1
|
Liu Y, Su X, Liu H, Zhu G, Ge G, Wang Y, Zhou P, Zhou Q. Construction of eco-friendly dual carbon dots ratiometric fluorescence probe for highly selective and efficient sensing mercury ion. J Environ Sci (China) 2025; 148:1-12. [PMID: 39095148 DOI: 10.1016/j.jes.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 08/04/2024]
Abstract
In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso‑tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Xiaoyan Su
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Huanjia Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guobei Ge
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuxin Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Penghui Zhou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
2
|
Wang M, Dong X, Guo B, Wang D, Tang Y. "Turn-on-off" Fluorescent Probes Based on Carbon Nanoparticles for Hypochlorite and Fe 2+ Detection. J Fluoresc 2025:10.1007/s10895-024-04131-8. [PMID: 39776098 DOI: 10.1007/s10895-024-04131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
The identification of ClO- and iron ions in water medium is a difficult task and has been one of the hot issues in analytical chemistry. For this objective, we synthesized carbon nanoparticles (CNPs) through a solvothermal reaction between 1, 3, 5-trimesic acid and o-phenylenediamine, which served as a sequential fluorescent probe for ClO- and Fe2+ ions. The obtained CNPs were spherical particles with a diameter of 26.5 nm, exhibiting excellent fluorescence stability under a wide pH range, high ionic strength, and UV irradiation. Interestingly, the fluorescence of CNPs was selectively enhanced in the presence of ClO-, and the resultant enhanced emission was extremely quenched by Fe2+. In view of this, a "turn-on-off" fluorescent probe was established, which possessed wonderful sensitivity and selectivity for quantitative analysis of ClO- and Fe2+, with corresponding detection limits of 0.15 µM and 0.088 µM, respectively. In addition, the practicality and viability of the developed probe were validated by quantifying ClO- and Fe2+ in tap water and river water.
Collapse
Affiliation(s)
- Minhui Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Xuemei Dong
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Beibei Guo
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Dinghai Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Yecang Tang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
3
|
Zhu Y, Zhu M, Zhou Q, Shu Q, Tan K. The novel up/down-conversion dual-emission carbon dots for dual-channel ratiometric fluorescence detection of pH and Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124648. [PMID: 38885570 DOI: 10.1016/j.saa.2024.124648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Up/down-conversion dual-emission carbon dots (U/D-CDs) are rare and have potential in analytical sensing. Herein, a kind of novel U/D-CDs was prepared successfully by a one-step solvothermal method. The prepared U/D-CDs exhibited similar dual-emission behaviors at excitation wavelengths of 300 nm and 680 nm, respectively. In addition, U/D-CDs displayed good photostability and salt-resistance. Due to the protonation-deprotonation, U/D-CDs showed strong pH dependence in the pH range of 2.0-8.0, which developed an up/down-conversion dual-channel ratiometric fluorescence (FL) probe of pH. The FL intensity of U/D-CDs can be effectively quenched by Cu2+ through the static quenching effect. Meanwhile, an obvious color change from yellow-green to blue can be observed under ultraviolet light with the increase of Cu2+ concentration. The up/down-conversion dual-channel ratiometric fluorescence sensor can be used for the visual sensing of pH and Cu2+, which also eliminates background signals and improves its accuracy and selectivity in complex samples.
Collapse
Affiliation(s)
- Yulin Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Mengqi Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qiuju Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qunwei Shu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China.
