1
|
Yurdabak Karaca G. Graphene Quantum Dot-Based Gold-Nickel Micromotors for Sensitive Detection of Ferric Ions. J Fluoresc 2025:10.1007/s10895-025-04238-6. [PMID: 40100315 DOI: 10.1007/s10895-025-04238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
The development of nano and micromotors has revolutionized the field of nanotechnology, offering innovative solutions for applications in biomedical engineering, environmental monitoring, and chemical sensing. Among these nano/micromotors, graphene quantum dot (GQD)-based micromotors have gained significant attention due to their unique optical and electronic properties. This study presents the synthesis and characterization of novel graphene quantum dot-based gold-nickel (GQD-Au-Ni) micromotors. These micromotors were synthesized using an electrochemical template deposition process, allowing precise control over their composition and structure. The GQD-Au-Ni micromotors exhibit multifunctionality, employing fluorometric, magnetic, and electrochemical methods for the selective and sensitive detection of ferric ions (Fe³⁺), with a remarkable limit of detection (LOD). The study highlights the potential of these micromotors in environmental monitoring paving the way for future research into multifunctional micromotors for a wide range of applications. The findings underscore the promise of GQD-based systems in advancing sensor technology and addressing critical challenges in environmental and health monitoring.
Collapse
Affiliation(s)
- Gozde Yurdabak Karaca
- Department of Medical Services and Techniques, Isparta Health Services Vocational School, Suleyman Demirel University, Isparta, 32260, Turkey.
| |
Collapse
|
2
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
3
|
He T, Liu S, Yang Y, Chen X. Application of Micro/Nanomotors in Environmental Remediation: A Review. MICROMACHINES 2024; 15:1443. [PMID: 39770197 PMCID: PMC11679765 DOI: 10.3390/mi15121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The advent of self-propelled micro/nanomotors represents a paradigm shift in the field of environmental remediation, offering a significant enhancement in the efficiency of conventional operations through the exploitation of the material phenomenon of active motion. Despite the considerable promise of micro/nanomotors for applications in environmental remediation, there has been a paucity of reviews that have focused on this area. This review identifies the current opportunities and challenges in utilizing micro/nanomotors to enhance contaminant degradation and removal, accelerate bacterial death, or enable dynamic environmental monitoring. It illustrates how mobile reactors or receptors can dramatically increase the speed and efficiency of environmental remediation processes. These studies exemplify the wide range of environmental applications of dynamic micro/nanomotors associated with their continuous motion, force, and function. Finally, the review discusses the challenges of transferring these exciting advances from the experimental scale to larger-scale field applications.
Collapse
Affiliation(s)
| | | | | | - Xuebo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (S.L.); (Y.Y.)
| |
Collapse
|
4
|
Patiño Padial T, Del Grosso E, Gentile S, Baranda Pellejero L, Mestre R, Paffen LJMM, Sánchez S, Ricci F. Synthetic DNA-based Swimmers Driven by Enzyme Catalysis. J Am Chem Soc 2024; 146:12664-12671. [PMID: 38587543 DOI: 10.1021/jacs.4c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Here, we report DNA-based synthetic nanostructures decorated with enzymes (hereafter referred to as DNA-enzyme swimmers) that self-propel by converting the enzymatic substrate to the product in solution. The DNA-enzyme swimmers are obtained from tubular DNA structures that self-assemble spontaneously by the hybridization of DNA tiles. We functionalize these DNA structures with two different enzymes, urease and catalase, and show that they exhibit concentration-dependent movement and enhanced diffusion upon addition of the enzymatic substrate (i.e., urea and H2O2). To demonstrate the programmability of such DNA-based swimmers, we also engineer DNA strands that displace the enzyme from the DNA scaffold, thus acting as molecular "brakes" on the DNA swimmers. These results serve as a first proof of principle for the development of synthetic DNA-based enzyme-powered swimmers that can self-propel in fluids.
