed and used to track trace fipronil and its metabolites in soil. The proposed method exhibited a wide linear range (0.05-1000 ng g-1), low quantitation limits (LOQs: 0.0027-0.011 ng g-1), high recoveries (90.1-119.6%) and good repeatability (RSD ≤10.5%, n = 3) for fipronil analysis. This study paves the way for pesticide analysis in soil risk assessment.
Collapse
Affiliation(s)
- Zhaoyu Qiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Zhen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Liu Y, Hou S, Chen T, Li Y, Zhang M, Zhou D, Xu H. Micro-matrix cartridge extraction followed by online micro-solid phase extraction based on polystyrene@hydroxypropyl-β-cyclodextrin nanofibers for selective determination of fipronil and its metabolites in soil. Mikrochim Acta 2023; 190:138. [PMID: 36920543 DOI: 10.1007/s00604-023-05714-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
Micro-matrix cartridge extraction coupled on-line to micro-solid phase extraction-high performance liquid chromatography-mass spectrometry (μ-MCE-online-μ-SPE-HPLC-MS) is presented. Micro-matrix cartridge extraction (μ-MCE) was applied to highly efficient desorption of adsorbed pesticides from contaminated soil with favorable extraction efficiency (100%). Novel polystyrene@hydroxypropyl-β-cyclodextrin (PS@HPCD) electrospun nanofibers with 3D network structure were prepared to selectively capture fipronil and its metabolites. High selectivity was obtained with adsorption efficiency ≥ 86.64% via complexation, hydrophobic affinity, and π-π interactions. PS@HPCD nanofibers exhibited remarkable advantages such as excellent enrichment factors (24-55), superior permeability, and long service life (> 65 times). Under the optimum conditions, wide linear range (0.1-1000 ng g-1), low detection limits (0.0032-0.0067 ng g-1), high recoveries (84-124.5%), favorable repeatability (RSD ≤ 10.4%, n = 5), and reproducibility (RSD ≤ 7.2%, n = 3) were acquired for fipronil and three metabolites. The developed method was applied to the pesticide determination in actual soils and the ISO-certified soil with satisfactory recoveries (96.5%). The method developed provides a green, efficient, and miniaturized method for the determination of trace pesticide residues in soil.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Tiantian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Manlin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Dandan Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Composite Nanofibers as Novel Sorbents for On-Line and Off-Line Solid-Phase Extraction in Chromatographic System: A Comparison for Detection of Free Biogenic Monoamines and Their Metabolites in Plasma. Molecules 2022; 27:molecules27206971. [PMID: 36296561 PMCID: PMC9611131 DOI: 10.3390/molecules27206971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Two different pretreatment approaches have been used for the enrichment and separation of biogenic monoamines and metabolites in plasma for high performance liquid chromatography (HPLC) determination. The first approach, based on on-line packed-fiber solid-phase extraction (PFSPE) coupled with HPLC, allows for the simultaneous detection of epinephrine (E), norepinephrine (NE), dopamine (DA), 3-methoxyl epinephrine (MN), norepinephrine (NMN), 3-methoxytyramine (3-MT), and 5-hydroxytryptamin (5-HT). Using this developed on-line PFSPE–HPLC method, the limit of detections (LODs) of the seven analytes ranged from 1 ng/mL (NMN and MN) to 2 ng/mL (NE, E, DA, 3-MT and 5-HT). The reportable ranges were 5–300 ng/mL for NE and DA, 5–100 ng/mL for E, and 5–200 ng/mL for NMN, MN, 3-MT and 5-HT. The off-line PFSPE–HPLC was employed in the second approach and could provide simultaneous detection of NE, E, DA, NMN, and MN. The linearity was verified in the range of 0.5–20 ng/mL (NE, E, and DA) and 20–250 ng/mL (NMN and MN). The LODs of the five analytes ranged from 0.2 ng/mL (NE, E, and DA) to 5 ng/mL (NMN and MN). This study verified the possibility of using nanofibers as an adsorbent in an on-line PFSPE–HPLC system for the determination of biogenic monoamines and their metabolites in human plasma. Compared with the off-line PFSPE approach, the on-line PFSPE method deserves attention mainly due to its greener character, derived from the automation of the process and high-throughput with less operators’ handling.
