1
|
Huang M, Wang R, Yu F, Ding Q, Zhu Y. Bimetallic FeCo phosphide-enabled electrochemical sensor for rapid tanshinol quantification in Salvia miltiorrhiza herb at near-neutral condition. Talanta 2025; 287:127611. [PMID: 39879797 DOI: 10.1016/j.talanta.2025.127611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Tanshinol, an active ingredient extracted from the Salvia miltiorrhiza herb, is widely used in Chinese medicine or health supplements. Accurately and rapidly quantifying of tanshinol under near-neutral or neutral conditions is of great significance but still a significant challenge. Herein, a novel electrochemical sensor based on bimetallic FeCo phosphides (FexCo1-xP) was developed for rapid and sensitive detection of tanshinol in near-neutral environments. FexCo1-xP nanocrystals supported on porous graphene (FexCo1-xP/GFs) were synthesized, with Fe0.25Co0.75P/GFs demonstrating an enhanced electrochemical response for tanshinol detection at pH 6.5. The Fe0.25Co0.75P/GFs-based tanshinol electrochemical sensor exhibited linear detection ranges of 0.20-11.65 μM and 11.65-39.98 μM, which could accurately quantify tanshinol in Salvia miltiorrhiza herb. This study highlights the potential of earth-abundant FeCo phosphides for the electrochemical detection of tanshinol under benign conditions, offering a promising approach for the standardized analysis of Salvia miltiorrhiza herb.
Collapse
Affiliation(s)
- Mao Huang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fan Yu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi Ding
- Shangluo Central Hospital, Shangluo, 726000, China.
| | - Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Yu F, Huang M, Wang R, Hao C, Zhu Y. Single-atom ruthenium nanozyme-induced signal amplification strategy in photoelectrochemical aptasensor for ultrasensitive detection of chloramphenicol. Biosens Bioelectron 2025; 268:116917. [PMID: 39522467 DOI: 10.1016/j.bios.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
To develop ultrasensitive and rapid antibiotics residue detection method is crucial for ensuring food safety and protecting human health. Herein, a novel photoelectrochemical (PEC) aptasensor integrated with single-atom ruthenium (Ru) nanozyme-mediated catalytic precipitation as a valuable signal amplification strategy, have been established for ultrasensitive chloramphenicol (CAP) detection. Particularly, the exceptional peroxidase-mimicking activity of single-atom Ru nanozyme is responsible for accelerating the oxidation of 4-chloro-1-naphthol (4-CN) to produce insoluble precipitate on the electrode, which in turn causes a notable reduction in the photocurrent. Whereas, when CAP is present, the aptamer is liberated away the electrode because of its potent affinity with CAP, resulting in an elevation of the photocurrent signal, enhancing the detection sensitivity. Importantly, the signal amplification strategy combines the effective photoactive material of Au nanoparticles/CdS quantum dot/TiO2 composites, a PEC aptasensor for determination of CAP with an ultralow detection limit of 4.12 pM is achieved in a self-powered mode with great selectivity and accuracy. This work proposes a novel reasonable approach utilizing high-activity single-atom nanozyme to induce signal amplification strategy for the advancement of single-atom nanozyme in ultrasensitive PEC biosensor, and further creates new avenues for ultrasensitive detection beyond antibiotics residue.
Collapse
Affiliation(s)
- Fan Yu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mao Huang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chun Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China; Institute of Molecular Science, Shanxi University, 030006, Taiyuan, China
| | - Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Tuning Pore Structure and Specific Surface Area of Graphene Frameworks via One-Step Fast Pyrolysis Strategy: Impact on Electrochemical Sensing Behavior of Catechol. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Zhu Y, Ma X, Lv X, Zhang L, Li C, Shi N, Wang J. Graphene frameworks-confined synthesis of 2D-layered NiCoP for the electrochemical sensing of H 2O 2 at lower overpotential. Mikrochim Acta 2022; 189:345. [PMID: 36001198 DOI: 10.1007/s00604-022-05445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
A new 2D-layered nickel cobalt phosphide nanosheet confined by 3D graphene frameworks (denoted as NiCoP/GFs) is in situ controllably synthesized as a highly efficient and durable electrocatalyst, which is obtained from the transformation of corresponding NiCo layer double hydroxides and GFs. Hydrogen peroxide (H2O2) is selected as a demonstration to study the electrochemical sensing performance of the NiCoP/GFs. Benefiting from 2D morphology of NiCoP and network structure of GFs, NiCoP/GFs exhibits remarkable electroactivity toward H2O2 at a relatively low overpotential of approximately - 0.3 V (vs sat. Ag/AgCl) in 0.01 M phosphate-buffered saline solution (PBS, pH = 7.4). The NiCoP/GFs-based H2O2 electrochemical sensor achieves a high sensitivity of ∼4398 μA mM-1 cm-2, a low detection limit of 0.028 ± 0.006 μM, and desirable selectivity. In addition, the sensor can sensitively detect H2O2 from living cancer cells. This study not merely broadens the synthesis methods of transition metal phosphide-based nanocrystals but the NiCoP/GFs also has broad prospects in diverse electrochemistry fields. We have reported a controllable synthesis of 2D nickel cobalt phosphide nanosheet confined by graphene frameworks (denoted as NiCoP/GFs) as a greatly efficient and durable electrocatalyst. The NiCoP/GFs exhibits remarkable electroactivity toward detection of H2O2 at a relatively low overpotential of approximately -0.3 V. Density functional theory (DFT) calculations further prove that regulation of the electronic structure of NiCoP by GFs lowers the adsorption free energy of *OOH intermediates, and thus contributes to the greatly improved the electrocatalytic performance of NiCoP/GFs toward H2O2 reduction. The developed NiCoP/GFs can be applied as excellent electrode materials for efficient electrochemical sensing of H2O2.
Collapse
Affiliation(s)
- Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| | - Xiaowei Ma
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Xueyi Lv
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Lina Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Chao Li
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Ningning Shi
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jing Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
6
|
Casanova A, Iniesta J, Gomis-Berenguer A. Recent progress in the development of porous carbon-based electrodes for sensing applications. Analyst 2022; 147:767-783. [PMID: 35107446 DOI: 10.1039/d1an01978c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical (bio)sensors are considered clean and powerful analytical tools capable of converting an electrochemical reaction between analytes and electrodes into a quantitative signal. They are an important part of our daily lives integrated in various fields such as healthcare, food and environmental monitoring. Several strategies including the incorporation of porous carbon materials in its configuration have been applied to improve their sensitivity and selectivity in the last decade. The porosity, surface area, graphitic structure as well as chemical composition of materials greatly influence the electrochemical performance of the sensors. In this review, activated carbons, ordered mesoporous carbons, graphene-based materials, and MOF-derived carbons, which are used to date as crucial elements of electrochemical devices, are described, starting from their textural and chemical compositions to their role in the outcome of electrochemical sensors. Several relevant and meaningful examples about material synthesis, sensor fabrication and applications are illustrated and described. The closer perspectives of these fascinating materials forecast a promising future for the electrochemical sensing field.
Collapse
Affiliation(s)
- Ana Casanova
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, SE-100 44 Stockholm, Sweden
| | - Jesus Iniesta
- Department of Physical Chemistry, University of Alicante, 03080 Alicante, Spain
- Institute of Electrochemistry, University of Alicante, 03080 Alicante, Spain.
| | | |
Collapse
|
7
|
Li H, Zhao H, Wang Z, Zhou F, Lan M. Facilely proposed PtCu-rGO bimetallic nanocomposites modified carbon fibers microelectrodes for detecting hydrogen peroxide released from living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|