1
|
D'Andria M, Elias Abi‐Ramia Silva T, Consogno E, Krumeich F, Güntner AT. Metastable CoCu 2O 3 Nanocrystals from Combustion-Aerosols for Molecular Sensing and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408888. [PMID: 39252677 PMCID: PMC11586830 DOI: 10.1002/adma.202408888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Metastable nanostructures are kinetically trapped in local energy minima featuring intriguing surface and material properties. To unleash their potential, there is a need for non-equilibrium processes capable of stabilizing a large range of crystal phases outside thermodynamic equilibrium conditions by closely and flexibly controlling atomic reactant composition, spatial temperature distribution and residence time. Here, the capture of metastable pseudo-binary metal oxides at room temperature is demonstrated with scalable combustion-aerosol processes. By a combination of X-ray diffraction, electron microscopy and on-line flame characterization, the occurrence of metastable CoCu2O3 is investigated with controlled crystal size (4-16 nm) over thermodynamically stable CuO and Co3O4. Immediate practical impact is demonstrated by exceptional sensing and stable catalytic performance for air pollutant detection (e.g., 15 parts-per-billion benzene) shown for, at least, 21 days. This approach can be extended to various binary, ternary and high entropy oxides with even more components. Also, secondary phases can be loaded on such metastable nanocrystals to access novel materials promising for actuators, energy storage or solar cells.
Collapse
Affiliation(s)
- Matteo D'Andria
- Human‐Centered Sensing LaboratoryDepartment of Mechanical and Process Engineering, ETH ZurichZurichCH‐8092Switzerland
| | - Tiago Elias Abi‐Ramia Silva
- Human‐Centered Sensing LaboratoryDepartment of Mechanical and Process Engineering, ETH ZurichZurichCH‐8092Switzerland
| | - Edoardo Consogno
- Human‐Centered Sensing LaboratoryDepartment of Mechanical and Process Engineering, ETH ZurichZurichCH‐8092Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BiosciencesETH ZurichZurichCH‐8093Switzerland
| | - Andreas T. Güntner
- Human‐Centered Sensing LaboratoryDepartment of Mechanical and Process Engineering, ETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|
2
|
Gashnikova D, Maurer F, Sauter E, Bernart S, Jelic J, Dolcet P, Maliakkal CB, Wang Y, Wöll C, Studt F, Kübel C, Casapu M, Grunwaldt JD. Highly Active Oxidation Catalysts through Confining Pd Clusters on CeO 2 Nano-Islands. Angew Chem Int Ed Engl 2024; 63:e202408511. [PMID: 38877822 DOI: 10.1002/anie.202408511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
CeO2-supported noble metal clusters are attractive catalytic materials for several applications. However, their atomic dispersion under oxidizing reaction conditions often leads to catalyst deactivation. In this study, the noble metal cluster formation threshold is rationally adjusted by using a mixed CeO2-Al2O3 support. The preferential location of Pd on CeO2 islands leads to a high local surface noble metal concentration and promotes the in situ formation of small Pd clusters at a rather low noble metal loading (0.5 wt %), which are shown to be the active species for CO conversion at low temperatures. As elucidated by complementary in situ/operando techniques, the spatial separation of CeO2 islands on Al2O3 confines the mobility of Pd, preventing the full redispersion or the formation of larger noble metal particles and maintaining a high CO oxidation activity at low temperatures. In a broader perspective, this approach to more efficiently use the noble metal can be transferred to further systems and reactions in heterogeneous catalysis.