Collapse
|
4
|
Kiani A, Alinezhad H, Nemati A, Chaichi MJ. Luminol immobilized on the metal‐organic framework: As an efficient and highly sensitive sensor for the detection of antibiotics in aqueous medium. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ameneh Kiani
- Faculty of Chemistry University of Mazandaran Babolsar Iran
| | | | - Afsaneh Nemati
- Faculty of Chemistry University of Mazandaran Babolsar Iran
| | | |
Collapse
|
5
|
Mojarrad S, Naseri A, Hallaj T. Sulfur quantum dots as a novel platform to design a sensitive chemiluminescence probe and its application for Pb 2+ detection. LUMINESCENCE 2022; 37:1769-1775. [PMID: 35916778 DOI: 10.1002/bio.4356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 11/07/2022]
Abstract
The monitoring of Pb as a hazardous heavy metal element for the environment and human health is of high importance. In this study, a simple and sensitive chemiluminescence (CL) probe based on sulfur quantum dots (SQDs) was designed for the determination of Pb2+ . To the best of our knowledge, this is the first report about the analytical application of the CL method based on SQDs. For this purpose, SQDs were synthesized by a simple hydrothermal method and characterized by TEM, FT-IR, XPS and X-ray diffraction. Then, the direct chemiluminescence (CL) of SQDs elicited by common oxidants was investigated. The highest CL intensity was observed for the SQDs-KMnO4 reaction, and its CL mechanism was studied. We indicated that the CL intensity of introduced system can be diminished as a result of interaction between Pb2+ and SQDs, and exploited this fact for designing a CL-based probe for the determination of Pb2+ . The CL intensity of SQDs-KMnO4 reaction was linearly quenched by Pb2+ at the range of 50 to 2000 nM with a limit of detection as 16 nM (S/N=3). The probe was employed for the determination of Pb2+ in different water samples and the recovery results (95.2 to 102.8%) indicated the good analytical performance of the developed method.
Collapse
Affiliation(s)
- Sima Mojarrad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Yang J, Huang L, Qian K. Nanomaterials-assisted metabolic analysis toward in vitro diagnostics. EXPLORATION (BEIJING, CHINA) 2022; 2:20210222. [PMID: 37323704 PMCID: PMC10191060 DOI: 10.1002/exp.20210222] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
In vitro diagnostics (IVD) has played an indispensable role in healthcare system by providing necessary information to indicate disease condition and guide therapeutic decision. Metabolic analysis can be the primary choice to facilitate the IVD since it characterizes the downstream metabolites and offers real-time feedback of the human body. Nanomaterials with well-designed composition and nanostructure have been developed for the construction of high-performance detection platforms toward metabolic analysis. Herein, we summarize the recent progress of nanomaterials-assisted metabolic analysis and the related applications in IVD. We first introduce the important role that nanomaterials play in metabolic analysis when coupled with different detection platforms, including electrochemical sensors, optical spectrometry, and mass spectrometry. We further highlight the nanomaterials-assisted metabolic analysis toward IVD applications, from the perspectives of both the targeted biomarker quantitation and untargeted fingerprint extraction. This review provides fundamental insights into the function of nanomaterials in metabolic analysis, thus facilitating the design of next-generation diagnostic devices in clinical practice.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Tan S, Wang J, Li M, Yin X, Gao X, Li C, Jiang Y, Dai X, Gong X, Fang X. Direct analysis of hydroxylated polycyclic aromatic hydrocarbons in biological samples with complex matrices using polarity-reversed nanoelectrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9237. [PMID: 34904282 DOI: 10.1002/rcm.9237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants with carcinogenic effect drawing worldwide attention. PAHs can be converted into hydroxylated PAHs (OH-PAHs) through metabolic processes. Thus, they are commonly considered as an important class of biomarkers of PAH exposure. However, direct analysis of related metabolites of these environmental pollutants in biological samples using mass spectrometry is still challenging because of matrix effect and ion suppression during nanoelectrospray ionization (nano-ESI). METHODS In our previous work, a polarity-reversed nanoelectrospray ionization (PR-nESI) technique was developed for the analysis of biomolecules in complex matrices. In this work, we further optimized PR-nESI for direct and sensitive analysis of OH-PAHs in different samples under severe salt interference in negative polarity. RESULTS Compared with conventional nano-ESI, the optimized PR-nESI method realized sensitive detection of 1-naphthol in samples with a concentration of salt up to millimolar level. The signal-to-noise ratio (S/N) of OH-PAHs was increased by 1-2 orders of magnitude compared with conventional nano-ESI. Six different OH-PAHs were successfully detected with high S/N ratio using PR-nESI. PR-nESI was further successfully applied in the analysis of OH-PAHs in spiked fetal blood serum, human urine, and single-cell samples. For environmentally exposed subjects, the detections of OH-PAHs in single-cell samples and urines from human smokers were successfully conducted. CONCLUSION The optimized PR-nESI method was successfully applied for the sensitive analysis of OH-PAHs in complex biological samples with severe salt effects. Based on the present study, PR-nESI can have a promising prospect for the sensitive analysis of other metabolites of environmental pollutants in negative polarity.