Collapse
Affiliation(s)
- Tania Patiño Padial
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lorena Baranda Pellejero
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Rafael Mestre
- School of Electronics and Computer Science (ECS), University of Southampton, University Road, Southampton SO17 1BJ, U.K
| | - Lars J M M Paffen
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
5
|
Gordón Pidal JM, Moreno-Guzmán M, Montero-Calle A, Valverde A, Pingarrón JM, Campuzano S, Calero M, Barderas R, López MÁ, Escarpa A. Micromotor-based electrochemical immunoassays for reliable determination of amyloid-β (1-42) in Alzheimer's diagnosed clinical samples. Biosens Bioelectron 2024; 249:115988. [PMID: 38194814 DOI: 10.1016/j.bios.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Alzheimer's disease (AD), in addition to being the most common cause of dementia, is very difficult to diagnose, with the 42-amino acid form of Aβ (Aβ-42) being one of the main biomarkers used for this purpose. Despite the enormous efforts made in recent years, the technologies available to determine Aβ-42 in human samples require sophisticated instrumentation, present high complexity, are sample and time-consuming, and are costly, highlighting the urgent need not only to develop new tools to overcome these limitations but to provide an early detection and treatment window for AD, which is a top-challenge. In recent years, micromotor (MM) technology has proven to add a new dimension to clinical biosensing, enabling ultrasensitive detections in short times and microscale environments. To this end, here an electrochemical immunoassay based on polypyrrole (PPy)/nickel (Ni)/platinum nanoparticles (PtNPs) MM is proposed in a pioneering manner for the determination of Aβ-42 in left prefrontal cortex brain tissue, cerebrospinal fluid, and plasma samples from patients with AD. MM combines the high binding capacity of their immunorecognition external layer with self-propulsion through the catalytic generation of oxygen bubbles in the internal layer due to decomposition of hydrogen peroxide as fuel, allowing rapid bio-detection (15 min) of Aβ-42 with excellent selectivity and sensitivity (LOD = 0.06 ng/mL). The application of this disruptive technology to the analysis of just 25 μL of the three types of clinical samples provides values concordant with the clinical values reported, thus confirming the potential of the MM approach to assist in the reliable, simple, fast, and affordable diagnosis of AD by determining Aβ-42.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Alejandro Valverde
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.
| | - Miguel Calero
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
6
|
Ferreira VRA, Azenha MA. Recent Advances in Light-Driven Semiconductor-Based Micro/Nanomotors: Optimization Strategies and Emerging Applications. Molecules 2024; 29:1154. [PMID: 38474666 DOI: 10.3390/molecules29051154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Micro/nanomotors represent a burgeoning field of research featuring small devices capable of autonomous movement in liquid environments through catalytic reactions and/or external stimuli. This review delves into recent advancements in light-driven semiconductor-based micro/nanomotors (LDSM), focusing on optimized syntheses, enhanced motion mechanisms, and emerging applications in the environmental and biomedical domains. The survey commences with a theoretical introduction to micromotors and their propulsion mechanisms, followed by an exploration of commonly studied LDSM, emphasizing their advantages. Critical properties affecting propulsion, such as surface features, morphology, and size, are presented alongside discussions on external conditions related to light sources and intensity, which are crucial for optimizing the propulsion speed. Each property is accompanied by a theoretical background and conclusions drawn up to 2018. The review further investigates recent adaptations of LDSM, uncovering underlying mechanisms and associated benefits. A brief discussion is included on potential synergistic effects between different external conditions, aiming to enhance efficiency-a relatively underexplored topic. In conclusion, the review outlines emerging applications in biomedicine and environmental monitoring/remediation resulting from recent LDSM research, highlighting the growing significance of this field. The comprehensive exploration of LDSM advancements provides valuable insights for researchers and practitioners seeking to leverage these innovative micro/nanomotors in diverse applications.
