1
|
Shirkhodaie M, Seidi S, Shemirani F, Moghadasian S. NiFe-LDH/nylon 6 composite electrospun on polypropylene membrane: A new extractive device development for porous membrane protected micro-solid-phase extraction of organophosphate pesticides from fresh fruit juice samples coupled with liquid chromatography tandem mass analysis. Food Chem 2024; 451:139368. [PMID: 38657518 DOI: 10.1016/j.foodchem.2024.139368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
A unique strategy for developing porous membrane protected micro-solid phase extraction has been provided. An electrospun composite was fabricated on the sheet of membrane. To this end, NiFe-layered double hydroxide/Nylon 6 composite nanofibers were coated on a polypropylene membrane sheet followed by folding into a pocket shape, which were then utilized as a novel extractive device to extract of organophosphorus pesticides from fresh fruit juice samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The fabricated hybrid composites were successfully characterized. The effective parameters on extraction performance were investigated. LODs were 0.020-0.065 ng mL-1. Excellent linearity (R2≥0.996) was observed between 0.05 and 100.0 ng mL-1. RSDs% were in the range of 3.1-5.8% (intra-day, n = 3) and 2.6-5.5% (inter-day, n = 3×3). Satisfactory related recovery values within the acceptable range of 90.7-111.2% with RSDs% below 6.7% were achieved for the analysis of real samples.
Collapse
Affiliation(s)
- Mahsa Shirkhodaie
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611 Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611 Tehran, Iran.
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Sepideh Moghadasian
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611 Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611 Tehran, Iran
| |
Collapse
|
2
|
Afsordeh A, Arbabsadeghi A, Javanmardi H, Bagheri H. Incorporation of Cu-TATAB metal-organic framework within polyurethane nanocomposite for enhanced thin film microextraction of some chlorinated pesticides. J Chromatogr A 2024; 1730:465061. [PMID: 38909520 DOI: 10.1016/j.chroma.2024.465061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
In this research, electrospun nanofibers based on copper-based metal organic framework (MOF)/polyurethane (PU) were prepared in order to achieve an applicable and superior extractive phase. The incorporation of MOF, in the synthesized nanocomposite contributed to the enhanced sorption efficiency. The prepared sorbent was implemented for the thin film microextraction (TFME) of target compounds with subsequent quantification using gas chromatography-mass spectrometry (GC-MS). To obtain the maximum efficiency of the synthesized sorbent, the influential parameters on extraction and desorption steps, including the MOF percentage in nanocomposite, desorption solvent type and its volume, desorption time, solution ionic strength and extraction time were optimized. After method development, the linear dynamic range (0.02-700 μg L-1), limits of detection (LODs) (0.005-0.1 μg L-1) and limits of quantification (LOQs))0.02-0.33 μg L-1(were calculated. The relative standard deviations values for intra-day and inter-day analysis were found to be in the range of 4.3-5.3 % and 6.2-8.1 %, respectively. The developed method was validated for the TFME of model organochlorine (OC) pesticide residues in fish, soil and water samples. the recovery values for the spiked samples at two concentration levels of 5 and 100 µg l-1 were found in the range of 72-110 %.
Collapse
Affiliation(s)
- Amirhosein Afsordeh
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Amirreza Arbabsadeghi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Hasan Javanmardi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran; Department of Chemistry, University of Waterloo, Ontario N2L 3G1 Waterloo, Canada
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
3
|
Zhang X, Li Z, Wang Y, Zhang S, Zang X, Wang C, Wang Z. Preparation of black phosphorus nanosheets/ zeolitic imidazolate framework nanocomposite for high-performance solid-phase microextraction of organophosphorus pesticides. J Chromatogr A 2023; 1708:464339. [PMID: 37660557 DOI: 10.1016/j.chroma.2023.464339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Design and preparation of new fiber coatings for solid-phase microextraction (SPME) is of significance to the sample preparation techniques. Herein, a facile strategy has been developed for the integration of the black phosphorus (BP) nanosheets with metal-organic framework (ZIF-8) to generate a BP/ZIF-8 nanocomposite. For the first time, the newly-synthesized BP/ZIF-8 nanocomposite was adopted as the SPME fiber coating for the extraction of organophosphorus pesticides (OPPs). Under the optimized conditions, the BP/ZIF-8 based SPME method gained acceptable linearity (0.04-20 µg L-1), low limits of detection (0.012-0.051 µg L-1) and good repeatability (3.2-8.1%). Coupled with gas chromatography-mass spectrometric detection, the developed SPME method was successfully used for the preconcentration of OPPs from environmental waters with the method recoveries from 92.0%-103.8%. This method offers a good alternative for the analysis of trace OPPs in environmental water samples.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yang Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
