1
|
Sivasubramaniyan SM, Suresh I, Balasubramanian S, Nesakumar N, Rayappan JBB, Kulandaisamy AJ. Electrochemical detection of profenofos in water using a UiO-67 metal organic framework with graphene oxide composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40356571 DOI: 10.1039/d5ay00296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Profenofos substantially enhances the productivity of agricultural growth; however, it poses adverse ill effects on humans due to residual profenofos presence in water, resulting in severe contamination. Therefore, it is the need of the hour to develop a highly sensitive electrochemical sensor that can detect trace levels of profenofos in different kinds of water samples with enhanced accuracy. In this context, a detection strategy predicated upon the prescribed threshold of profenofos pesticide has been delineated. A UiO-67 metal-organic framework (MOF)/graphene oxide (GO) composite was synthesized via a solvothermal method and characterized using X-ray diffractometry, Fourier-transform infrared spectrometry, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectrometry, cyclic voltammetry, electrochemical impedance spectroscopy, and Brunauer-Emmett-Teller analysis. The resultant sensor exhibited the capability to recognize profenofos across the detection range of 10.0 to 500.0 μM, with a notably low detection limit (LOD) of 0.09 μM and a high sensitivity of 1.8 × 10-3 μA μM-1 using the amperometric method. Importantly, the sensor manifested commendable performance attributes, encompassing favorable repeatability (RSD: 0.5%), resistance to interference (5%), and exceptional recovery rates (98.82-108.89%) when applied to drinking water, groundwater, and agricultural irrigation water samples. The integration of UiO-67 MOF with GO enhanced the sensitivity of the fabricated electrode by providing abundant active sites for profenofos interaction. This innovative methodology holds potential for alleviating the challenges associated with profenofos contamination, presenting a reliable and effective approach for detection and quantification in varied environmental contexts.
Collapse
Affiliation(s)
| | - Indhu Suresh
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
2
|
Almenhali AZ, Kanagavalli P, Abd-Ellah M, Khazaal S, El Darra N, Eissa S. Reduced graphene oxide-based electrochemical aptasensor for the multiplexed detection of imidacloprid, thiamethoxam, and clothianidin in food samples. Sci Rep 2025; 15:10329. [PMID: 40133422 PMCID: PMC11937245 DOI: 10.1038/s41598-025-94313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Neonicotinoids are a group of neurotoxic insecticides that possess significant threats not only to the environment but also to human health. This underlines the importance of developing efficient and accurate tools to detect neonicotinoids and track their behavior. Aptamers have been widely used as stable, efficient, and specific biorecognition molecules in biosensors. Nonetheless, no aptasensor was reported for the multiplexed detection of neonicotinoids. Herein, a graphene-based electrochemical biosensor was fabricated with three aptamers for the detection of imidacloprid, thiamethoxam, and clothianidin. The imidacloprid-specific aptamer underwent a truncation, which showed strong affinity with KD = 12.8 nM compared to 20.1 nM of the original sequence when studied with differential pulse voltammetry (DPV). Screen printed electrodes were coated with graphene oxide. After electrochemical reduction, 1-pyrenebutyric acid was used to functionalize the electrodes and covalently immobilize the aptamers. The electrodes were characterized by scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) to ensure successful aptasensor fabrication. The biosensor displayed excellent sensitivity compared with reported aptasensors and linear ranges from 0.01 ng/mL to 100 ng/mL for imidacloprid, thiamethoxam, and clothianidin. It also demonstrated excellent selectivity to the three analytes. Spiked extracts from tomato and rice samples were analyzed using our aptasensor, and results were validated through conventional chromatography assays. High recovery rates for all three neonicotinoids were obtained, demonstrating excellent agreement between the two methods. This study presents a cost-effective and simple multiplex detection for the sensitive, specific, and accurate on-site analysis of neonicotinoids.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pandiyaraj Kanagavalli