Collapse
Affiliation(s)
- Vanessa R A Ferreira
- CIQUP-Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel A Azenha
- CIQUP-Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Mayorga-Martinez CC, Zhang L, Pumera M. Chemical multiscale robotics for bacterial biofilm treatment. Chem Soc Rev 2024; 53:2284-2299. [PMID: 38324331 DOI: 10.1039/d3cs00564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A biofilm constitutes a bacterial community encased in a sticky matrix of extracellular polymeric substances. These intricate microbial communities adhere to various host surfaces such as hard and soft tissues as well as indwelling medical devices. These microbial aggregates form a robust matrix of extracellular polymeric substances (EPSs), leading to the majority of human infections. Such infections tend to exhibit high resistance to treatment, often progressing into chronic states. The matrix of EPS protects bacteria from a hostile environment and prevents the penetration of antibacterial agents. Modern robots at nano, micro, and millimeter scales are highly attractive candidates for biomedical applications due to their diverse functionalities, such as navigating in confined spaces and targeted multitasking. In this tutorial review, we describe key milestones in the strategies developed for the removal and eradication of biofilms using robots of different sizes and shapes. It can be seen that robots at different scales are useful and effective tools for treating bacterial biofilms, thus preventing persistent infections, the loss of costly implanted medical devices, and additional costs associated with hospitalization and therapies.
Collapse
Affiliation(s)
- Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
8
|
Gordón Pidal JM, Arruza L, Moreno-Guzmán M, López MÁ, Escarpa A. Micromotor-based dual aptassay for early cost-effective diagnosis of neonatal sepsis. Mikrochim Acta 2024; 191:106. [PMID: 38240873 PMCID: PMC10798920 DOI: 10.1007/s00604-023-06134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Given the long-life expectancy of the newborn, research aimed at improving sepsis diagnosis and management in this population has been recognized as cost-effective, which at early stages continues to be a tremendous challenge. Despite there is not an ideal-specific biomarker, the simultaneous detection of biomarkers with different behavior during an infection such as procalcitonin (PCT) as high specificity biomarker with one of the earliest biomarkers in sepsis as interleukin-6 (IL-6) increases diagnostic performance. This is not only due to their high positive predictive value but also, since it can also help the clinician to rule out infection and thus avoid the use of antibiotics, due to their high negative predictive value. To this end, we explore a cutting-edge micromotor (MM)-based OFF-ON dual aptassay for simultaneous determination of both biomarkers in 15 min using just 2 μL of sample from low-birth-weight neonates with gestational age less than 32 weeks and birthweight below 1000 g with clinical suspicion of late-onset sepsis. The approach reached the high sensitivities demanded in the clinical scenario (LODPCT = 0.003 ng/mL, LODIL6 = 0.15 pg/mL) with excellent correlation performance (r > 0.9990, p < 0.05) of the MM-based approach with the Hospital method for both biomarkers during the analysis of diagnosed samples and reliability (Er < 6% for PCT, and Er < 4% for IL-6). The proposed approach also encompasses distinctive technical attributes in a clinical scenario since its minimal sample volume requirements and expeditious results compatible with few easy-to-obtain drops of heel stick blood samples from newborns admitted to the neonatal intensive care unit. This would enable the monitoring of both sepsis biomarkers within the initial hours after the manifestation of symptoms in high-risk neonates as a valuable tool in facilitating prompt and well-informed decisions about the initiation of antibiotic therapy.These results revealed the asset behind micromotor technology for multiplexing analysis in diagnosing neonatal sepsis, opening new avenues in low sample volume-based diagnostics.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - Luis Arruza
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos-IdISSC, 28040, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, S/N, 28040, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
9
|