Collapse
Affiliation(s)
- Daria Gashnikova
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Eric Sauter
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sarah Bernart
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jelena Jelic
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
- Current address: Department of Chemical Sciences, University of Padova, via Francesco Marzolo 1, 35131, Padova, Italy
| | - Carina B Maliakkal
- Institute of Nanotechnology (INT) and, Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT) and, Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Materials Research, Technical University Darmstadt (TUDa), Peter-Grünberg-Straße 2, 64287, Darmstadt, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Jabłczyńska K, Gogos A, Kubsch CMP, Pratsinis SE. Embedding Pd into SnO 2 drastically enhances gas sensing. NANOSCALE ADVANCES 2024; 6:1259-1268. [PMID: 38356635 PMCID: PMC10863718 DOI: 10.1039/d3na00558e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Combustion aerosol processes can uniquely embed noble metals into semiconducting particles. Here, monocrystalline SnO2 particles embedded with Pd and/or PdOx were made by flame spray pyrolysis (FSP) of appropriate precursors through microexplosions by droplet-to-particle conversion as the crystal size was proportional to the cube root of precursor solution concentration, C. These particles were air-annealed and leached with nitric acid for removal of metallic Pd from their surface. The SnO2 crystal size varied from 11 to 24 nm and was in close agreement with the primary particle size determined by nitrogen adsorption. The embedded fraction of Pd ranged from about 30 to 80% of the nominal Pd-content. This was achieved by judiciously varying the C, Pd content and the ratio of precursor solution to dispersion oxygen flowrates during FSP. The response of sensors made by doctor blading films of such particles to 1 ppm of acetone and CO was evaluated at 350 °C and 50% relative humidity. Embedding Pd/PdOx into SnO2 significantly increased the sensor response: 2-6 times over that of pure or conventionally-made Pd-containing SnO2 sensors at low nominal Pd-contents (0.2 mol%). For higher ones (i.e. 1 mol% Pd), the sensor response was enhanced by up to two orders of magnitude. This is attributed to Pd atoms in the SnO2 lattice near the particle surface and/or Pd/PdOx clusters acting as nanoelectrodes into SnO2 films and altering their transducing properties as shown by high resolution electron microscopy, XPS and baseline resistance measurements of pure and Pd-embedded SnO2 sensing films.
Collapse
Affiliation(s)
- Katarzyna Jabłczyńska
- Particle Technology Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology 00-645 Warsaw Poland
| | - Alexander Gogos
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa) CH-9014 St. Gallen Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
| | - Christian M P Kubsch
- Particle Technology Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich CH-8092 Zurich Switzerland
| |
Collapse
|
4
|
Zhu LY, Ou LX, Mao LW, Wu XY, Liu YP, Lu HL. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. NANO-MICRO LETTERS 2023; 15:89. [PMID: 37029296 PMCID: PMC10082150 DOI: 10.1007/s40820-023-01047-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring, exhaled breath diagnosis, and food freshness analysis. Among various chemiresistive sensing materials, noble metal-decorated semiconducting metal oxides (SMOs) have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals. This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures (e.g., nanoparticles, nanowires, nanorods, nanosheets, nanoflowers, and microspheres) for high-performance gas sensors with higher response, faster response/recovery speed, lower operating temperature, and ultra-low detection limits. The key topics include Pt, Pd, Au, other noble metals (e.g., Ag, Ru, and Rh.), and bimetals-decorated SMOs containing ZnO, SnO2, WO3, other SMOs (e.g., In2O3, Fe2O3, and CuO), and heterostructured SMOs. In addition to conventional devices, the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed. Moreover, the relevant mechanisms for the sensing performance improvement caused by noble metal decoration, including the electronic sensitization effect and the chemical sensitization effect, have also been summarized in detail. Finally, major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed.
Collapse
Affiliation(s)
- Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lang-Xi Ou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Wen Mao
- School of Opto-Electronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xue-Yan Wu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yi-Ping Liu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
5
|
Ojha B, Aleksandrova M, Schwotzer M, Franzreb M, Kohler H. Thermo-cyclically operated metal oxide gas sensor arrays for analysis of dissolved volatile organic compounds in fermentation processes: Part I – Morphology aspects of the sensing behavior. SENSING AND BIO-SENSING RESEARCH 2023. [DOI: 10.1016/j.sbsr.2023.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
6
|
A Review on Polyaniline: Synthesis, Properties, Nanocomposites, and Electrochemical Applications. INT J POLYM SCI 2022. [DOI: 10.1155/2022/9047554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development in the use of polyaniline (PANI) in advanced studies makes us draw attention to the presented research and combine it into one study like this one. The unique composition of PANI qualifies it for use in electrochemical applications in addition to many other applications whose use depends on its mechanical properties. Based on this, it is necessary to limit the reactions that produce PANI and the cheapest cost, and then limit the current uses in the formation of nanocomposites with metals, their oxides, and/or carbon nanocomposites in order to determine what is missing from them and work on it again to expand its chemistry. The development in the use of PANI in advanced studies makes us draw attention to the research presented on PANI and combine it into one study. One of the very important things that made PANI possess a very huge research revolution are preparation in a variety of ways, easy and inexpensive, from which a daily product can be obtained with very high purity, as well as its distinctive properties that made it the focus of researchers in various scientific departments. The unique structure of PANI, which is easy to prepare in its pure form or with various chemical compounds including metals, metal oxides, and carbon nanomaterials (such as carbon nanotubes, graphene, graphene oxide, and reduced graphene oxide), qualifies it for use in electrochemical applications. The various studies reviewed showed that PANI gave good results in the applications of super capacitors. In some of the studies mentioned later, it gave a specific capacitance of 503 F/g, cycle stability 85% at 10,000 cycles, energy density 8.88 kW/kg, and power density 96 W h/kg. It was also noted that these values improved significantly when using PANI with its nanocomposites. Because of its good electrical conductivity and the possibility of preparing it with a high surface area with nanostructures in the form of nanowires, nanofibers, and nanotubes, PANI was used as a gas sensor. We have noticed, through the studies conducted in this field, that the properties of PANI as a basic material in gas sensors are greatly improved when it is prepared in the form of PANI nanocomposites, as explained in detail later. From this review, we tried with great effort to shed light on this attractive polymer in terms of its different preparation methods, its distinctive properties, its nanocomposites, and the type of polymerization used for each nanocomposites, as well as its applications in its pure form or with its nanocomposites in the supercapacitor and gas sensor applications.