Collapse
Affiliation(s)
- Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Juduo Wang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Manli Li
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiaomei Gao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Chang Li
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| |
Collapse
|
8
|
Shi Y, Huang J, Chen L, Wang S, Xu J, Zhu F, Cui S, Zheng J, Ouyang G. MOF-74/polystyrene-derived Ni-doped hierarchical porous carbon for structure-oriented extraction of polycyclic aromatic hydrocarbons and their metabolites from human biofluids. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127465. [PMID: 34655872 DOI: 10.1016/j.jhazmat.2021.127465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as a major source that significantly increase the risk of developing lung cancer, severely jeopardize public health in modern society. The analysis of PAHs and their metabolites (hydroxylated PAHs, OH-PAHs) is important for biomonitoring and exposure assessment. However, due to the difference in their physico-chemical properties and matrix interference, realizing high-performance extraction of both PAHs and OH-PAHs is still a challenge. Herein, a nickel-doped hierarchical porous carbon (Ni/HPC) is synthesized by carbonizing the polystyrene (PS) infiltrated metal-organic frameworks (MOF-74(Ni)). The obtained Ni/HPC exhibits hierarchical pores and evenly distributed Ni atoms, providing efficient diffusion pathways and adsorption sites. The custom Ni/HPC-coated solid-phase microextraction (SPME) fiber shows superior enrichment capabilities for PAHs and their metabolites under various interfering conditions, verifying its practicability in real sample analysis. The proposed method provides a new strategy to synthesize carbon-based adsorbents that achieves matrix-resistant enrichment of PAHs and OH-PAHs, which simplifies the related sample preparation process for environmental analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yueru Shi
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlong Huang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, China
| | - Shaohan Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shufen Cui
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
9
|
Liang S, Dai H, Wang C, Zhang H, Li J, Xu Q, Zhang Q. Application of polydopamine fibers mat for simultaneous detection of multi-class drug residues in various animal-original foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
[Determination of tetracycline and fluoroquinolone residues in fish by polydopamine nanofiber mat based solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:624-632. [PMID: 34227323 PMCID: PMC9404201 DOI: 10.3724/sp.j.1123.2020.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tetracyclines and fluoroquinolones are common antibacterial drugs used in aquaculture, and their residues may pose a risk to human health. The low concentration of drug residues and complex matrixes such as fats and proteins in aquatic products necessitate the urgent development of efficient sample pretreatment methods. Solid phase extraction (SPE) is the most common sample pretreatment method, in which the core is an adsorbent. Compared with traditional SPE adsorbents, nanofiber mat (NFsM) has more interaction sites because of their large specific surface area. Furthermore, NFsMs modified with specific functional groups can significantly improve the extraction efficiency of tetracyclines and fluoroquinolones. Polydopamine (PDA) is spontaneously synthesized by the oxidative self-polymerization of dopamine-hydrochloride in alkaline solutions (pH>7.5). Because of its rich amino and catechol groups, PDA can form π-π stacking, electrostatic attraction, hydrophobic interaction, and hydrogen bonding interactions with target molecules. By exploiting the above advantages, polystyrene (PS) NFsM, as a template, was prepared by the electrostatic spinning method, and PDA-PS NFsM was obtained by functional modification of PDA through self-polymerization. Fourier transform infrared spectroscopy (FT-IR) and field-emission scanning electron microscopy (FESEM) were used to characterize the synthesized PS NFsM and PDA-PS NFsM. It was proved that PDA was successfully modified on the PS NFsM, with the SEM images revealing a rough outer core shell structure and an inner honeycomb structure. Subsequently, the handmade SPE column with PDA-PS NFsM was completed. A