4
|
Rahimpoor R, Soleymani-Ghoozhdi D, Alizadeh S, Firoozichahak A, Mehregan F, Firoozi R. Investigation of organophosphorus (OPs) compounds by a needle trap device based on mesoporous organo-layered double hydroxide (organo-LDH). RSC Adv 2023; 13:17656-17666. [PMID: 37312990 PMCID: PMC10258888 DOI: 10.1039/d3ra01732j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Organophosphorus (OPs) compounds can endanger human health and the environment by inhibiting the acetylcholinesterase enzyme. But these compounds have been widely used as pesticides due to their effectiveness against all kinds of pests. In this study, a Needle Trap Device (NTD) packed with mesoporous organo-layered double hydroxide (organo-LDH) material and coupled with gas chromatography-mass spectrometry (GC-MS) was employed for the sampling and analysis of OPs compounds (diazinon, ethion, malathion, parathion, and fenitrothion). In this way, the [magnesium-zinc-aluminum] layered double hydroxide ([Mg-Zn-Al] LDH) modified with sodium dodecyl sulfate (SDS) as a surfactant was prepared and characterized by FT-IR, XRD, BET, and FE-SEM, EDS, and elemental mapping techniques. Then, various parameters such as relative humidity, sampling temperature, desorption time, and desorption temperature were evaluated by the mesoporous organo-LDH:NTD method. The optimal values of these parameters were determined using response surface methodology (RMS) and central composite design (CCD). The optimal temperature and relative humidity values were obtained as 20 °C and 25.0%, respectively. On the other hand, the desorption temperature and time values were in the range of 245.0-254.0 °C and 5 min, respectively. The limit of detection (LOD) and limit of quantification (LOQ) were reported in the range of 0.02-0.05 mg m-3 and 0.09-0.18 mg m-3, respectively, which shows the high sensitivity of the proposed method compared to the usual methods. The repeatability and reproducibility of the proposed method (by calculating the relative standard deviation) was estimated in the range of 3.8-10.10 which indicates the acceptable precision of the organo-LDH:NTD method. Also, the desorption rate of the stored needles at 25 °C and 4 °C, was determined to be 86.0% and 96.0%, respectively after 6 days. The results of this study proved that the mesoporous organo-LDH:NTD method can be utilized as a fast, simple, environmentally friendly, and effective method for sampling and determining OPs compounds in the air.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences Larestan Iran
| | - Danial Soleymani-Ghoozhdi
- Student Research Committee, Faculty of Public Health, Kerman University of Medical Sciences Kerman Iran
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University Hamedan Iran
| | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science Gonabad Iran
| | - Faeze Mehregan
- Medical Student, School of Medicine, Shahrekord University of Medical Sciences Shahrekord Iran
| | - Razieh Firoozi
- Computer Engineering, Birjand Branch, Islamic Azad University Birjand Iran
| |
Collapse
|
5
|
Fu Q, Jia X, Zhang S, Zhang J, Sun-Waterhouse D, Wang C, Waterhouse GIN, Wu P. Highly defective copper-based metal-organic frameworks for the efficient adsorption and detection of organophosphorus pesticides: An experimental and computational investigation. Food Chem 2023; 423:136319. [PMID: 37187007 DOI: 10.1016/j.foodchem.2023.136319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/19/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Organophosphorus pesticide (OP) residues pose a serious threat to human health, motivating the search for novel adsorbents and detection methods. Herein, defective copper-based metal organic frameworks (Cu-MOFs) were synthesized by the reaction of Cu2+ ions and 1,3,5-benzenetricarboxylate linkers in the presence of acetic acid. As the amount of acetic acid increased, the crystallization kinetics and morphology of the Cu-MOFs changed, leading to mesoporous Cu-MOFs with many large surface pores (defects). Adsorption studies of OPs revealed the defective Cu-MOFs showed faster pesticide adsorption kinetics and higher pesticide adsorption capacities. Density functional theory calculations showed that pesticide adsorption in the Cu-MOFs was mainly electrostatic. A dispersive solid phase extraction method was developed based on a defective Cu-MOF-6 for rapidly extracting pesticides from food samples. The method allowed pesticide detection over a wide linear concentration range, low limits of detection (0.0067-0.0164 µg L-1) and good recoveries in pesticide-spiked samples (81.03-109.55%).