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| |
Collapse
|
4
|
Tang Y, Dong X, Wang M, Guo B. Dual emission N-doped carbon dots as a ratiometric fluorescent and colorimetric dual-signal probe for indigo carmine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122310. [PMID: 36610210 DOI: 10.1016/j.saa.2022.122310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Novel dual-emission fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized by a facile one-pot hydrothermal method using ascorbic acid and rhodamine B as precursors and melamine as nitrogen source. The obtained N-CDs exhibited dual-emitting peaks at 435 nm and 578 nm under the single excitation of 350 nm. The fluorescence at 578 nm was more effectively quenched by indigo carmine (IC) based on the internal filtration effect and aggregation-induced emission quenching. Meanwhile, the apparent color change of N-CDs from pink to blue-purple after adding various concentrations of IC could be clearly observed with the naked eye. Therefore, a ratiometric fluorescent and colorimetric dual-signal probe based on N-CDs was developed for IC detection with high selectivity and sensitivity. The addition of IC caused the ratiometric fluorescent value (F435/F578) to increase linearly within the range from 0 to100 µM with a detection limit (LOD) of 0.18 µM and the colorimetric signal presented a linear response in the range of 0-133 µM with a LOD of 57.4 nM. Furthermore, the IC in juice drink, candy, and water was successfully detected. Besides, the N-CDs were also designed as a ratiometric temperature probe, and the ratiometric fluorescence signal (F435/F578) was linearly and reversibly responsive to temperature in the range of 20-75 °C.
Collapse
Affiliation(s)
- Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| | - Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Minhui Wang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Beibei Guo
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| |
Collapse
|
5
|
Chen M, Wang J, Zhang Q, Zhang J, Chen Z, Sun R. Reversible detection of Hg(II) in pure water based on thymine modified nitrogen, sulfur co-doped carbon dots combined with antidote. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121998. [PMID: 36279800 DOI: 10.1016/j.saa.2022.121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Conventional Hg2+ visual sensors are unsustainable, hindering their practical application for improved water quality and health. In order to address this challenge, herein, N, S co-doped carbon nanodots (NS-CDs) were prepared and well characterized, presented the fluorescent monitoring for Hg2+ over other metal ions with the limit of detection (LOD) of 0.47 µM. Next, the CDs were successfully modified by thymine without any fluorescence labelling (referred to as T-NS-CDs). The sensitivity to Hg2+ cloud be noticeable enhanced due to the formation of T-Hg2+-T specific base pairs. Accordingly, the LOD was calculated with values as low as 1.56 nM. Furthermore, Hg2+ could be released and complexed with antidote (meso-2,3-dimercaptosuccinic acid) (DMSA-Hg2+), being the responsible for the reversible interconversion between T-Hg2+-T and DMSA-Hg2+. Interestingly, the proposed sensing system also applies to the fluorescent sensing for Hg2+ in tap water with satisfactory recoveries (96.97 %-101.38 %, RSD < 2 %). Thus, by simply combination of elemental doping and surface functionalization, the surface state and functionalities of CDs could be tailorable, endowing the fluorometric sensing towards Hg2+ in environmental system.
Collapse
Affiliation(s)
- Min Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jun Wang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Qianbo Zhang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jinsheng Zhang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Zhiming Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Rongguo Sun
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
6
|
Fu M, Li L, Yang D, Tu Y, Yan J. Colorimetric detections of iodide and mercuric ions based on a regulation of an Enzyme-Like activity from gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121450. [PMID: 35679739 DOI: 10.1016/j.saa.2022.121450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
A simple colorimetric method was developed for sensitive and selective detections of I- and Hg2+. Histidine stabilized gold nanoclusters (His-AuNCs) were synthesized and catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product. As a strong ligand toward gold, iodide (I-) attached to the surface of the His-AuNCs and significantly enhanced the oxidase-like activity of the His-AuNCs. Based on this enhancement, a sensitive colorimetric response toward I- was obtained. Furthermore, the strong interaction between Hg2+ and I- was adopted for an indirect Hg2+ detection. Under the optimal conditions, the platform presented high selectivity for the determinations of I- and Hg2+ in the ranges 0.02-1 µM and 0.05-0.8 µM, with detection limits as 3.3 nM and 8 nM respectively. This colorimetric assay was successfully applied for analysis of real samples.
