1
|
Li N, Ren C, Hu Q, Wang B, Yang Z, Xiao L, Guan T. Multiplex aptamer cluster detection platform and systems toxicology study for 17β-estradiol, bisphenol A, and diethylstilbestrol. Food Chem 2025; 463:141395. [PMID: 39340920 DOI: 10.1016/j.foodchem.2024.141395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Intake of 17β-estradiol (E2), bisphenol A (BPA), and diethylstilbestrol (DES) from food can contribute to endocrine disorders. Therefore, developing a sensitive method for the simultaneous detection of E2, BPA, and DES and understanding their combined effects on endocrine disruption are crucial. We developed a fluorescence aptasensing platform utilizing DNase I-assisted cyclic enzymatic signal amplification in conjunction with an aptamer/graphene oxide complex. Using PEG 20000 as a surface-blocking agent, the aptasensor achieved ultralow detection limits of 2.643, 0.3039, and 0.6996 for E2, BPA, and DES, respectively. The sensor demonstrated accurate detection in plastic bottled water at spiked levels of 10 and 100 ng/mL. Systems toxicology revealed 30 potential targets for mixture-induced endocrine disruption. Molecular docking showed binding affinities of E2, BPA, and DES for ESR1 of -9.94, -8.29, and - 8.98 kcal/mol, respectively. These results highlight the effectiveness of the aptasensor and provide valuable insights into endocrine disruption mechanisms.
Collapse
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Chenxi Ren
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Qin Hu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Bo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China
| | - Lixia Xiao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China.
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
2
|
Huang L, Zhang X, Mao Z, Liu S, Li Y, Ren S, Zhou H, Liu B, Gao Z. Ni-Pt nanozyme-mediated relaxation and colorimetric sensor for dual-modality detection of norovirus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169738. [PMID: 38160831 DOI: 10.1016/j.scitotenv.2023.169738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
An NiPt nanozyme-mediated relaxation and colorimetric sensor is developed for dual-modality detection of norovirus (NoV). The relaxation modality is based on the "catalase-like" activity of the NiPt nanozyme, which adjusts the hydrogen peroxide (H2O2) mediated Fe (II)/Fe(III) conversion, thereby changing the relaxation signal. Poly-γ-glutamic acid (MW ≈ 1w) can enhance the relaxivity of Fe(III) (r1 = 7.11 mM-1 s-1; r2 = 8.94 mM-1 s-1). The colorimetric modality exploits the "peroxidase-like" activity of the NiPt nanozyme, which can catalyze the oxidation of colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) to blue oxTMB in H2O2. Under optimal conditions, the relaxation modality exhibits a wide working range (1.0 × 101-1.0 × 104 fM) and a limit of detection (LOD) of 4.7 fM (equivalent to 2820 copies/μL). The spiked recoveries range from 99.593 to 106.442 %, and the relative standard deviation (RSD) is less than 5.124 %. The colorimetric modality exhibited the same working range with a lower LOD of 2.9 fM (equivalent to 1740 copies/μL) and an RSD of less than 2.611 %. Additionally, the recombinase polymerase amplification reaction enabled the detection of low NoV levels in food samples with a working range of 102-106 copies/mL and LOD of 102 copies/mL. The accuracy of the sensor in the analysis of spiked samples is consistent with the gold standard method (real-time quantitative reverse transcription-polymerase chain reaction), demonstrating the high accuracy and practical utility of the sensor.
Collapse
Affiliation(s)
- Lei Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xue Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zefeng Mao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanchun Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China..
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China..
| |
Collapse
|
3
|
Huang L, Pei K, Wang X. Magnetic relaxation switch sensor based on aptamer-modified poly-L-lysine-ferroferric oxide magnetic nanoparticles and graphene oxide for the determination of insecticides in vegetables. Mikrochim Acta 2023; 190:239. [PMID: 37231283 DOI: 10.1007/s00604-023-05817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
A simple and effective graphene oxide-magnetic relaxation switch (GO-MRS) sensor that combines graphene oxide (GO) and aptamer-modified poly-L-lysine(PLL)-Fe3O4 nanoparticles (Fe3O4@PLL-Apt NPs) was designed for the detection of acetamiprid (ACE). In this sensor, Fe3O4@PLL-Apt NPs acted as a relaxation signal probe and GO facilitated the generation of relaxation signal changes (dispersion/aggregation shift), while the aptamer is a molecular component that recognizes ACE. This GO-assisted magnetic signal probe improves the stability of magnetic nanoparticles in solution and enhances their sensitivity to small molecules while avoiding cross-reactions. Under optimal conditions, the sensor exhibits a wide working range (10-80 nM) and low detection limit (8.43 nM). The spiked recoveries ranged from 96.54 to 103.17%, with a relative standard deviation (RSD) of less than 2.3%. In addition, the performance of the GO-MRS sensor matched that of the standard method (liquid chromatography-mass spectrometry (LC-MS)), indicating that the GO-MRS sensor is suitable for the detection of ACE in vegetables.