Urso M, Bruno L, Dattilo S, Carroccio SC, Mirabella S. Band Engineering versus Catalysis: Enhancing the Self-Propulsion of Light-Powered MXene-Derived Metal-TiO 2 Micromotors To Degrade Polymer Chains. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1293-1307. [PMID: 38134036 PMCID: PMC10788834 DOI: 10.1021/acsami.3c13470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Light-powered micro- and nanomotors based on photocatalytic semiconductors convert light into mechanical energy, allowing self-propulsion and various functions. Despite recent progress, the ongoing quest to enhance their speed remains crucial, as it holds the potential for further accelerating mass transfer-limited chemical reactions and physical processes. This study focuses on multilayered MXene-derived metal-TiO2 micromotors with different metal materials to investigate the impact of electronic properties of the metal-semiconductor junction, such as energy band bending and built-in electric field, on self-propulsion. By asymmetrically depositing Au or Ag layers on thermally annealed Ti3C2Tx MXene microparticles using sputtering, Janus structures are formed with Schottky junctions at the metal-semiconductor interface. Under UV light irradiation, Au-TiO2 micromotors show higher self-propulsion velocities due to the stronger built-in electric field, enabling efficient photogenerated charge carrier separation within the semiconductor and higher hole accumulation beneath the Au layer. On the contrary, in 0.1 wt % H2O2, Ag-TiO2 micromotors reach higher velocities both in the presence and absence of UV light irradiation, owing to the superior catalytic properties of Ag in H2O2 decomposition. Due to the widespread use of plastics and polymers, and the consequent occurrence of nano/microplastics and polymeric waste in water, Au-TiO2 micromotors were applied in water remediation to break down polyethylene glycol (PEG) chains, which were used as a model for polymeric pollutants in water. These findings reveal the interplay between electronic properties and catalytic activity in metal-semiconductor junctions, offering insights into the future design of powerful light-driven micro- and nanomotors with promising implications for water treatment and photocatalysis applications.
Collapse
Affiliation(s)
- Mario Urso
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, Catania 95123, Italy
- CNR-IMM, via S. Sofia 64, Catania 95123, Italy
| | - Luca Bruno
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, Catania 95123, Italy
- CNR-IMM, via S. Sofia 64, Catania 95123, Italy
| | - Sandro Dattilo
- CNR-IPCB, Catania Unit, via Paolo Gaifami
18, Catania 95126, Italy
| | | | - Salvo Mirabella
- Dipartimento
di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, via S. Sofia 64, Catania 95123, Italy
- CNR-IMM, via S. Sofia 64, Catania 95123, Italy
| |
Collapse
|
10
|
Zheng J, Huang R, Lin Z, Chen S, Yuan K. Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility. Pharmaceutics 2023; 16:44. [PMID: 38258055 PMCID: PMC10821023 DOI: 10.3390/pharmaceutics16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such "tiny robots" show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China;
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Shaoqi Chen
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
11
|
Zeng X, Yang M, Liu H, Zhang Z, Hu Y, Shi J, Wang ZH. Light-driven micro/nanomotors in biomedical applications. NANOSCALE 2023; 15:18550-18570. [PMID: 37962424 DOI: 10.1039/d3nr03760f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nanotechnology brings hope for targeted drug delivery. However, most current drug delivery systems use passive delivery strategies with limited therapeutic efficiency. Over the past two decades, research on micro/nanomotors (MNMs) has flourished in the biomedical field. Compared with other driven methods, light-driven MNMs have the advantages of being reversible, simple to control, clean, and efficient. Under light irradiation, the MNMs can overcome several barriers in the body and show great potential in the treatment of various diseases, such as tumors, and gastrointestinal, cardiovascular and cerebrovascular diseases. Herein, the classification and mechanism of light-driven MNMs are introduced briefly. Subsequently, the applications of light-driven MNMs in overcoming physiological and pathological barriers in the past five years are highlighted. Finally, the future prospects and challenges of light-driven MNMs are discussed as well. This review will provide inspiration and direction for light-driven MNMs to overcome biological barriers in vivo and promote the clinical application of light-driven MNMs in the biomedical field.