Collapse
|
7
|
Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The demand for portable and wearable chemical or biosensors and their expeditious development in recent years has created a scientific challenge in terms of their continuous powering. As a result, mechanical energy harvesters such as piezoelectric and triboelectric generators (TEGs) have been explored recently either as sensors or harvesters to store charge in small, but long-life, energy-storage devices to power the sensors. The use of energy harvesters as sensors is particularly interesting, as with such multifunctional operations it is possible to reduce the number devices needed in a system, which also helps overcome the integration complexities. In this regard, TEGs are promising, particularly for energy autonomous chemical and biological sensors, as they can be developed with a wide variety of materials, and their mechanical energy to electricity conversion can be modulated by various analytes. This review focuses on this interesting dimension of TEGs and presents various self-powered active chemical and biological sensors. A brief discussion about the development of TEG-based physical, magnetic, and optical sensors is also included. The influence of environmental factors, various figures of merit, and the significance of TEG design are explained in context with the active sensing. Finally, the key applications, challenges, and future perspective of chemical and biological detection via TEGs are discussed with a view to drive further advances in the field of self-powered sensors.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
8
|
Weber IC, Rüedi P, Šot P, Güntner AT, Pratsinis SE. Handheld Device for Selective Benzene Sensing over Toluene and Xylene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103853. [PMID: 34837486 PMCID: PMC8811843 DOI: 10.1002/advs.202103853] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Indexed: 06/01/2023]
Abstract
More than 1 million workers are exposed routinely to carcinogenic benzene, contained in various consumer products (e.g., gasoline, rubbers, and dyes) and released from combustion of organics (e.g., tobacco). Despite strict limits (e.g., 50 parts per billion (ppb) in the European Union), routine monitoring of benzene is rarely done since low-cost sensors lack accuracy. This work presents a compact, battery-driven device that detects benzene in gas mixtures with unprecedented selectivity (>200) over inorganics, ketones, aldehydes, alcohols, and even challenging toluene and xylene. This can be attributed to strong Lewis acid sites on a packed bed of catalytic WO3 nanoparticles that prescreen a chemoresistive Pd/SnO2 sensor. That way, benzene is detected down to 13 ppb with superior robustness to relative humidity (RH, 10-80%), fulfilling the strictest legal limits. As proof of concept, benzene is quantified in indoor air in good agreement (R2 ≥ 0.94) with mass spectrometry. This device is readily applicable for personal exposure assessment and can assist the implementation of low-emission zones for sustainable environments.
Collapse
Affiliation(s)
- Ines C. Weber
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurichCH‐8092Switzerland
| | - Pascal Rüedi
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurichCH‐8092Switzerland
| | - Petr Šot
- Department of Chemistry and Applied BiosciencesETH ZurichZurichCH‐8049Switzerland
| | - Andreas T. Güntner
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurichCH‐8092Switzerland
- Department of EndocrinologyDiabetologyand Clinical NutritionUniversity Hospital Zurich (USZ) and University of Zurich (UZH)ZurichCH‐8091Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|
9
|
Sousanis A, Biskos G. Thin Film and Nanostructured Pd-Based Materials for Optical H 2 Sensors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3100. [PMID: 34835864 PMCID: PMC8623850 DOI: 10.3390/nano11113100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/17/2023]
Abstract
In this review paper, we provide an overview of state-of-the-art Pd-based materials for optical H2 sensors. The first part of the manuscript introduces the operating principles, providing background information on the thermodynamics and the primary mechanisms of optical detection. Optical H2 sensors using thin films (i.e., films without any nanostructuring) are discussed first, followed by those employing nanostructured materials based on aggregated or isolated nanoparticles (ANPs and INPs, respectively), as well as complex nanostructured (CN) architectures. The different material types are discussed on the basis of the properties they can attribute to the resulting sensors, including their limit of detection, sensitivity, and response time. Limitations induced by cracking and the hysteresis effect, which reduce the repeatability and reliability of the sensors, as well as by CO poisoning that deteriorates their performance in the long run, are also discussed together with an overview of manufacturing approaches (e.g., tailoring the composition and/or applying functionalizing coatings) for addressing these issues.