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Marwa Abd-Ellah
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Salma Khazaal
- Department of Nutrition & Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Tarik El Jedidah, P. O. Box 115020, Beirut, 1107 2809, Lebanon
| | - Nada El Darra
- Department of Nutrition & Dietetics, Faculty of Health Sciences, Beirut Arab University, Riad El Solh, Tarik El Jedidah, P. O. Box 115020, Beirut, 1107 2809, Lebanon
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
- Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Pushparajah S, Shafiei M, Yu A. Current Advances in Aptasensors for Pesticide Detection. Top Curr Chem (Cham) 2025; 383:17. [PMID: 40121587 PMCID: PMC11930883 DOI: 10.1007/s41061-025-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/16/2025] [Indexed: 03/25/2025]
Abstract
The increasing use of pesticides necessitates the development of innovative analytical methods to regulate environmental impacts and ensure food safety. Aptamer-based sensors hold great promise for pesticide detection owing to their superior selectivity, stability, repeatability, and regenerative capabilities. Integrated with nanomaterials, aptasensors have demonstrated enhanced sensitivity for detecting a broad range of pesticides. This study first introduces the aptamer binding mechanism and presents the fundamental concept and justification for selecting aptamer over other biorecognition molecules. It then provides a comprehensive review of recent advancements and applications of various types of aptasensors for targeted pesticide detection, including electrochemical, fluorescent, colorimetric, electrochemiluminescent, and surface-enhanced Raman scattering (SERS) aptasensors. Additionally, it offers a comparative analysis of different aptasensors by evaluating their strengths and limitations. Finally, this review discusses strategies, such as advanced Systemic Evolution of Ligands by Exponential Enrichment (SELEX) technique, self-assembled monolayers (SAMs), and the use of antifouling agents to improve the aptamer's selectivity, signal-to-noise ratio, and mitigate nonspecific adsorption challenges. These developments are essential for creating highly sensitive and selective aptasensors, facilitating their practical use in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Suthira Pushparajah
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Mahnaz Shafiei
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Aimin Yu
- School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
4
|
Weng RC, Tsou MC, Lee JL, Tseng CM, Huang YF, Xiao YL, Lu YP, Chou WC, Chang RF, Chuang CY. Development of a rapid aptamer-chemiluminescence sensor for detecting glyphosate pesticide residue in soybeans. Talanta 2024; 272:125741. [PMID: 38359718 DOI: 10.1016/j.talanta.2024.125741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Glyphosate (GLY) is a widely used herbicide worldwide, particularly in cultivating genetically modified soybeans resistant to GLY. However, routine multi-residue analysis does not include GLY due to the complexity of soybean matrix components that can interfere with the analysis. This study presented the development of an aptamer-based chemiluminescence (Apt-CL) sensor for rapidly screening GLY pesticide residue in soybeans. The GLY-binding aptamer (GBA) was developed to bind to GLY specifically, and the remaining unbound aptamers were adsorbed onto gold nanoparticles (AuNPs). The signal was in the form of luminol-H2O2 emission, catalyzed by the aggregation of AuNPs in a chemiluminescent reaction arising from the GLY-GBA complex. The outcomes demonstrated a robust linear relationship between the CL intensity of GLY-GBA and the GLY concentration. In the specificity test of the GBA, only GLY and Profenofos were distinguished among the fifteen tested pesticides. Furthermore, the Apt-CL sensor was conducted to determine GLY residue in organic soybeans immersed in GLY as a real sample, and an optimal linear concentration range for detection after extraction was found to be between 0.001 and 10 mg/L. The Apt-CL sensor exploits the feasibility of real-time pesticide screening in food safety.
