1
|
Hussein OG, Monir HH, Zaazaa HE, Galal MM. Eco-conscious potentiometric sensing: a multiwalled carbon nanotube-based platform for tulathromycin monitoring in livestock products. BMC Chem 2024; 18:151. [PMID: 39135201 PMCID: PMC11318228 DOI: 10.1186/s13065-024-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Tulathromycin (TUL) is a widely used veterinary antibiotic for treating bovine and porcine respiratory infections. Consuming animal-derived food contaminated with this medication may jeopardize human health. This work adopted the first portable potentiometric platform for direct TUL sensing in pharmaceutical and food products. The sensor employed a plasticized PVC membrane on a glassy carbon electrode doped with calix[6]arene and multi-walled carbon nanotubes (MWCNT) in a single solid contact layer for selective binding and signal stability. Characterization via scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the material's integrity. The MWCNT-based sensor produced a stable Nernstian response (1.0 × 10-7 to 1.0 × 10-3 M) and a limit of detection (LOD) of 9.76 × 10-8 M with instantaneous response (8 ± 2 s). IUPAC validation revealed high selectivity for TUL against interfering ions, minimal drift (0.6 mV/h), and functionality over a broad pH range (2.0-7.0), allowing direct application to dosage form, spiked milk, and liver samples. Eco-Scale, AGREE, and Whiteness assessment proved the method's ecological sustainability, economic viability, and practical feasibility, surpassing traditional approaches.
Collapse
Affiliation(s)
- Omnia G Hussein
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt.
| | - Hany H Monir
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Maha M Galal
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Rosendo LM, Antunes M, Simão AY, Brinca AT, Catarro G, Pelixo R, Martinho J, Pires B, Soares S, Cascalheira JF, Passarinha L, Rosado T, Barroso M, Gallardo E. Sensors in the Detection of Abused Substances in Forensic Contexts: A Comprehensive Review. MICROMACHINES 2023; 14:2249. [PMID: 38138418 PMCID: PMC10745465 DOI: 10.3390/mi14122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Forensic toxicology plays a pivotal role in elucidating the presence of drugs of abuse in both biological and solid samples, thereby aiding criminal investigations and public health initiatives. This review article explores the significance of sensor technologies in this field, focusing on diverse applications and their impact on the determination of drug abuse markers. This manuscript intends to review the transformative role of portable sensor technologies in detecting drugs of abuse in various samples. They offer precise, efficient, and real-time detection capabilities in both biological samples and solid substances. These sensors have become indispensable tools, with particular applications in various scenarios, including traffic stops, crime scenes, and workplace drug testing. The integration of portable sensor technologies in forensic toxicology is a remarkable advancement in the field. It has not only improved the speed and accuracy of drug abuse detection but has also extended the reach of forensic toxicology, making it more accessible and versatile. These advancements continue to shape forensic toxicology, ensuring swift, precise, and reliable results in criminal investigations and public health endeavours.
Collapse
Affiliation(s)
- Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Ana Y. Simão
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Gonçalo Catarro
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Rodrigo Pelixo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - João Martinho
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Bruno Pires
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - José Francisco Cascalheira
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Departamento de Química, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| | - Luís Passarinha
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)—Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)—Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
3
|
Zhang YX, Zhang Y, Bian Y, Liu YJ, Ren A, Zhou Y, Shi D, Feng XS. Benzodiazepines in complex biological matrices: Recent updates on pretreatment and detection methods. J Pharm Anal 2023; 13:442-462. [PMID: 37305786 PMCID: PMC10257149 DOI: 10.1016/j.jpha.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Benzodiazepines (BDZs) are used in clinics for anxiolysis, anticonvulsants, sedative hypnosis, and muscle relaxation. They have high consumptions worldwide because of their easy availability and potential addiction. They are often used for suicide or criminal practices such as abduction and drug-facilitated sexual assault. The pharmacological effects of using small doses of BDZs and their detections from complex biological matrices are challenging. Efficient pretreatment methods followed by accurate and sensitive detections are necessary. Herein, pretreatment methods for the extraction, enrichment, and preconcentration of BDZs as well as the strategies for their screening, identification, and quantitation developed in the past five years have been reviewed. Moreover, recent advances in various methods are summarized. Characteristics and advantages of each method are encompassed. Future directions of the pretreatment and detection methods for BDZs are also reviewed.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
4
|
Mohamed EH, Mahmoud AM, Nashat NW, El-Mosallamy SS. Fabrication of novel electropolymerized conductive polymer of hydrophobic perfluorinated aniline as transducer layer on glassy carbon electrode: application to midazolam as a model drug of benzodiazepines. BMC Chem 2023; 17:30. [PMID: 37016406 PMCID: PMC10074816 DOI: 10.1186/s13065-023-00945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
The objective of this study is to fabricate solid-contact ion selective electrodes (SC-ISEs) that have long term stable potential. Various conducting polymers such as polyaniline and its derivatives have been successfully employed to improve the potential stability in SC-ISEs. Recently, the role of hydrophobicity at the interface between the conducting polymer solid contact and the ion sensing membrane has been investigated and figured out that the hydrophobic interfaces preclude water layer formation that deteriorate the SC-ISEs potential stability and reproducibility. In this work, a hydrophobic polyaniline derivative was fabricated on the surface of a glassy carbon electrode by electropolymerization of perfluorinated aniline monomers in acidic solution. The electropolymerized hydrophobic polymer was characterized by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The fabricated electrode was employed for determination of midazolam-a model drug-in pharmaceutical formulation without prior extraction. The SC-ISEs performance was optimized, and the potential drift was compared to control SC-ISEs, the SC-ISE linear range was 1 × 10-6-1 × 10-2 M, LOD was estimated to be 9.0 × 10-7 M, and potential drift was reduced to 100 μV/h.