novel and efficient screening analytical method based on PDA-PS NFsM for the simultaneous determination of three tetracyclines (tetracycline (TET), chlortetracycline (CTC), and oxytetracycline (OTC)) and three fluoroquinolones (enrofloxacin (ENR), ciprofloxacin (CIP), and norfloxacin (NOR)) in fish by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The SPE procedure was optimized to develop an efficient method for sample preparation. Evaluate parameters including the amount of NFsM usage, ionic strength, flow rate of the sample solution, composition of eluent, and breakthrough volume were investigated. Only (20±0.1) mg of PDA-PS NFsM was sufficient to completely adsorb the targets, and the analytes retained on NFsM could be eluted by 1 mL of formic acid-ethyl acetate (containing 20% methanol) (1∶99, v/v). The residues were redissolved in 0.1 mL 10% methanol aqueous solution containing 0.2% formic acid. In addition, no adjustment of the pH and ionic strength of the sample solutions was required, and the breakthrough volume was 50 mL. The limits of detection (LODs) and limits of quantification (LOQs) of the six target compounds were measured at 3 times and 10 times the signal-to-noise ratio (S/N), respectively. The LODs and LOQs were 0.3-1.5 μg/kg and 1.0-5.0 μg/kg, respectively. The linear ranges of the six target compounds were LOQ-1000 μg/kg, and the coefficient of determination (R2) was greater than 0.999. To evaluate the accuracy and precision, blank spiked samples at three levels (low, medium, and high) were prepared for the recovery experiments, and each level with six parallel samples (n=6). The recoveries ranged from 94.37% to 102.82%, with intra-day and inter-day relative standard deviations of 2.38% to 8.06% and 4.10% to 9.10%, respectively. To evaluate the purification capacity of PDA-PS NFsM, the matrix effects before and after SPE were calculated and compared. Matrix effects before SPE were -12.98% to -38.68%. After the completion of SPEbased on PDA-PS NFsM, the matrix effect of each target analyte was significantly reduced to -2.15% to -7.36%, which proved the significant matrix removal capacity of PDA-PS NFsM. Finally, the practicality of this method was evaluated by using it to analyze real samples. This SPE method based on PDA-PS NFsM is efficient, practical, and environmentally friendly, and it has great potential for use in the routine monitoring of drug residues in fish.
Collapse
|
11
|
Hejabri Kandeh S, Amini S, Ebrahimzadeh H. Simultaneous trace-level monitoring of seven opioid analgesic drugs in biological samples by pipette-tip micro solid phase extraction based on PVA-PAA/CNT-CNC composite nanofibers followed by HPLC-UV analysis. Mikrochim Acta 2021; 188:275. [PMID: 34318377 DOI: 10.1007/s00604-021-04931-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Electrospun poly(vinyl alcohol)-(PVA)-poly(acrylic acid) (PAA)/carbon nanotubes(CNTs)-cellulose nanocrystal (CNC) (PVA-PAA/CNT-CNC) composite nanofibers were prepared and characterized using Fourier transform-infrared spectroscopy and field emission scanning electron microscopy. The resultant composite was used as an effective and novel sorbent for pipette-tip micro-solid phase extraction (PT-μSPE) of seven opioid analgesics (OAs) in biological samples followed by HPLC-UV analysis. Addition of CNT-CNC with the high specific surface area and plenty of OH-functional groups endows the nanofibers with considerable extraction efficiency. Under the optimum conditions, the linearity was obtained in the range 1.5 to 700.0 ng mL-1 for morphine, codeine, oxycodone, and tramadol, and 0.5 to 1000.0 ng mL-1 for nalbuphine, thebaine, and noscapine with coefficient of determination (r2) ≥ 0.9990. Detection limits (LODs) based on S/N = 3 were in the range of 0.15-0.50 ng mL-1. The relative standard deviations (RSDs) of 4.1-5.4% (intra-day, n = 5) and 5.2-6.4% (inter-day, n = 3) for three consecutive days were achieved. Finally, the efficiency of the PT-μSPE-HPLC-UV method was evaluated for the determination of OAs in human plasma and urine samples with good recoveries (87.3 to 97.8%). A: Schematic illustration for the preparation of PVA-PAA/CNT-CNC composite nanofibers. B: Schematic presentation of applying PVA-PAA/CNT-CNC composite nanofibers as the sorbent in pipette-tip micro solid-phase extraction (PT-μSPE) for the preconcentration of seven opioid analgesic drugs in biological samples before HPLC-UV analysis.
