1
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
2
|
Wang BJ, Xu ZY, Sun Z, Li ZQ, Luo YH, Luo HQ, Li NB. A wide-range ratiometric sensor mediating fluorescence and scattering based on carbon dots/metal-organic framework composites for the detection of bisulfite/sulfite in sugar. Anal Bioanal Chem 2023:10.1007/s00216-023-04763-y. [PMID: 37268746 DOI: 10.1007/s00216-023-04763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Bisulfite (HSO3-) and sulfite (SO32-) are commonly employed in food preservatives and are also significant environmental pollutants. Thus, developing an effective method for detecting HSO3-/SO32- is crucial for food safety and environment monitoring. In this work, based on carbon dots (CDs) and zeolitic imidazolate framework-90 (ZIF-90), a composite probe (named CDs@ZIF-90) is constructed. The fluorescence signal and the second-order scattering signal of CDs@ZIF-90 are employed to ratiometricly detect HSO3-/SO32-. This proposed strategy exhibits a broad linear range for HSO3-/SO32- determination (10 µM to 8.5 mM) with a limit of detection of 2.74 μM. This strategy is successfully applied for evaluating HSO3-/SO32- in sugar with satisfactory recoveries. Therefore, this work has uniquely combined the fluorescence and second-order scattering signals to establish a novel sensing system with a wide linear range, which is applicable for ratiometric sensing of HSO3-/SO32- in actual samples.
Collapse
Affiliation(s)
- Bing Jie Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zi Yi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Zi Qing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Yuan Hao Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China.
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
3
|
Mu J, Zhang H, Huang Z, Jia Q. Terbium-triggered aggregation-induced emission of bimetallic nanoclusters for anticancer drugs sensing via the inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122388. [PMID: 36696862 DOI: 10.1016/j.saa.2023.122388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The development of accurate and sensitive detection methods of anticancer drugs is of significant importance because they play vital roles in biological systems. In recent years, bimetallic nanoclusters (BMNCs) incorporating the advantages of two metals have gained more and more attention, and can be widely applied in sensing applications. In this work, for the first time, we designed a sensing platform based on terbium ion (Tb3+) triggered aggregation-induced emission (AIE) of BMNCs. Tb3+ hybrid glutathione (GS) protected Ag/Cu nanoclusters (Tb3+@GS-AgCuNCs) were facilely fabricated according to the complexation reaction between Tb3+ and the carboxyl group of GS. Due to the inner filter effect (IFE), the fluorescence of Tb3+@GS-AgCuNCs decreased significantly in the presence of anticancer drugs with 6-thioguanine and methotrexate as representatives. In addition, the sensing platform was applied to monitor 6-thioguanine and methotrexate in real serum samples, indicating that it has great potential in anticancer drugs related applications.
Collapse
Affiliation(s)
- Jin Mu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Huifeng Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Zhang Y, Lu Z, Feng A, Lam JWY, Wang Z, Shi YE, Tang BZ. Green-Emissive Copper Nanocluster with Aggregation-Enhanced Emission for Selective Detection of Al 3. Chemistry 2023; 29:e202203554. [PMID: 36453732 DOI: 10.1002/chem.202203554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/02/2022]
Abstract
Selective detection of Al3+ is of great significance both for the benefit of human health and environmental safety considerations. In this work, a sensitive and selective fluorescence assay for Al3+ was proposed based on the green-emissive Cu nanoclusters (Cu NCs). Different from the commonly reported works, the green emissive Cu NCs showed dual emission bands at 450 and 510 nm, attributed to the reaction product between polyvinyl pyrrolidone and ascorbic acid and the Cu core, respectively. Al3+ could induce the aggregation of Cu NCs by forming covalent bonds, which results in the enhancement of photoluminescence intensity. This enhancement phenomenon is rather selective to Al3+ , which endows the detection in real samples. These results provide new insights for the fluorescence mechanisms of metal NCs, which also provided a functional luminescent material for various applications, such as chemical sensing, bioimaging and photoelectric devices.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Zhangdi Lu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Anrui Feng