Collapse
Affiliation(s)
- Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Sun XD, Yang H, Liang Y, Yan K, Liu L, Gao D, Ma J. Light-Propelled Super-Hydrophobic Sponge Motor and its Application in Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43205-43215. [PMID: 37638771 DOI: 10.1021/acsami.3c09557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Self-propelled separation materials, that is, motor, are one of the keys to realizing smart oil-water separation. Although three-dimensional sponges such as commercial melamine sponge (MS) exhibit excellent oil-water separation ability, they cannot move by themselves on water. Aiming at solving this problem, a polydimethylsiloxane (PDMS) and molybdenum disulfide (MoS2) modified MS motor (PDMS@MS/MoS2) with an asymmetric multilayer structure was prepared, in which the photothermal layer MoS2 provided the propelling force for the motor under infrared light irradiation, and the middle layer PDMS was used as the superhydrophobic modified agent and adhesive agent between commercial MS and MoS2 powder. PDMS coated MS (PDMS@MS) as the superhydrophobic layer showed good superhydrophobic ability (153.1°) and oil-water separation capacity (52.33 g/g to liquid paraffin). Furthermore, the introduction of MoS2 made the speed of the sponge motor reach 8.27 mm s-1 with a removal quantity of 12.20 g/g for cyclohexane. After recycling 8 times, the contact angle, cyclohexane capturing amount, and average velocity of the motor were 150.3°, 11.40 g/g, and 8.41 mm/s, respectively. Meanwhile, PDMS@MS/MoS2 kept a similar light-propelling velocity (∼8 mm) at different pH values and in simulated seawater, demonstrating that the light-propelling motor possessed a good cycle and practical performance, which provides a possibility for the directional light propulsion of a sponge motor in oil-water separation.
Collapse
Affiliation(s)
- Xiao Dan Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi 'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi 'an 710021, China
- Xi 'an Key Laboratory of Green Chemicals and Functional Materials, Xi 'an 710021, China
| | - Hanxing Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi 'an 710021, China
| | - Yuzhen Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi 'an 710021, China
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi 'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi 'an 710021, China
- Xi 'an Key Laboratory of Green Chemicals and Functional Materials, Xi 'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi 'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi 'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi 'an 710021, China
- Xi 'an Key Laboratory of Green Chemicals and Functional Materials, Xi 'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi 'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi 'an 710021, China
| |
Collapse
|
13
|
Karimi MR, Khoee S, Shaghaghi B. Smart transformation of bowl shape chitosan nanomotors to disc shape in simulated biological media and consequent controlled velocity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Zhou H, Dong G, Gao G, Du R, Tang X, Ma Y, Li J. Hydrogel-Based Stimuli-Responsive Micromotors for Biomedicine. CYBORG AND BIONIC SYSTEMS 2022; 2022:9852853. [PMID: 36285306 PMCID: PMC9579945 DOI: 10.34133/2022/9852853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
The rapid development of medical micromotors draws a beautiful blueprint for the noninvasive or minimally invasive diagnosis and therapy. By combining stimuli-sensitive hydrogel materials, micromotors are bestowed with new characteristics such as stimuli-responsive shape transformation/morphing, excellent biocompatibility and biodegradability, and drug loading ability. Actuated by chemical fuels or external fields (e.g., magnetic field, ultrasound, light, and electric field), hydrogel-based stimuli-responsive (HBSR) micromotors can be utilized to load therapeutic agents into the hydrogel networks or directly grip the target cargos (e.g., drug-loaded particles, cells, and thrombus), transport them to sites of interest (e.g., tumor area and diseased tissues), and unload the cargos or execute a specific task (e.g., cell capture, targeted sampling, and removal of blood clots) in response to a stimulus (e.g., change of temperature, pH, ion strength, and chemicals) in the physiological environment. The high flexibility, adaptive capacity, and shape morphing property enable the HBSR micromotors to complete specific medical tasks in complex physiological scenarios, especially in confined, hard-to-reach tissues, and vessels of the body. Herein, this review summarizes the current progress in hydrogel-based medical micromotors with stimuli responsiveness. The thermo-responsive, photothermal-responsive, magnetocaloric-responsive, pH-responsive, ionic-strength-responsive, and chemoresponsive micromotors are discussed in detail. Finally, current challenges and future perspectives for the development of HBSR micromotors in the biomedical field are discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Guozhao Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ran Du