Collapse
Affiliation(s)
- Rui-Cian Weng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Min-Cheng Tsou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jyun-Lin Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Ming Tseng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Residue Control Division, Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Lin Xiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yen-Pei Lu
- Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Wei-Chun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Ruey-Feng Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Wu X, Zhu J, Wen R, Tian J, Lu J. A photoelectrochemical aptasensor for omethoate determination based on a photocatalysis of CeO 2@MnO 2 heterojunction for glucose oxidation. Anal Chim Acta 2024; 1293:342284. [PMID: 38331552 DOI: 10.1016/j.aca.2024.342284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
In the present work, we developed a photoelectrochemical aptasensor to determine omethoate (OMT) based on the dual signal amplification of CeO2@MnO2 photocatalysis for glucose oxidation and exonuclease I-assisted cyclic catalytic hydrolysis. CeO2@MnO2 heterojunction material prepared by hydrothermal method was linked with captured DNA (cDNA) and then assembled on the ITO conductive glass to form ITO/CeO2@MnO2-cDNA, which exhibited significant photocurrent response and good photocatalytic performance for glucose oxidation under visible light irradiation, providing the feasibility for sensitive determining OMT. After binding with the aptamer of OMT (apt), the formation of rigid double stranded cDNA/apt kept CeO2@MnO2 away from ITO surface, which ensured a low photocurrent background for the constructed ITO/CeO2@MnO2-cDNA/apt aptasensor. In the presence of target OMT, the restoration of the cDNA hairpin structure and the exonuclease I-assisted cyclic catalytic hydrolysis led to the generation and amplification of measurement photocurrent signals, and allowed the aptasensor to have an ideal quantitative range of 0.01-10.0 nM and low detection limit of 0.0027 nM. Moreover, the aptasensor has been applied for selective determination of OMT in real samples with good precision of the relative standard deviation less than 6.2 % and good accuracy of the recoveries from 93 % to 108 %. What's more, the aptasensor can be used for other target determination only by replacing the captured DNA and corresponding aptamer.
Collapse
Affiliation(s)
- Xingyang Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Jing Zhu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Ruiting Wen
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Jiuying Tian
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Jusheng Lu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
6
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
7
|
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023; 238:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Among polysaccharides of environmental and economic interest, chitosan (CS) is receiving much attention, particularly in the food and biotechnology industries to encapsulate active food ingredients and immobilize enzymes. CS nanoparticles (CS NPs) combine the intrinsic beneficial properties of both natural polymers and nanoscale particles such as quantum size effect, biocompatibility, biodegradability, and ease of modification, and have great potential for bioimaging, drug delivery, and biosensing applications. Aptamers are single-stranded oligonucleotides that can fold into predetermined structures and bind to the corresponding biomolecules. They are mainly used as targeting ligands in biosensors, disease diagnostic kits and treatment strategies. They can deliver contrast agents and drugs into cancer cells and tissues, control microorganism growth and precisely target pathogens. Aptamer-conjugated CS NPs can significantly improve the efficacy of conventional therapies, minimize their side effects on normal tissues, and overcome the enhanced permeability retention (EPR) effect. Further, aptamer-conjugated carbohydrate-based nanobiopolymers have shown excellent antibacterial and antiviral properties and can be used to develop novel biosensors for the efficient detection of antibiotics, toxins, and other biomolecules. This updated review aims to provide a comprehensive overview of the bioapplications of aptamer-conjugated CS NPs used as innovative diagnostic and therapeutic platforms, their limitations, and potential future directions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary.