Collapse
Affiliation(s)
- Meiling Fu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Lan Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Deyuan Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Yifeng Tu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Jilin Yan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
7
|
Yang Y, Wang C, Shu Q, Xu N, Qi S, Zhuo S, Zhu C, Du J. Facile one-step fabrication of Cu-doped carbon dots as a dual-selective biosensor for detection of pyrophosphate ions and measurement of pH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120681. [PMID: 34894564 DOI: 10.1016/j.saa.2021.120681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
High-performance determination of pyrophosphate ions (PPi) and pH is an important goal in biological systems. In this work, Cu-doped carbon dots (Cu-CDs) were synthesized rapidly and simply via a one-pot hydrothermal method. The as-obtained Cu-CDs, with an average size of 2.55 nm, exhibit an excitation-independent fluorescence emission and possess desirable functional groups of carboxyl and amine, which can be served as fluorescence nanoprobes for detection of PPi based on surface passivation. Under the optimal condition, the linear range for detection of PPi was 0.05-20 µM, and the corresponding limit of detection (LOD) was 0.013 µM, indicative of a promising assay for the PPi. Moreover, the fluorescent intensity of the Cu-CDs is linear against pH value from 6 to 8.7 in buffer solution, suggesting the feasibility as a pH sensor. The synthesized Cu-CDs coated fluorescent paper indeed can monitor pH in urine with satisfaction by naked eyes through ultraviolet irradiation. The successful detection of PPi and the visual detection of pH value suggest a highly promising application of Cu-CDs in the field of biosensing.
Collapse
Affiliation(s)
- Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Chaofeng Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Qin Shu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Na Xu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
8
|
Double emission fluorescence probes based on unconventional fluorescent molecules and fluorescein isothiocyanate for ClO− and Cu2+ detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Yuan X, Bai F, Ye H, Zhao H, Zhao L, Xiong Z. Smartphone-assisted ratiometric fluorescence sensing platform and logical device based on polydopamine nanoparticles and carbonized polymer dots for visual and point-of-care testing of glutathione. Anal Chim Acta 2021; 1188:339165. [PMID: 34794560 DOI: 10.1016/j.aca.2021.339165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023]
Abstract
As a crucial biothiol, glutathione (GSH) plays a key role in the organisms. Monitoring GSH level is of great significance for disease diagnosis and biomedical research. In this work, polydopamine (PDA) nanoparticles-red fluorescent carbonized polymer dots (r-CPDs) based ratiometric fluorescence sensing platform was constructed and employed for GSH assay. Dopamine (DA) could be oxidized by cobalt oxyhydroxide (CoOOH) nanosheets and further polymerized into PDA nanoparticles with green fluorescence. However, in the presence of GSH, CoOOH nanosheets were reduced and decomposed, which prevented the production of PDA nanoparticles. In the sensing system, green-emitting PDA nanoparticles were employed as a response unit and r-CPDs were used as an internal reference unit. With the addition of GSH, the green fluorescence of PDA nanoparticles decreased as well as the red fluorescence of system remained relatively stable. Importantly, a distinct fluorescence color evolution from green to red was presented with a serious of GSH concentrations. Based on this, a portable smartphone-assisted ratiometric chromaticity analytical method was developed to achieve the on-site visual detection of GSH. Both the established ratiometric fluorescence and ratiometric chromaticity sensing methods for GSH assay have the merits of wide linear range, high sensitivity and excellent accuracy, which are suitable for the determination of GSH in human serum and exhibit great application potential in rapid and accurate monitoring of the GSH levels in clinical. Moreover, an ingenious logical device reflecting GSH levels was designed based on the two different fluorescence signals, which provided a new strategy for the intelligent online detection of GSH in complex biological matrices.