- School of Materials Science & Engineering, Key Laboratory of High Energy Density Materials of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yining Ma
- Department of Forensic Science, Jiangsu Police Institute, Nanjing 210031, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Biocompatible micromotors for biosensing. Anal Bioanal Chem 2022; 414:7035-7049. [PMID: 36044082 PMCID: PMC9428376 DOI: 10.1007/s00216-022-04287-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Micro/nanomotors are nanoscale devices that have been explored in various fields, such as drug delivery, environmental remediation, or biosensing and diagnosis. The use of micro/nanomotors has grown considerably over the past few years, partially because of the advantages that they offer in the development of new conceptual avenues in biosensing. This is due to their propulsion and intermixing in solution compared with their respective static forms, which enables motion-based detection methods and/or decreases bioassay time. This review focuses on the impacts of micro/nanomotors on biosensing research in the last 2 years. An overview of designs for bioreceptor attachment to micro/nanomotors is given. Recent developments have focused on chemically propelled micromotors using external fuels, commonly hydrogen peroxide. However, the associated fuel toxicity and inconvenience of use in relevant biological samples such as blood have prompted researchers to explore new micro/nanomotor biosensing approaches based on biocompatible propulsion sources such as magnetic or ultrasound fields. The main advances in biocompatible propulsion sources for micro/nanomotors as novel biosensing platforms are discussed and grouped by their propulsion-driven forces. The relevant analytical applications are discussed and representatively illustrated. Moreover, envisioning future biosensing applications, the principal advantages of micro/nanomotor synthesis using biocompatible and biodegradable materials are given. The review concludes with a realistic drawing on the present and future perspectives.
Collapse
|
16
|
Quashie D, Benhal P, Chen Z, Wang Z, Mu X, Song X, Jiang T, Zhong Y, Cheang UK, Ali J. Magnetic bio-hybrid micro actuators. NANOSCALE 2022; 14:4364-4379. [PMID: 35262134 DOI: 10.1039/d2nr00152g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past two decades, there has been a growing body of work on wireless devices that can operate on the length scales of biological cells and even smaller. A class of these devices receiving increasing attention are referred to as bio-hybrid actuators: tools that integrate biological cells or subcellular parts with synthetic or inorganic components. These devices are commonly controlled through magnetic manipulation as magnetic fields and gradients can be generated with a high level of control. Recent work has demonstrated that magnetic bio-hybrid actuators can address common challenges in small scale fabrication, control, and localization. Additionally, it is becoming apparent that these magnetically driven bio-hybrid devices can display high efficiency and, in many cases, have the potential for self-repair and even self-replication. Combining these properties with magnetically driven forces and torques, which can be transmitted over significant distances, can be highly controlled, and are biologically safe, gives magnetic bio-hybrid actuators significant advantages over other classes of small scale actuators. In this review, we describe the theory and mechanisms required for magnetic actuation, classify bio-hybrid actuators by their diverse organic components, and discuss their current limitations. Insights into the future of coupling cells and cell-derived components with magnetic materials to fabricate multi-functional actuators are also provided.
Collapse
Affiliation(s)
- David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Zhi Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Zihan Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xueliang Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Teng Jiang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| |
Collapse
|
17
|
Liu C, Huang J, Xu T, Zhang X. Powering bioanalytical applications in biomedicine with light-responsive Janus micro-/nanomotors. Mikrochim Acta 2022; 189:116. [PMID: 35195789 DOI: 10.1007/s00604-022-05229-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Possessing both unique asymmetric structures and remote-controlled active movement, light-responsive Janus micro-/nanomotors offer the possibility of breaking through the limitations of traditional biomedicine, and have fascinated and inspired researchers. Despite many obstacles toward the clinical application, impressive progress of light-responsive Janus micro-/nanomotors for bioanalytical applications has been made over the past decades. In this review, we first briefly introduced several main light-driven Janus micro-/nanomotors, then focused on their typical bioanalytical applications such as biosensing, bioimaging, and theranostic. In the end, we summarized the remaining challenges of light-responsive Janus micro-/nanomotors in the practical application and also proposed potential solutions in the future.