Collapse
Affiliation(s)
- Ekram H Mohamed
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, 11837, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| | - Nancy W Nashat
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Sally S El-Mosallamy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Soliman SS, Mahmoud AM, Elghobashy MR, Zaazaa HE, Sedik GA. Point-of-care electrochemical sensor for selective determination of date rape drug "ketamine" based on core-shell molecularly imprinted polymer. Talanta 2023; 254:124151. [PMID: 36463800 DOI: 10.1016/j.talanta.2022.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Misuse of illicit drugs is a serious problem that became the primary concern for many authorities worldwide. Point-of-care (POC) diagnostic tools can provide accurate and fast screening information that helps to detect illicit drugs in a short time. A portable, disposable and reproducible core-shell molecularly imprinted polymer (MIP) screen-printed sensor was synthesized as a POC analyzer for the assay of the date rape drug "ketamine hydrochloride" in different matrices. Firstly, the screen-printed electrode substrate was modified electrochemically with polyaniline (PANI) as an ion-to-electron transducer interlayer to improve the potential signal stability. Secondly, core-shell MIP was prepared, the core consisting of silica nanoparticles prepared by Stober's method, while the MIP shell was synthesized onto silica nanoparticles surface by copolymerizing methacrylic acid functional monomer and the crossing agent; ethylene glycol dimethacrylate in the presence of ketamine as a template molecule. Finally, the core-shell MIP was incorporated into the PVC membrane as an ionophore and drop-casted over PANI modified screen-printed carbon electrode. The imprinting process and the morphology of MIP were examined using scanning electron microscopy, Fourier-transform infrared and X-ray photoelectron spectroscopic methods. The sensor exhibited a short response time within 3-5 s in a pH range (2.0-5.0). The potential profile indicated a linear relationship in a dynamic concentration range of 1.0 × 10-6 M to 1.0 × 10-2 M with a slope of 54.7 mV/decade. The sensor was employed to determine ketamine in biological matrices and beverages.
Collapse
Affiliation(s)
- Shymaa S Soliman
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, October 6 City, Giza, 12858, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, October 6 City, Giza, 12858, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
6
|
Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, Ahmed SR, Rajabzadeh AR, Srinivasan S. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Soliman RM, Rostom Y, Mahmoud AM, Fayez YM, Mostafa NM, Monir HH. Novel Fabricated Potentiometric Sensors for Selective Determination of Carbinoxamine with Different Greenness Evaluation Perspectives. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Point-of-care diagnostics for therapeutic monitoring of levofloxacin in human plasma utilizing electrochemical sensor mussel-inspired molecularly imprinted copolymer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Hassan SA, Nashat NW, Elghobashy MR, Abbas SS, Moustafa AA, Mahmoud AM. Novel microfabricated solid-contact potentiometric sensors doped with multiwall carbon-nanotubes for simultaneous determination of bisoprolol and perindopril in spiked human plasma. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Magdy N, sobaih A, Hussein L, Mahmoud A. Graphene‐based Disposable Electrochemical Sensor for Chlorhexidine Determination. ELECTROANAL 2022. [DOI: 10.1002/elan.202200119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nancy Magdy
- Faculty of Pharmacy, Ain Shams University EGYPT
| | | | | | | |
Collapse
|
11
|
Mahmoud A, Moaaz E, Rezk M, Abdel-Moety E, Fayed A. Microfabricated Solid‐Contact Potentiometric Sensor for Determination of Tedizolid Phosphate, Application to Content Uniformity Testing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
13
|
Marzouk HM, Ibrahim EA, Hegazy MA, Saad SS. A Reliable Electrochemical Sensor Based on Functionalized Magnetite Nanoparticles for Over‐the‐counter Allergy Medication Abuse Sensing in Biological Fluids. ELECTROANAL 2021. [DOI: 10.1002/elan.202100415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hoda M. Marzouk
- Analytical Chemistry Department, Faculty of Pharmacy Cairo University Kasr Al-Aini Street 11562 Cairo Egypt
| | - Engy A. Ibrahim