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Zheng Y, Mao S, Zhu J, Fu L, Moghadam M. A scientometric study on application of electrochemical sensors for detection of pesticide using graphene-based electrode modifiers. CHEMOSPHERE 2022; 307:136069. [PMID: 35985381 DOI: 10.1016/j.chemosphere.2022.136069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticide testing is an important topic in environmental protection and food safety. The development of green, accurate and reliable pesticide residue detection methods is an important technical support for implementing of agricultural quality supervision. Electrochemical sensors are a very promising analytical method for pesticide detection due to their high sensitivity, speed, low cost and portability. Performance enhancement of electrochemical sensors is often accompanied by research advances in materials science. Among them, carbon material is a very important electrode material for the fabrication of electrochemical sensors. The discovery of graphene makes it the most promising candidate among carbon materials for sensor performance enhancement. The topic of this review is the use of graphene-modified electrochemical sensors for pesticide detection in the last decade. Traditional literature summaries and bibliometric analyses were used for an in-depth analysis of this topic. In addition to the introduction of different sensor types and performance comparisons, this review also parses the authors' country, keywords and publication frequency. The related research experienced rapid growth several years ago and has now reached a relatively stable stage. We also discuss the perspectives on this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Shuduan Mao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
9
|
Wang G, Dong H, Han J, Zhang M, Huang J, Sun J, Guan F, Shen Z, Xu D, Sun X, Guo Y, Zhao S. Interference-resistant aptasensor with tetrahedral DNA nanostructure for profenofos detection based on the composites of graphene oxide and polyaniline. Bioelectrochemistry 2022; 148:108227. [PMID: 35973324 DOI: 10.1016/j.bioelechem.2022.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
In this work, an interference-resistant electrochemical aptasensor that could detect profenofos in vegetables was constructed based on complexes of graphene oxide and polyaniline (GO@PANI) and gold nanoparticles-tetrahedral DNA nanostructure (Au-TDN). Compared with a single chain aptamer, the tetrahedral DNA nanostructure is highly stable and allows the aptamer on this structure to stand in a highly ordered position on an electrode surface. Moreover, the AuNPs are biocompatible and can protect the activity of the aptamer, which can improve the assembly success rate of Au-TDN. Besides, the conductivity of PANI had been tremendously enhanced thanks to the existence of GO, which improved the dispersion of PANI. The GO@PANI was prepared by a chemical synthesis method, which had a large surface area and was able to adsorb many Au-TDN. Under optimal working parameters, the constructed aptasensor exhibited good electrochemical sensing performance with a detection limit of 10.50 pg/mL and a linear range of 1.0 × 102-1.0 × 107 pg/mL. In addition, it was employed in detecting profenofos in vegetables with a good recovery rate of 90.41-116.37 %. More importantly, the aptasensor also has excellent stability and high selectivity. This study provides a promising method to avoid interference in the detection of profenofos by sensors.
Collapse
Affiliation(s)
- Guanjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haowei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Fukai Guan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Shancang Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
| |
Collapse
|
10
|
Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 2022; 216:114601. [DOI: 10.1016/j.bios.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
|
11
|
Li T, Wang J, Zhu L, Li C, Chang Q, Xu W. Advanced screening and tailoring strategies of pesticide aptamer for constructing biosensor. Crit Rev Food Sci Nutr 2022; 63:10974-10994. [PMID: 35699641 DOI: 10.1080/10408398.2022.2086210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rapid development of aptamers has helped address the challenges presented by the wide existed pesticides contaminations. Screening of aptamers with excellent performance is a prerequisite for successfully constructing biosensors, while further tailoring of aptamers with enhanced activity greatly improved the assay performance. Firstly, this paper reviewed the advanced screening strategies for pesticides aptamers, including immobilization screening that preserves the native structures of targets, non-immobilized screening based on nanomaterials, capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX), virtual screening in silico, high-throughput selection, and rational secondary library generation methods, which contributed significantly to improve the success rate of screening, reduce the screening time, and ensure aptamer binding affinity. Secondly, the precise tailoring strategies for pesticides aptamers were modularly elaborated, containing deletion, splitting, elongation, and fusion, which provided various advantages like cost-efficiency, enhanced binding affinity, and new derived functional motifs. Thirdly, the developed aptamer-based biosensors (aptasensors) for pesticide detection were systematically reviewed according to the different signal output modes. Finally, the challenges and future perspectives of pesticide detection are discussed comprehensively.