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zhenguang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Yu-E Shi
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
5
|
Li S, Xu W, Huang Z, Jia Q. Anchoring Cu Nanoclusters on Melamine-Formaldehyde Microspheres: A New Strategy for Triggering Aggregation-Induced Emission toward Specific Enzyme-Free Methyl Parathion Sensing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14522-14530. [PMID: 36342188 DOI: 10.1021/acs.jafc.2c05194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Methyl parathion (MP) residues have aroused extensive attention on account of their significant threat to the environment and food safety. Currently reported fluorescent methods used for MP sensing largely depend upon an enzyme. Designing a facile and specific enzyme-free MP fluorescent sensor is in great demand, which remains a challenge. Here, negatively charged Cu nanoclusters (CuNCs) anchored on positively charged melamine-formaldehyde (MF) microspheres (MF@CuNCs) through an electrostatic interaction were prepared. MF microspheres triggered aggregation-induced emission (AIE) of CuNCs and successfully circumvented the shortcomings of poor stability and low luminescence of CuNCs. The fluorescence intensity of MF@CuNCs can be quenched by p-nitrophenol produced by MP under alkaline conditions. Accordingly, a specific enzyme-free MP sensing method was constructed with MF@CuNCs. In combination with a smartphone, visually quantitative analysis of MP in a fast and portable way was also achieved. For the first time, AIE of CuNCs used for enzyme-free MP sensing was successfully explored in this work, and it is believed that this method will open a new pathway for AIE of CuNCs to be applied in various applications.
Collapse
Affiliation(s)
- Songrui Li
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Wenhui Xu
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| |
Collapse
|
6
|
Li Y, Zhao A, Wang J, Yu J, Xiao F, Sun H. Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4023. [PMID: 36432310 PMCID: PMC9698401 DOI: 10.3390/nano12224023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In this work, highly fluorescent gold nanowire arrays (Au NWs) are successfully synthesized by assembling Zn2+ ions and non-emissive oligomeric gold-thiolate clusters using mercaptopropionic acid both as a reducing agent and a growth ligand. The synthesized Au NWs exhibited strong bluish green fluorescence with an absolute quantum yield up to 32% and possessed ultrasensitive pH stimuli-responsive performance in the range of 7.0-7.8. Based on the excellent properties of the as-prepared nanowire arrays, we developed a facile, sensitive, and selective fluorescent method for quantitative detection of urea and urease. The fabricated nanoprobe showed superior biosensing response characteristics with good linearities in the range of 0-100 μM for urea concentration and 0-12 U/L for urease activity. In addition, this fluorescent probe afforded relatively high sensitivity with the detection limit as low as 2.1 μM and 0.13 U/L for urea and urease, respectively. Urea in human urine and urease in human serum were detected with satisfied results, exhibiting a promising potential for biomedical application.
Collapse
Affiliation(s)
- Yan Li
- Correspondence: (Y.L.); (H.S.)
| | | | | | | | | | | |
Collapse
|
7
|
Ratiometric fluorescence determination of chlortetracycline based on the aggregation of copper nanoclusters triggered by aluminum ion. Mikrochim Acta 2021; 189:28. [PMID: 34907464 DOI: 10.1007/s00604-021-05093-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The aggregation-induced emission (AIE) characteristic of copper nanoclusters (CuNC) was for the first time used to construct a ratiometric fluorescence probe (CuNC-Al3+) for detection of chlortetracycline (CTC). Aluminum ion (Al3+) can aggregate free CuNC and make it emit a bright and stable red fluorescence. A slight excess of Al3+ in CuNC-Al3+ solution can form a CTC-Al3+ complex to limit the conformational rotation of CTC molecule and enhance CTC fluorescence. So, the red fluorescence of CuNC-Al3+ probe and the enhanced CTC fluorescence are used as a reference signal and a response signal to detect CTC, respectively. The method developed shows a good linear relationship between the CTC concentration and the fluorescence intensity ratio (I495/I575) in the range 0.1-3.0 µM, and the detection limit is 25.3 nM (S/N = 3). In addition, the fluorescent color of CuNC-Al3+ probe changes from red to yellow-green as the concentration of CTC increases. Based on this observation, a fluorescent test paper has also been fabricated. Schematic illustration of Al3+ inducing CuNC to produce AIE performance and detecting CTC.