Collapse
Affiliation(s)
- Andreas Sousanis
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus;
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia 2121, Cyprus;
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands
| |
Collapse
|
10
|
Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO 2. MATERIALS 2021; 14:ma14205921. [PMID: 34683516 PMCID: PMC8540906 DOI: 10.3390/ma14205921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Noble metal additives are widely used to improve the performance of metal oxide gas sensors, most prominently with palladium on tin oxide. Here, we photodeposit different quantities of Pd (0–3 mol%) onto nanostructured SnO2 and determine their effect on sensing acetone, a critical tracer of lipolysis by breath analysis. We focus on understanding the effect of operating temperature on acetone sensing performance (sensitivity and response/recovery times) and its relationship to catalytic oxidation of acetone through a packed bed of such Pd-loaded SnO2. The addition of Pd can either boost or deteriorate the sensing performance, depending on its loading and operating temperature. The sensor performance is optimal at Pd loadings of less than 0.2 mol% and operating temperatures of 200–262.5 °C, where acetone conversion is around 50%.
Collapse
|
11
|
van den Broek J, Weber IC, Güntner AT, Pratsinis SE. Highly selective gas sensing enabled by filters. MATERIALS HORIZONS 2021; 8:661-684. [PMID: 34821311 DOI: 10.1039/d0mh01453b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Portable and inexpensive gas sensors are essential for the next generation of non-invasive medical diagnostics, smart air quality monitoring & control, human search & rescue and food quality assessment to name a few of their immediate applications. Therein, analyte selectivity in complex gas mixtures like breath or indoor air remains the major challenge. Filters are an effective and versatile, though often unrecognized, route to overcome selectivity issues by exploiting additional properties of target analytes (e.g., molecular size and surface affinity) besides reactivity with the sensing material. This review provides a tutorial for the material engineering of sorption, size-selective and catalytic filters. Of specific interest are high surface area sorbents (e.g., activated carbon, silica gels and porous polymers) with tunable properties, microporous materials (e.g., zeolites and metal-organic frameworks) and heterogeneous catalysts, respectively. Emphasis is placed on material design for targeted gas separation, portable device integration and performance. Finally, research frontiers and opportunities for low-cost gas sensing systems in emerging applications are highlighted.
Collapse
Affiliation(s)
- Jan van den Broek
- Particle Technology Laboratory, Institute of Energy & Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
12
|
Güntner AT, Magro L, van den Broek J, Pratsinis SE. Detecting methanol in hand sanitizers. iScience 2021; 24:102050. [PMID: 33537657 PMCID: PMC7840468 DOI: 10.1016/j.isci.2021.102050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has increased dramatically the demand for hand sanitizers. A major concern is methanol adulteration that caused more than 700 fatalities in Iran and U.S.A. (since February 2020). In response, the U.S. Food and Drug Administration has restricted the methanol content in sanitizers to 0.063 vol% and blacklisted 212 products (as of November 20, 2020). Here, we present a low-cost, handheld, and smartphone-assisted device that detects methanol selectively in sanitizers between 0.01 and 100 vol% within two minutes. It features a nanoporous polymer column that separates methanol selectively from confounders by adsorption. A chemoresistive gas sensor detects the methanol. When tested on commercial sanitizers (total 76 samples), methanol was quantified in excellent (R2 = 0.99) agreement to "gold standard" gas chromatography. Importantly, methanol quantification was hardly interfered by sanitizer composition and viscosity. This device meets an urgent need for on-site methanol screening by authorities, health professionals, and even laymen.