Collapse
Affiliation(s)
- Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juejiao Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China. .,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
18
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
19
|
Ye Z, Wang Y, Liu S, Xu D, Wang W, Ma X. Construction of Nanomotors with Replaceable Engines by Supramolecular Machine-Based Host-Guest Assembly and Disassembly. J Am Chem Soc 2021; 143:15063-15072. [PMID: 34499495 DOI: 10.1021/jacs.1c04836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micro/nanomotors (MNMs) are miniaturized devices capable of performing self-propelled motion and on-demand tasks, which have brought revolutionary renovations in nanomedicine, environmental remediation, biochemical sensing, etc. Numerous methods of either chemical synthesis or physical fabrications have been extensively investigated to prepare MNMs of various shapes and functions. However, MNMs with replaceable engines that can be flexibly assembled and disassembled, resembling that of a macroscopic machine, have not been achieved. Here, for the first time, we report a demonstration of control over the engine replacement of self-propelled nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs) via supramolecular machine-based host-guest assembly and disassembly between azobenzene (Azo) and β-cyclodextrin (β-CD). Nanomotors with different driving mechanisms can be rapidly constructed by selecting corresponding β-CD-modified nanoengines of urease, Pt, or Fe3O4, to assemble with the azobenzene-modified HMSNPs (HMSNPs-Azo). In virtue of photoresponsive cis/trans isomer conversion of azobenzene molecules, engine switching can be accomplished by remote light triggered host-guest assembly or disassembly between HMSNPs-Azo and β-CD-modified engines. Moreover, this method can quickly include multiple engines on the surface of the HMSNPs-Azo to prepare a hybrid MNM with enhanced motion capability. This strategy not only is cost-effective for the rapid and convenient preparation of nanomotors with different propulsion mechanism but also paves a new path to future multiple functionalization of MNMs for on-demand task assignment.
Collapse
Affiliation(s)
- Zihan Ye
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Yong Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Sanhu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Dandan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
20
|
Ressnerova A, Novotny F, Michalkova H, Pumera M, Adam V, Heger Z. Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS NANO 2021; 15:12899-12910. [PMID: 34282903 DOI: 10.1021/acsnano.1c01172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transfection is based on nonviral delivery of nucleic acids or proteins into cells. Viral approaches are being used; nevertheless, their translational capacity is nowadays decreasing due to persistent fear of their safety, therefore creating space for the field of nanotechnology. However, nanomedical approaches introducing static nanoparticles for the delivery of biologically active molecules are very likely to be overshadowed by the vast potential of nanorobotics. We hereby present a rapid nonviral transfection of protein into a difficult-to-transfect prostate cancer cell line facilitated by chemically powered rectangular virus-sized (68 nm × 33 nm) nanorobots. The enhanced diffusion of these biocompatible nanorobots is the key to their fast internalization into cells, happening in a matter of minutes and being up to 6-fold more efficient compared to static nanorobots in a nonfueled environment. The Au/Ag plasmonic nature of these nanorobots makes them simply traceable and allows for their detailed subcellular localization. Protein transfection mediated by such nanorobots is an important step forward, challenging the field of nanomedicine and having potential in future translational medical research.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Filip Novotny
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic
- Center for Nanorobotics and Machine Intelligence, Department of Food Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, 40402 Taichung, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
- Future Energy and Innovation Lab, Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
21
|