Collapse
|
8
|
Qiu Y, Wen Z, Mei S, Wei J, Chen Y, Hu Z, Cui Z, Zhang W, Xie F, Guo R. Cation Crosslinking-Induced Stable Copper Nanoclusters Powder as Latent Fingerprints Marker. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3371. [PMID: 34947720 PMCID: PMC8708820 DOI: 10.3390/nano11123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Luminescent copper nanoclusters (Cu NCs) have shown great potential in light-emitting devices (LEDs), chemical sensing, catalysis and biological fields. However, their practical use has been restricted by poor stability, and study on the stability of Cu NCs solid powder along with the mechanism is absent. In this study, stablized Cu NCs powder was first obtained by cation crosslinking method. Compared with the powder synthesized by solvent precipitation method, the stability of Cu NCs powder crosslinked by ionic inducer Ce3+ was enhanced around 100-fold. The storage time when the fluorescence intensity decreased to 85% (T85) was improved from 2 h to 216 h, which is the longest so far. The results of characterizations indicated that the aggregation structure was formed by the binding of Ce3+ with the capping ligands of Cu NCs, which helped in obtaining Ce-Cu NCs powder from aggregate precipitation in solution. Furthermore, this compact structure could avoid the destruction of ambient moisture resulting in long-lasting fluorescence and almost unchanged physical form. This demonstrated that phosphor, with excellent characteristics of unsophisticated synthesis, easy preservation and stable fluorescence, showed great potential in light sources, display technology and especially in latent fingerprints visualization on different substrates for forensic science.
Collapse
Affiliation(s)
- Yi Qiu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhuoqi Wen
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
| | - Shiliang Mei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Jinxin Wei
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Yuanyuan Chen
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhe Hu
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Zhongjie Cui
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Wanlu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Fengxian Xie
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
| | - Ruiqian Guo
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.Q.); (S.M.); (J.W.); (Y.C.); (Z.H.); (Z.C.); (W.Z.); (F.X.)
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
- Zhongshan-Fudan Joint Innovation Center, Zhongshan 528437, China
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu 322000, China
| |
Collapse
|
9
|
Zhang Y, Zhang L. Designed multifunctional ratiometric fluorescent probe for directly detecting fluoride ion/ dichromate and indirectly monitoring urea. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126271. [PMID: 34119981 DOI: 10.1016/j.jhazmat.2021.126271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
UiO-66-NH2@eosin Y composite was obtained by confining eosin Y (EY) into the cavities of Zr-MOF and could emit two fluorescence peaks at 453 and 543 nm at an excitation wavelength of 355 nm. This multi-responsive and multifunctional ratiometric fluorescent nanoprobe not only enable directly distinct detection of F-/Cr2O72- with ultra-high selectivity and sensitivity, but also could indirectly monitor the concentration of urea based on unique enzymatic hydrolysis reaction. The multifunctional probe was utilized for fluorescence labeling F-/Cr2O72- in sweat latent fingerprint through an environmentally friendly powder strategy and exhibited obvious luminescence visualization changes. Notably, the corresponding portable on-line test strips of probe for detection of F- and Cr2O72- were made for monitoring the levels of F- and Cr2O72-. Furthermore, the probe was applied to evaluate the degrees of F-/Cr2O72- in HepG-2 cell and urea in serum with superior results,which indicate the potential application of the as-synthesized UiO-66-NH2@EY as multifunctional probe for the detection of F-, Cr2O72- and urea in biological samples. Finally, in order to extend the device-based applications of probe, an AND-OR-coupled molecular logic gate was put on agenda.