Collapse
Affiliation(s)
- Tianshun Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| | - Chenwei Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaoying Chang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University,, Beijing, China
| |
Collapse
|
12
|
Aptamer-binding zirconium-based metal-organic framework composites prepared by two conjunction approaches with enhanced bio-sensing for detecting isocarbophos. Talanta 2022; 236:122822. [PMID: 34635212 DOI: 10.1016/j.talanta.2021.122822] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
A novel label-free and enzyme-free detection strategy has been developed for the electrochemical biosensor detection of isocarbophos (ICP) using UiO-66-NH2 and aptamer as the signal transducers. In this work, the ICP aptamers were attached to UiO-66-NH2 through physical mixing and chemical combination methods. In the presence of ICP, the aptamers could undergo conformational change and bind to them, which prevent the electron transfer to the surface of electrode. By comparing the two conjunction approaches of aptasensors, these proposed strategies could selectively and sensitively detect ICP with a detection limit of 6 ng mL-1 (20.74 nM) and 0.9 ng mL-1 (3.11 nM). Furthermore, we have also demonstrated the capability of this strategy in the detection of ICP in real samples from vegetable and fruit extract, indicating the potential application of this strategy in food safety issues.
Collapse
|
13
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
14
|
Eco-friendly fabrication of a magnetic dual-template molecularly imprinted polymer for the selective enrichment of organophosphorus pesticides for fruits and vegetables. Anal Chim Acta 2021; 1186:339128. [PMID: 34756263 DOI: 10.1016/j.aca.2021.339128] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023]
Abstract
A magnetic dual-template molecularly imprinted polymer (DMIP) was successfully prepared in an aqueous medium and used as a sorbent for the selective extraction of organophosphorus pesticides prior to analysis by high-performance liquid chromatography (HPLC). The binding properties and selectivity of DMIP toward organophosphorus were evaluated and compared with those of a non-imprinted polymer. The established magnetic dispersive solid-phase extraction (MDSPE) method using DMIP exhibited fast enrichment of the target analytes within 60 s for adsorption and 30 s for desorption. Good linearities in the range of 0.5-2000 μg L-1 with coefficients of determination (R2) greater than 0.9930 were observed. The method provides low limits of detection of 0.062-0.195 μg L-1 and limits of quantification of 0.210-0.640 μg L-1 with relative standard deviations of less than 9.5% for intra- and inter-day analyses. The enrichment factors ranged from 464 to 621. Satisfactory recoveries ranged from 81.3 to 110.0% with relative standard deviations below 11%.
Collapse
|
15
|
Stanciu LA, Wei Q, Barui AK, Mohammad N. Recent Advances in Aptamer-Based Biosensors for Global Health Applications. Annu Rev Biomed Eng 2021; 23:433-459. [PMID: 33872519 DOI: 10.1146/annurev-bioeng-082020-035644] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since aptamers were first reported in the early 2000s, research on their use for the detection of health-relevant analytical targets has exploded. This review article provides a brief overview of the most recent developments in the field of aptamer-based biosensors for global health applications. The review provides a description of general aptasensing principles and follows up with examples of recent reports of diagnostics-related applications. These applications include detection of proteins and small molecules, circulating cancer cells, whole-cell pathogens, extracellular vesicles, and tissue diagnostics. The review also discusses the main challenges that this growing technology faces in the quest of bringing these new devices from the laboratory to the market.