Collapse
Affiliation(s)
- Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
12
|
Shi Y, Huang S, Kuang Y, Chen Z, Guo J, Cui S, Zheng J, Ouyang G. Facile fabrication of composited solid phase microextraction thin membranes for sensitive detections of trace hydroxylated polycyclic aromatic hydrocarbons in human urine. Anal Chim Acta 2021; 1158:338422. [PMID: 33863405 DOI: 10.1016/j.aca.2021.338422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Solid phase microextraction (SPME) has potential to be used for the high-performance enrichments of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs), which are important biomarkers of PAH exposure. By choosing suitable adsorbent, it is conducive to fabricate new-type of SPME device for improved extraction efficiencies towards OH-PAHs. In this study, a novel method of surface solvent evaporation has been proposed to fabricate SPME thin membrane, integrating the advantages of polydimethylsiloxane (PDMS) and different porous adsorbents. The powdery metal organic framework (Uio66-NH2), porous polymer (powdery polymer aerogel, PPA) and ordered mesoporous carbon (OMC) have been chosen as typical adsorbents and fabricated as thin membranes successfully, indicating the universality of the proposed method for membrane fabrication. Comparing the extraction efficiencies of three prepared membranes towards OH-PAHs, the OMC-PDMS membrane has demonstrated best enrichment efficiencies. The OMC-PDMS membrane was used for the enrichments of trace OH-PAHs in human urine of both smokers and nonsmokers, combining with liquid chromatographic tandem mass spectrometry (LC-MS/MS). The detection limits were in the range of 0.15-0.39 ng L-1, and satisfactory recoveries were found to be 82.1%-115%. It can be seen that the universal strategy to fabricate SPME membrane is helpful to achieve broad-spectrum or selective enrichments of target analytes from complex matrix by simple modulation of membrane components.
Collapse
Affiliation(s)
- Yueru Shi
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuyao Huang
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yixin Kuang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zexun Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jing Guo
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shufen Cui
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China.
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, China
| |
Collapse
|
13
|
Preparation of Polyacrylonitrile/Ni-MOF electrospun nanofiber as an efficient fiber coating material for headspace solid-phase microextraction of diazinon and chlorpyrifos followed by CD-IMS analysis. Food Chem 2021; 350:129242. [PMID: 33626398 DOI: 10.1016/j.foodchem.2021.129242] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Herein, an electrospun polyacrylonitrile/nickel-based metal-organic framework nanocomposite (PAN/Ni-MOF) coating on a stainless steel wire was synthesized and employed as a novel nanosorbent for headspace solid-phase microextraction (HS-SPME) of organophosphorus pesticides (OPPs), diazinon (DIZ), and chlorpyrifos (CPS) from the diverse aqueous media followed by corona discharge ion mobility spectrometry (CD-IMS). Under the optimum experimental conditions, the calibration plots were linear in the range of 1.0-250.0 ng mL-1 for DIZ and 0.5-300.0 ng mL-1 for CPS with r2 > 0.999. The detection limits (S/N = 3) were 0.3 and 0.2 ng mL-1 for DIZ and CPS, respectively. The intra-day relative standard deviations (RSDs%) (n = 5) at the concentration levels of 20.0, 40.0, and 100.0 ng mL-1 were ≤ 5.2%. To investigate the extraction efficiency, PAN/Ni-MOF was employed to analyze various juice samples, including orange, apple, and grape juices, and in three water samples where it led to good recoveries ranged between 87% and 98%.
Collapse
|
14
|
|
15
|
Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A 2020; 1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
16
|
Application trends of nanofibers in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115992
expr 834212330 + 887677890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
17
|
|
18
|
Háková M, Havlíková LC, Švec F, Solich P, Šatínský D. Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: A tutorial. Anal Chim Acta 2020; 1121:83-96. [PMID: 32493593 DOI: 10.1016/j.aca.2020.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Polymers in nanofiber format promise a great potential as sorbents for extraction techniques. This tutorial provides an overview of direct coupling of extraction techniques based on nanofibers to liquid chromatography. Arrangements of the fibers in conventional extraction cartridges are demonstrated. Selection of suitable nanomaterials according to their surface density, wettability, and mechanical stability is proposed and personal experience of the authors commented. Optimization of on-line extraction procedure, practical aspects, technical problems, pitfalls, pros, and cons of using nanofibers for extraction in high-pressure chromatography systems are also discussed and several examples presented. The following text comprehensively summarizes numerous reports that dealt with the topic. Future perspectives of advanced nanofiber materials and approaches that concern polymer fibers modifications are also included.
Collapse
Affiliation(s)
- Martina Háková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Chocholoušová Havlíková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|