Collapse
Affiliation(s)
- Lei Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kaili Pei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
4
|
Zhang D, Lin H, Chen L, Wu Y, Xie J, Shi X, Guo Z. Cluster-bomb type magnetic biosensor for ultrasensitive detection of Vibrio parahaemolyticus based on low field nuclear magnetic resonance. Anal Chim Acta 2023; 1248:340906. [PMID: 36813458 DOI: 10.1016/j.aca.2023.340906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Herein, a novel cluster-bomb type signal sensing and amplification strategy in low field nuclear magnetic resonance was proposed, and a magnetic biosensor for ultrasensitive homogeneous immunoassay of Vibrio parahaemolyticus (VP) was developed. The capture unit MGO@Ab was magnetic graphene oxide (MGO) immobilized by VP antibody (Ab) to capture VP. And, the signal unit PS@Gd-CQDs@Ab was polystyrene (PS) pellets covered by Ab to recognize VP and Gd-CQDs i.e. carbon quantum dots (CQDs) containing lots of magnetic signal labels Gd3+. In presence of VP, the immunocomplex signal unit-VP-capture unit could be formed and separated by magnetic force conveniently from the sample matrix. With the successive introduction of disulfide threitol and hydrochloric acid, signal units were cleaved and disintegrated, resulting in a homogeneous dispersion of Gd3+. Thus, cluster-bomb type dual signal amplification was achieved through increasing the amount and the dispersity of signal labels simultaneously. Under optimal experimental conditions, VP could be detected in the concentration range of 5-1.0 × 106 CFU/mL, with a limit of quantitation (LOQ) 4 CFU/mL. In addition, satisfactory selectivity, stability and reliability could be obtained. Therefore, this cluster-bomb type signal sensing and amplification strategy is powerful in designing magnetic biosensor and detecting pathogenic bacteria.
Collapse
Affiliation(s)
- Dongyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Han Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Le Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Yangbo Wu
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Jianjun Xie
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
5
|
Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. BIOSENSORS 2023; 13:320. [PMID: 36979532 PMCID: PMC10046603 DOI: 10.3390/bios13030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.
Collapse
|
6
|
Dai Y, Peng C, Li P. Observation and Nursing of Adverse Reactions in Severe Patients with Enhanced MRI. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5319179. [PMID: 35399836 PMCID: PMC8986402 DOI: 10.1155/2022/5319179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022]
Abstract
In order to explore the observation and nursing of adverse reactions in severe patients with enhanced magnetic resonance imaging, a family nursing service model was proposed in patients with enhanced magnetic resonance imaging. 150 patients who underwent enhanced magnetic resonance imaging in a hospital were selected as the research objects. The patients were divided into two groups by random number table method. 75 patients in the control group received routine nursing intervention and 75 patients in the observation group received family nursing service intervention. The anxiety score, depression score, examination time, one-time success rate, comfort score, incidence of adverse reactions, excellent image quality rate and nursing satisfaction were compared between the two groups. The results showed that the anxiety score and depression score of the observation group were lower than those of the control group (P < 0.05), the examination time of the observation group was significantly shorter than that of the control group (P < 0.05), and the comfort score and one-time success rate of the observation group were significantly higher than those of the control group (P < 0.05). The incidence of adverse reactions was significantly lower than that in the control group (P < 0.05), the excellent and good image quality rate (95.00%) and nursing satisfaction (97.22%) were significantly higher than those in the control group (83.00%, 86.56%). This shows that the application effect of family nursing service mode in magnetic resonance enhanced scanning is remarkable. Therefore, the use of family care mode in MRI patient examination can effectively reduce patients' anxiety and depression scores, shorten examination time, reduce adverse reactions, improve the success rate of one-time examination, improve patients' comfort during examination and patients' evaluation of nursing services. The effect is ideal and worthy of clinical research and promotion.