Collapse
Affiliation(s)
- Yaqiong Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
10
|
A Fluorescent Detection for Paraquat Based on β-CDs-Enhanced Fluorescent Gold Nanoclusters. Foods 2021; 10:foods10061178. [PMID: 34073830 PMCID: PMC8225061 DOI: 10.3390/foods10061178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
In this report, a fluorescent sensing method for paraquat based on gold nanoclusters (AuNCs) is proposed. It was found that paraquat could quench both glutathione-capped AuNCs (GSH-AuNCs) and β-cyclodextrin-modified GSH-AuNCs (GSH/β-CDs-AuNCs). The modification of β-CDs on the surface of GSH-AuNCs obviously enhanced the fluorescence intensity of GSH-AuNCs and improved the sensitivity of paraquat sensing more than 4-fold. This sensibilization was ascribed to the obvious fluorescence intensity enhancement of GSH-AuNCs by β-CDs and the “host–guest” interaction between paraquat and β-CDs. The fluorescence quenching was mainly due to the photoinduced energy transfer (PET) between GSH/β-CDs-AuNCs and paraquat. With the optimized β-CDs modification of the GSH-AuNC surfaces and under buffer conditions, the fluorescent detection for paraquat demonstrated a linear response in the range of 5.0–350 ng/mL with a detection limit of 1.2 ng/mL. The fluorescent method also showed high selectivity toward common pesticides. The interference from metal ions could be easily masked by ethylene diamine tetraacetic acid (EDTA). This method was applied to the measurement of paraquat-spiked water samples and good recoveries (93.6–103.8%) were obtained. The above results indicate that host molecule modification of fluorescent metal NC surfaces has high potential in the development of robust fluorescent sensors.
Collapse
|
11
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
12
|
Qu F, Chen Y, Jiang D, Zhao XE. pH-modulated aggregation-induced emission of Au/Cu nanoclusters and its application to the determination of urea and dissolved ammonia. Mikrochim Acta 2021; 188:113. [PMID: 33677619 DOI: 10.1007/s00604-021-04770-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/20/2021] [Indexed: 01/11/2023]
Abstract
A fluorescence platform is designed based on aggregation-induced emission of Au/Cu nanoclusters (Au/Cu NCs) driven by pH value. When pH increases from 6.0 to 7.0, Au/Cu NCs change from aggregation to dispersion, accompanied by the oxidation of Cu cores. Under the catalysis of urease, urea is hydrolysed to release ammonia, which further undergoes a hydrolysis reaction to produce OH-, causing the pH to increase. The fluorescence of Au/Cu NCs quenches linearly at 590 nm with the excitation wavelength at 320 nm when the concentration of urea varies from 5.0 to 100 μM. The limit of detection (LOD) and limit of quantification (LOQ) of urea are 2.23 and 7.45 μM, respectively. Combined with headspace single-drop microextraction technology, Au/Cu NCs are employed to monitor dissolved ammonia with low-cost and simple operation. The linear range of dissolved ammonia is from 20 to 300 μM. The LOD and LOQ of dissolved ammonia are 7.04 and 23.4 μM, respectively. The relative standard deviation (RSD) values of the intra-day and inter-day precision of urea are 2.4-3.0% and 3.0-3.7%, respectively, and those of dissolved ammonia are in the range 3.4-5.1% (intra-day precision) and 4.2-5.8% (inter-day precision). No interferences have been indentified in the determination of urea and dissolved ammonia. Finally, the proposed method has been applied to determine urea in human urine samples and dissolved ammonia in water samples with satisfactory results.Graphical abstract The pH increase produces the dispersion and decomposition of Au/Cu NCs, leading to the fluorescence quenching. Both urea and dissolved ammonia are detected successfully because they cause the pH change to alkaline.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China. .,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Yanan Chen
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China.,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xian-En Zhao
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China. .,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|