Collapse
Affiliation(s)
- Lia A Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, USA; .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Amit K Barui
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, USA; .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
16
|
Rovina K, Vonnie JM, Mantihal S, Joseph J, Halid NFA. Development of films based on tapioca starch/gold nanoparticles for the detection of organophosphorus pesticides. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
A multi-residue electrochemical biosensor based on graphene/chitosan/parathion for sensitive organophosphorus pesticides detection. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Phopin K, Tantimongcolwat T. Pesticide Aptasensors-State of the Art and Perspectives. SENSORS 2020; 20:s20236809. [PMID: 33260648 PMCID: PMC7730859 DOI: 10.3390/s20236809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Contamination by pesticides in the food chain and the environment is a worldwide problem that needs to be actively monitored to ensure safety. Unfortunately, standard pesticide analysis based on mass spectrometry takes a lot of time, money and effort. Thus, simple, reliable, cost-effective and field applicable methods for pesticide detection have been actively developed. One of the most promising technologies is an aptamer-based biosensor or so-called aptasensor. It utilizes aptamers, short single-stranded DNAs or RNAs, as pesticide recognition elements to integrate with various innovative biosensing technologies for specific and sensitive detection of pesticide residues. Several platforms for aptasensors have been dynamically established, such as colorimetry, fluorometry, electrochemistry, electrochemiluminescence (ECL) and so forth. Each platform has both advantages and disadvantages depending on the purpose of use and readiness of technology. For example, colorimetric-based aptasensors are more affordable than others because of the simplicity of fabrication and resource requirements. Electrochemical-based aptasensors have mainly shown better sensitivity than others with exceedingly low detection limits. This paper critically reviews the progression of pesticide aptasensors throughout the development process, including the selection, characterization and modification of aptamers, the conceptual frameworks of integrating aptamers and biosensors, the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users) criteria of different platforms and the future outlook.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Correspondence:
| |
Collapse
|
19
|
Jullakan S, Bunkoed O, Pinsrithong S. Solvent-assisted dispersive liquid-solid phase extraction of organophosphorus pesticides using a polypyrrole thin film–coated porous composite magnetic sorbent prior to their determination with GC-MS/MS. Mikrochim Acta 2020; 187:677. [DOI: 10.1007/s00604-020-04649-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
|
20
|
Li W, Chen M, Liang J, Lu C, Zhang M, Hu F, Zhou Z, Li G. Electrochemical aptasensor for analyzing alpha-fetoprotein using RGO-CS-Fc nanocomposites integrated with gold-platinum nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4956-4966. [PMID: 33000769 DOI: 10.1039/d0ay01465f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, a label-free electrochemical aptasensor for alpha-fetoprotein (AFP) analysis was established. The AFP aptamer (AFP-Apt), as the recognition molecule, was immobilized on the surface of a screen-printed carbon electrode, which was modified by gold-platinum metallic nanoparticles and reduced graphene oxide-chitosan-ferrocene nanohybrids (Au-Pt NPs/RGO-CS-Fc), to build the AFP electrochemical aptasensor. The construction process of the aptasensor was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and electrochemical impedance spectroscopy. With the addition of AFP, the formation of the AFP-aptamer conjugation blocked the electron transfer reaction, reducing the differential pulse voltammetric responses of the current of Fc in the RGO-CS-Fc nanohybrids. By optimizing the experimental parameters, AFP could be detected with the dynamic concentration range of 0.001 to 10.0 μg mL-1 and with a detection limit of 0.3013 ng mL-1. In addition, the approach was manifested to have good selectivity, reproducibility, and stability. The fabricated aptasensor had a good recovery rate of 102.36% to 118.09% in real human serum samples. This work demonstrates that the electrochemical aptasensor is a useful tool for analyzing AFP inexpensively, rapidly, and accurately.
Collapse
Affiliation(s)
- Wenzhan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Amiri M, Nekoueian K, Saberi RS. Graphene-family materials in electrochemical aptasensors. Anal Bioanal Chem 2020; 413:673-699. [PMID: 32939567 DOI: 10.1007/s00216-020-02915-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The study of graphene-based carbon nanocomposites has remarkably increased in recent years. Functionalized graphene-based nanostructures, including graphene oxide and reduced graphene oxide, have great potential as new innovative electrode materials in the fabrication of novel electrochemical sensors. Electrochemical sensors based on aptamers attracted great attention because of their high sensitivity and selectivity, and simple instrumentation, as well as low production cost. Aptamers as a potent alternative to antibodies are functional nucleic acids with a high tendency to specific analytes. Electrochemical aptasensors show specific recognition ability for a wide range of analytes. Although aptamers are selected in vitro in contrast to antibodies, they are interesting due to advantages like high stability, easy chemical modifications, and the potential to be employed in nanostructured device fabrication or electrochemical sensing devices. Recently, new nanomaterials have shown a significant impact on the production of electrochemical sensors with high efficiency and performance. This review aims to give an outline of electrochemical aptasensors based on the graphene family materials and discuss the detection mechanism in this type of aptasensors. The present review summarizes some of the recent achievements in graphene-based aptasensors and includes their recent electroanalytical applications. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, 56199-11367, Iran.