Collapse
Affiliation(s)
- Yehua Dai
- Nursing School, Xiangnan University, Chenzhou, China
| | - Changneng Peng
- No. 4 People's Hospital of Chenzhou City, Chenzhou, China
| | - Pan Li
- Nursing School, Xiangnan University, Chenzhou, China
| |
Collapse
|
7
|
Lu D, Chen B. Coordinated motion of molecular motors on DNA chains with branch topology. ACTA MECHANICA SINICA = LI XUE XUE BAO 2022; 38:621225. [PMID: 35601132 PMCID: PMC9109741 DOI: 10.1007/s10409-021-09045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/25/2021] [Indexed: 06/15/2023]
Abstract
To understand the macroscopic mechanical behaviors of responsive DNA hydrogels integrated with DNA motors, we constructed a state map for the translocation process of a single FtsKC on a single DNA chain at the molecular level and then investigated the movement of single or multiple FtsKC motors on DNA chains with varied branch topologies. Our studies indicate that multiple FtsKC motors can have coordinated motion, which is mainly due to the force-responsive behavior of individual FtsKC motors. We further suggest the potential application of motors of FtsKC, together with DNA chains of specific branch topology, to serve as strain sensors in hydrogels.
Collapse
Affiliation(s)
- Di Lu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310058 China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou, 310027 China
| |
Collapse
|
8
|
Chen M, Wang Y, Zhang J, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Gao Z. Stimuli-responsive DNA-based hydrogels for biosensing applications. J Nanobiotechnology 2022; 20:40. [PMID: 35062945 PMCID: PMC8777454 DOI: 10.1186/s12951-022-01242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/02/2022] [Indexed: 12/26/2022] Open
Abstract
The base sequences of DNA are endowed with the rich structural and functional information and are available for the precise construction of the 2D and 3D macro products. The hydrogels formed by DNA are biocompatible, stable, tunable and biologically versatile, thus, these have a wide range of promising applications in bioanalysis and biomedicine. In particular, the stimuli-responsive DNA hydrogels (smart DNA hydrogels), which exhibit a reversible and switchable hydrogel to sol transition under different triggers, have emerged as smart materials for sensing. Thus far, the combination of the stimuli-responsive DNA hydrogels and multiple sensing platforms is considered as biocompatible and is useful as the flexible recognition components. A review of the stimuli-responsive DNA hydrogels and their biosensing applications has been presented in this study. The synthesis methods to prepare the DNA hydrogels have been introduced. Subsequently, the current status of the stimuli-responsive DNA hydrogels in biosensing has been described. The analytical mechanisms are further elaborated by the combination of the stimuli-responsive DNA hydrogels with the optical, electrochemical, point-of-care testing (POCT) and other detection platforms. In addition, the prospects of the application of the stimuli-responsive DNA hydrogels in biosensing are presented.
Collapse
|
9
|
Jia XX, Yao ZY, Liu S, Gao ZX. Suspension array for multiplex immunoassay of five common endocrine disrupter chemicals. Mikrochim Acta 2021; 188:290. [PMID: 34355262 DOI: 10.1007/s00604-021-04905-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/19/2021] [Indexed: 10/20/2022]
Abstract
A low cost and effective indirect competitive method is reported to detect five EDCs, 17-beta-estradiol (E2), estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), and nonylphenol (NP) simultaneously, based on suspension array technology (SAT). Five kinds of complete antigens (E2-BSA, E3-BSA, BPA-BSA, DES-BPA, NP-BSA) were coupled to different encoding microspheres using purpose-made solutions in our laboratory instead of commercially available amino coupling kits; the method was further optimized for determination and reducing the cost. Encoding and signaling fluorescence of the particles are determined at 635/532 nm emission wavelengths. High-throughput curves of five EDCs were draw and the limit of detection (LOD) were between 0.0010 ng mL-1 ~ 0.0070 ng mL-1. Compared with traditional ELISA methods, the SAT exhibited better specificity and sensitivity. Experiments using spiked milk and tap water samples were also carried out, and the recovery was between 85 and 110%; the results also confirmed good repeatability and reproducibility. It illustrated great potential of the present strategy in the detection of EDCs in actual samples.
Collapse
Affiliation(s)
- Xue-Xia Jia
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Zi-Yi Yao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
10
|
Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Fangli Gang
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Yi Xiao
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Jiwen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi 712100 China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
11
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|