Collapse
Affiliation(s)
- Xucan Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Fujuan Bai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Heng Ye
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Hanqing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
10
|
Cheng S, Zhang J, Liu Y, Wang Y, Xiao Y, Zhang Y. High quantum yield nitrogen and boron co-doped carbon dots for sensing Ag +, biological imaging and fluorescent inks. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5523-5531. [PMID: 34761756 DOI: 10.1039/d1ay01582f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, bright blue-green fluorescent nitrogen and boron co-doped carbon dots (N, B-CDs) with a quantum yield (QY) up to 33.04% were synthesized viahydrothermal treatment from ammonium citrate tribasic and 3-aminophenylboronic acid. The synthesized N, B-CDs showed outstanding water solubility. According to the principle of the static quenching effect (SQE), the synthesized N, B-CDs were utilized as an efficient sensor for sensing Ag+. The linear range and limit of detection (LOD) of the sensor for Ag+ are 0.99-26.04 μM and 9.03 nM (3σ/m). The proposed method was successfully adopted to detect Ag+ in environmental water, which is of great significance to environmental detection. Furthermore, due to the excellent fluorescence performance, the N, B-CDs were found to be an effective tool for biological imaging and as a fluorescent ink, which widens the horizons for the multifunctional applications of N, B-CDs.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Junqiu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yaoming Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yingte Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
11
|
Srivastava P, Fürstenwerth PC, Witte JF, Resch-Genger U. Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values. NEW J CHEM 2021. [DOI: 10.1039/d1nj01573g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ratiometric pH sensing by multichannel emission response utilizing excimer/monomer emissions of phenanthrene and rhodamine emission at single excitation wavelength.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics
- Federal Institute for Materials Research and Testing (BAM)
- 12489 Berlin
- Germany
| | | | - Jan Felix Witte
- Institute of Chemistry and Biochemistry
- Freie University Berlin
- 14195 Berlin
- Germany
| | - Ute Resch-Genger
- Division Biophotonics
- Federal Institute for Materials Research and Testing (BAM)
- 12489 Berlin
- Germany
| |
Collapse
|
12
|
Lin M, Ma X, Lin S, Zhang X, Dai Y, Xia F. Fluorescent probe based on N-doped carbon dots for the detection of intracellular pH and glutathione. RSC Adv 2020; 10:33635-33641. [PMID: 35519044 PMCID: PMC9056740 DOI: 10.1039/d0ra06636b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 01/07/2023] Open
Abstract
Carbon dots (CDs) as fluorescent probes have been widely exploited to detect biomarkers, however, tedious surface modification of CDs is generally required to achieve a relatively good detection ability. Here, we synthesized N-doped carbon dots (N-CDs) from triethylenetetramine (TETA) and m-phenylenediamine (m-PD) using a one-step hydrothermal method. When the pH increases from 3 to 11, the fluorescence intensity of the N-CDs gradually decreases. Furthermore, it displays a linear response to the physiological pH range of 5-8. Au3+ is reduced by amino groups on the surface of N-CDs to generate gold nanoparticles (AuNPs), causing fluorescence quenching of the N-CDs. If glutathione (GSH) is then added, the fluorescence of the N-CDs is recovered. The fluorescence intensity of the N-CDs is linearly correlated with the GSH concentration in the range of 50-400 μM with a limit of detection (LOD) of 7.83 μM. The fluorescence probe was used to distinguish cancer cells from normal cells using pH and to evaluate intracellular GSH. This work expands the application of CDs in multicomponent detection and provides a facile fluorescent probe for the detection of intracellular pH and GSH.
Collapse
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Xin Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Shijun Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| |
Collapse
|
13
|
Chang D, Li L, Shi L, Yang Y. Hg2+ detection, pH sensing and cell imaging based on bright blue-fluorescent N-doped carbon dots. Analyst 2020; 145:8030-8037. [DOI: 10.1039/d0an01487g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A multifunctional sensing platform based on bright blue-fluorescent nitrogen-doped carbon dots (N-CDs) has been ingeniously designed for the sensitive determination of Hg2+ and pH.
Collapse
Affiliation(s)
- Dan Chang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Lin Li
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Lihong Shi
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| | - Yongxing Yang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|