Collapse
Affiliation(s)
- Andreas T. Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Leandro Magro
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Jan van den Broek
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
13
|
van den Broek J, Klein Cerrejon D, Pratsinis SE, Güntner AT. Selective formaldehyde detection at ppb in indoor air with a portable sensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123052. [PMID: 32937713 DOI: 10.1016/j.jhazmat.2020.123052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Formaldehyde is a carcinogenic indoor air pollutant emitted from wood-based furniture, building materials, paints and textiles. Yet, no low-cost sensor exists for on-site monitoring to fulfill stringent current and upcoming (e.g., 8 parts-per-billion by volume, ppb, in France by 2023) exposure guidelines. Here, we present an inexpensive and handheld formaldehyde detector with proven performance in real indoor air. Selectivity is achieved by a compact packed bed column of nanoporous polymer sorbent that separates formaldehyde from interferants present in ambient air. Downstream, a highly sensitive nanoparticle-based chemoresistive Pd-doped SnO2 sensor detects formaldehyde in the relevant concentration range down to 5 ppb within 2 min. As a proof-of-concept, we measured formaldehyde in indoor air and from different wood product emissions, in excellent agreement (R2 > 0.98) with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. This detector is simple-in-use and readily applicable for on-site formaldehyde exposure monitoring at home or work. It is promising for internet-of-things (IOT) sensing networks or even wearables for personal exposure assessment.
Collapse
Affiliation(s)
- Jan van den Broek
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - David Klein Cerrejon
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Sotiris E Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Andreas T Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
14
|
Sam Jebakumar J, Juliet AV. Palladium-Doped Tin Oxide Nanosensor for the Detection of the Air Pollutant Carbon Monoxide Gas. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5889. [PMID: 33080895 PMCID: PMC7590170 DOI: 10.3390/s20205889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
The exhaust gases from various sources cause air pollution, which is a leading contributor to the global disease burden. Hence, it has become vital to monitor and control the increasing pollutants coming out of the various sources into the environment. This paper has designed and developed a sensor material to determine the amount of carbon monoxide (CO), which is one of the major primary air pollutants produced by human activity. Nanoparticle-based sensors have several benefits in sensitivity and specificity over sensors made from traditional materials. In this study, tin oxide (SnO2), which has greater sensitivity to the target gas, is selected as the sensing material which selectively senses only CO. Tin oxide nanoparticles have been synthesized from stannous chloride dihydrate chemical compound by chemical precipitation method. Palladium, at the concentration of 0.1%, 0.2%, and 0.3% by weight, was added to tin oxide and the results were compared. Synthesized samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) techniques. XRD revealed the tetragonal structure of the SnO2 nanoparticles and FESEM analysis showed the size of the nanoparticles to be about 7-20 nm. Further, the real-time sensor testing was performed and the results proved that the tin oxide sensor, doped with 0.2% palladium, senses the CO gas more efficiently with greater sensitivity.
Collapse
Affiliation(s)
| | - Asokan Vimala Juliet
- Department of Electronics and Instrumentation, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| |
Collapse
|
15
|
Abegg S, Klein Cerrejon D, Güntner AT, Pratsinis SE. Thickness Optimization of Highly Porous Flame-Aerosol Deposited WO 3 Films for NO 2 Sensing at ppb. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1170. [PMID: 32560051 PMCID: PMC7353271 DOI: 10.3390/nano10061170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Nitrogen dioxide (NO2) is a major air pollutant resulting in respiratory problems, from wheezing, coughing, to even asthma. Low-cost sensors based on WO3 nanoparticles are promising due to their distinct selectivity to detect NO2 at the ppb level. Here, we revealed that controlling the thickness of highly porous (97%) WO3 films between 0.5 and 12.3 μm altered the NO2 sensitivity by more than an order of magnitude. Therefore, films of WO3 nanoparticles (20 nm in diameter by N2 adsorption) with mixed γ- and ε-phase were deposited by single-step flame spray pyrolysis without affecting crystal size, phase composition, and film porosity. That way, sensitivity and selectivity effects were associated unambiguously to thickness, which was not possible yet with other sensor fabrication methods. At the optimum thickness (3.1 μm) and 125 °C, NO2 concentrations were detected down to 3 ppb at 50% relative humidity (RH), and outstanding NO2 selectivity to CO, methanol, ethanol, NH3 (all > 105), H2, CH4, acetone (all > 104), formaldehyde (>103), and H2S (835) was achieved. Such thickness-optimized and porous WO3 films have strong potential for integration into low-power devices for distributed NO2 air quality monitoring.
Collapse
Affiliation(s)
| | | | | | - Sotiris E. Pratsinis
- Particle Technology Laboratory, ETH Zurich, Sonneggstrasse 3, CH-8006 Zurich, Switzerland; (S.A.); (D.K.C.); (A.T.G.)
| |
Collapse
|