He X, Jiang H, Li J, Ma Y, Fu B, Hu C. Dipole-Moment Induced Phototaxis and Fuel-Free Propulsion of ZnO/Pt Janus Micromotors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101388. [PMID: 34173337 DOI: 10.1002/smll.202101388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Light-driven micromotors have stimulated considerate interests due to their potentials in biomedicine, environmental remediation, or serving as the model system for non-equilibrium physics of active matter. Simultaneous control over the motion direction and speed of micro/nanomotors is crucial for their functionality but still difficult since Brownian motion always randomizes the orientations. Here, a highly efficient light-driven ZnO/Pt Janus micromotor capable of aligning itself to illumination direction and exhibiting negative phototaxis at high speeds (up to 32 µm s-1 ) without the addition of any chemical fuels is developed. A light-triggered self-built electric field parallel to the light illumination exists due to asymmetrical surface chemical reactions induced by the limited penetration depth of light along the illumination. The phototactic motion of the motor is achieved through electrophoretic rotation induced by the asymmetrical distribution of zeta potential on the two hemispheres of the Janus micromotor, into alignment with the electric field. Notably, similar phototactic propulsion is also achieved on TiO2 /Pt and CdS/Pt micromotors, which presents explicit proof of extending the mechanism of dipole-moment induced phototactic propulsion in other light-driven Janus micromotors. Finally, active transportation of yeast cells are achieved by the motor, proving its capability in performing complex tasks.
Collapse
Affiliation(s)
- Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
22
|
Jiang H, He X, Ma Y, Fu B, Xu X, Subramanian B, Hu C. Isotropic Hedgehog-Shaped-TiO 2/Functional-Multiwall-Carbon-Nanotube Micromotors with Phototactic Motility in Fuel-Free Environments. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5406-5417. [PMID: 33475348 DOI: 10.1021/acsami.0c19606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Directional motion in response to specific signals is critically important for micro/nanomotors in precise cargo transport, obstacle avoidance, collective control, and complex maneuvers. In this work, a kind of isotropic light-driven micromotor that is made of hedgehog-shaped TiO2 and functional multiwall carbon nanotubes (Hs-TiO2@FCNTs) has been developed. The FCNTs are closely entangled with Hs-TiO2 and form a close-knit matrix on the surface of Hs-TiO2, which facilitates the transfer of electrons from Hs-TiO2 to FCNTs. Due to the high redox potential of Hs-TiO2, excellent electron-hole separation efficiency by the addition of FCNTs, and isotropic morphology of the micromotor, these Hs-TiO2@FCNT micromotors show phototactic and fuel-free propulsion under unidirectional irradiation of UV light. It is the first time to demonstrate isotropic micromotors that are propelled by self-electrophoresis. The isotropy of Hs-TiO2@FCNT micromotors makes them immune to the rotational Brownian diffusion and local flows, exhibiting superior directionality. The motion direction of our micromotors can be precisely tuned by light and a velocity of 8.9 μm/s is achieved under 160 mW/cm2 UV light illumination. Photodegradation of methylene blue and active transportation of polystyrene beads are demonstrated for a proof-of-concept application of our micromotors. The isotropic design of the Hs-TiO2@FCNT micromotors with enhanced photocatalytic properties unfolds a new paradigm for addressing the limitations of directionality control and chemical fuels in the current asymmetric light-driven micromotors.
Collapse
Affiliation(s)
- Huaide Jiang
- Department of Mechanical Engineering and Energy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoli He
- Department of Mechanical Engineering and Energy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanmei Ma
- Department of Mechanical Engineering and Energy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bi Fu
- Department of Mechanical Engineering and Energy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingui Xu
- Department of Mechanical Engineering and Energy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Balachandran Subramanian
- Department of Mechanical Engineering and Energy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengzhi Hu
- Department of Mechanical Engineering and Energy, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
23
|
Vikrant K, Kim KH. Metal–organic framework micromotors: perspectives for environmental applications. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01124c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal–organic framework micromotors possessing a self-propulsion system have been proposed as a new generation of advanced materials for various environmental applications.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| |
Collapse
|