| | - Khadijeh Nekoueian
- Department of Chemistry, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, 56199-11367, Iran
| | - Reyhaneh Sadat Saberi
- East Sage Investigative Corporation, Isfahan Science and Technology Town, Isfahan, 8415683111, Iran
| |
Collapse
|
22
|
Guo Y, Wei W, Zhang Y, Dai Y, Wang W, Wang A. Determination of sulfadimethoxine in milk with aptamer-functionalized Fe 3 O 4 /graphene oxide as magnetic solid-phase extraction adsorbent prior to HPLC. J Sep Sci 2020; 43:3499-3508. [PMID: 32573934 DOI: 10.1002/jssc.202000277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023]
Abstract
An aptamer (Apt) functionalized magnetic material was prepared by covalently link Apt to Fe3 O4 /graphene oxide (Fe3 O4 /GO) composite by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide, and then characterized by FTIR spectroscopy, X-ray diffraction, and vibration sample magnetometry. The obtained composite of Fe3 O4 /GO/Apt was employed as magnetic solid-phase extraction adsorbent for the selective preconcentration of sulfadimethoxine prior to analysis by high-performance liquid chromatography. Under the optimal conditions (sample pH of 4.0, sorbent dosage of 20 mg, extraction time of 3 h, and methanol-5% acetic acid solution as eluent), a good linear relationship was obtained between the peak area and concentration of sulfadimethoxine in the range of 5.0 to 1500.0 µg/L with correlation coefficient of 0.9997. The limit of detection (S/N = 3) was 3.3 µg/L. The developed method was successfully applied to the analysis of sulfadimethoxine in milk with recoveries in the range of 75.9-92.3% and relative standard deviations less than 8.1%. The adsorption mechanism of Fe3 O4 /GO/Apt toward sulfadimethoxine was studied through the adsorption kinetics and adsorption isotherms, and the results show that the adsorption process fits well with the pseudo-second-order kinetic model and the adsorbate on Fe3 O4 /GO/Apt is multilayer and heterogeneous.
Collapse
Affiliation(s)
- Yinan Guo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Wei Wei
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Ying Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Yuanyuan Dai
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Aijun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
23
|
Sha R, Bhattacharyya TK. MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136370] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Wang B, Li Y, Hu H, Shu W, Yang L, Zhang J. Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides. PLoS One 2020; 15:e0231981. [PMID: 32348360 PMCID: PMC7190139 DOI: 10.1371/journal.pone.0231981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
An acetylcholinesterase biosensor modified with graphene and transition metal carbides was prepared to detect organophosphorus pesticides. Cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy were used to characterize the electrochemical catalysis of the biosensor: acetylcholinesterase/chitosan-transition metal carbides/graphene/glassy carbon electrode. With the joint modification of graphene and transition metal carbides, the biosensor has a good performance in detecting dichlorvos with a linear relationship from 11.31 μM to 22.6 nM and the limit of detection was 14.45 nM. Under the premise of parameter optimization, the biosensor showed a good catalytic performance for acetylcholine. Compared to the biosensors without modification, it expressed a better catalytic performance due to the excellent electrical properties, biocompatibility and high specific surface area of graphene, transition metal carbides. Finally, the biosensor exhibits good stability, which can be stored at room temperature for one month without significant performance degradation, and has practical potential for sample testing.
Collapse
Affiliation(s)
- Bo Wang
- Microelectronics Research & Develop Center, Shanghai University, Shanghai, China
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai, China
| | - Yiru Li
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai, China
| | - Huaying Hu
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai, China
| | - Wenhao Shu
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai, China
| | - Lianqiao Yang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai, China
| |
Collapse
|