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing Misr University for Science & Technology 6th of October City Giza 12566 Egypt
| | - Maha A. Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy Cairo University Kasr Al-Aini Street 11562 Cairo Egypt
| | - Samah S. Saad
- Pharmaceutical Analytical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing Misr University for Science & Technology 6th of October City Giza 12566 Egypt
| |
Collapse
|
14
|
Fares MY, Abdelwahab NS, Hegazy MA, Abdelrahman MM, Mahmoud AM, EL-Sayed GM. Nanoparticle-enhanced in-line potentiometric ion sensor for point-of-care diagnostics for tropicamide abuse in biological fluid. Anal Chim Acta 2021; 1192:339350. [DOI: 10.1016/j.aca.2021.339350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022]
|
15
|
Evaluating gold nanoparticles parameters in competitive Immunochromatographich Assay via Dot Blot and Bradford Assay as new approaches. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
ElDin NB, El-Rahman MKA, Zaazaa HE, Moustafa AA, Hassan SA. Microfabricated potentiometric sensor for personalized methacholine challenge tests during the COVID-19 pandemic. Biosens Bioelectron 2021; 190:113439. [PMID: 34166943 PMCID: PMC8197613 DOI: 10.1016/j.bios.2021.113439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/10/2021] [Indexed: 10/26/2022]
Abstract
The methacholine challenge test is considered to be the gold standard bronchoprovocation test used to diagnose asthma, and this test is always performed in pulmonary function labs or doctors' offices. Methacholine (MCH) acts by inducing airway tightening/bronchoconstriction, and more importantly, MCH is hydrolyzed by cholinesterase enzyme (ChE). Recently, the American Thoracic Society raised concerns about pulmonary function testing during the COVID-19 pandemic due to recently reported correlation between cholinesterase and COVID-19 pneumonia severity/mortality, and it was shown that cholinesterase levels are reduced in the acute phase of severe COVID-19 pneumonia. This work describes the microfabrication of potentiometric sensors using copper as the substrate and chemically polymerized graphene nanocomposites as the transducing layer for tracking the kinetics of MCH enzymatic degradation in real blood samples. The in-vitro estimation of the characteristic parameters of the MCH metabolism [Michaelis-Menten constant (Km) and reaction velocity (Vmax)] were found to be 241.041 μM and 56.8 μM/min, respectively. The proposed sensor is designed to be used as a companion diagnostic device that can (i) answer questions about patient eligibility to perform methacholine challenge tests, (ii) individualize/personalize medical dosing of methacholine, (iii) provide portable and inexpensive devices allowing automated readouts without the need for operator intervention (iv) recommend therapeutic interventions including intensive care during early stages and reflecting the disease state of COVID-19 pneumonia. We hope that this methacholine electrochemical sensor will help in assaying ChE activity in a "timely" manner and predict the severity and prognosis of COVID-19 to improve treatment outcomes and decrease mortality.
Collapse
Affiliation(s)
- Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt.
| | - Mohamed K Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Azza A Moustafa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Said A Hassan
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
17
|
Elhassan MM, Mahmoud AM, Hegazy MA, Mowaka S. In-line monitoring of sitagliptin dissolution profile from tablets utilizing an eco-friendly potentiometric sensor. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01646-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Mahmoud AM, Ragab MT, Ramadan NK, El‐Ragehy NA, El‐Zeany BA. Design of Solid‐contact Ion‐selective Electrode with Graphene Transducer Layer for the Determination of Flavoxate Hydrochloride in Dosage Form and in Spiked Human Plasma. ELECTROANAL 2020. [DOI: 10.1002/elan.202060377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Amr M. Mahmoud
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Mona T. Ragab
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Nesrin K. Ramadan
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Nariman A. El‐Ragehy
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| | - Badr A. El‐Zeany
- Analytical Chemistry Department Faculty of Pharmacy Cairo University Kasr El Aini Cairo 11562 Egypt
| |
Collapse
|