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Xiaoxue Jia
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Jinghan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | | | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Taian 271018, PR China.
| | | | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
6
|
Yaqoub AR, Jamil LA. A new application of continuous sample drop flow microextraction using octanoic acid as a green extraction solvent for the determination of antibiotic drugs in urine samples. ANAL SCI 2023; 39:893-900. [PMID: 36807896 DOI: 10.1007/s44211-023-00292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
In this study, octanoic acid (OA) was used as an extraction solvent for the pre-concentration and determination of three antibiotic drugs (levofloxacin, metronidazole, and tinidazole) in urine samples. To extract the antibiotic drugs, a green solvent was used as the extraction solvent in the continuous sample drop flow microextraction method, followed by a high-performance liquid chromatography photodiode array detector. According to the findings, the present study offers an environmentally friendly analytical method with a high capacity for the microextraction of the antibiotic drugs at very low concentrations. The calculated detection limits were 6.0-10.0 µg/L and the linear range was found between 20 and 780 µg/L. The proposed method showed excellent repeatability with the RSD values ranging from 2.8 to 5.5%. The relative recoveries were between 79.0 and 92.0% in the urine samples with spiked levels of 40.0-100.0 µg/L for metronidazole and tinidazole, and 100.0-200.0 μg/L for levofloxacin.
Collapse
Affiliation(s)
| | - Lazgin Abdi Jamil
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Iraq
| |
Collapse
|
7
|
Zhang Q, Zhao J, Xie R, Xiao W, Mao X, Yuan C, Wang Y, Wan Y. A simple and efficient method for determining the pyrethroid pesticide residues in freshly squeezed fruit juices using a water stable metal-organic framework. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen DH, Nguyen DTC, Tran TV. Facile synthesis of CoFe 2O 4@MIL-53(Al) nanocomposite for fast dye removal: Adsorption models, optimization and recyclability. ENVIRONMENTAL RESEARCH 2022; 215:114269. [PMID: 36103925 DOI: 10.1016/j.envres.2022.114269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The global occurrence of textile dyes pollution has recently emerged, posing a serious threat to ecological systems. To abate dye contamination, we here developed a novel magnetic porous CoFe2O4@MIL-53(Al) nanocomposite by incorporating magnetic CoFe2O4 nanoparticles with MIL-53(Al) metal-organic framework. This nanocomposite possessed a surface area of 197.144 m2 g-1 and a pore volume of 0.413 cm3 g-1. The effect of contact time (5-120 min), concentration (5-50 mg L-1), dosage (0.1-1.0 g L-1), and pH (2-10) on Congo red adsorption was clarified. CoFe2O4@MIL-53(Al) could remove 95.85% of Cong red dye from water with an accelerated kinetic rate of 0.6544 min-1 within 10 min. The kinetic and isotherm models showed the predominance of Bangham and Temkin. According to Langmuir, the maximum uptake capacities of CoFe2O4@MIL-53(Al), CoFe2O4, and MIL-53(Al) adsorbents were 43.768, 17.982, and 15.295 mg g-1, respectively. CoFe2O4@MIL-53(Al) was selected to optimize Cong red treatment using Box-Behnken experimental design. The outcomes showed that CoFe2O4@MIL-53(Al) achieved the highest experimental uptake capacity of 35.919 mg g-1 at concentration (29.966 mg L-1), time (14.926 min), and dosage (0.486 g L-1). CoFe2O4@MIL-53(Al) could treat dye mixture (methylene blue, methyl orange, Congo red, malachite green, and crystal violet) with an outstanding removal efficiency of 81.24% for 30 min, and could be reused up to five cycles. Therefore, novel recyclable and stable CoFe2O4@MIL-53(Al) is recommended to integrate well with real dye treatments systems.
Collapse
Affiliation(s)
- Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
9
|
Deng G, Chen H, Shi Q, Ren L, Liang K, Long W, Lan W, Han X, She Y, Fu H. Colorimetric assay based on peroxidase-like activity of dodecyl trimethylammonium bromide-tetramethyl zinc (4-pyridinyl) porphyrin for detection of organophosphorus pesticides. Mikrochim Acta 2022; 189:375. [PMID: 36074197 DOI: 10.1007/s00604-022-05430-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/08/2022] [Indexed: 10/14/2022]
Abstract
A simple and sensitive colorimetric assay for detecting organophosphorus pesticides (OPs) was developed based on 3,3',5,5'-tetramethylbenzidine (TMB)/hydrogen peroxide (H2O2)/dodecyl trimethylammonium bromide (DTAB)-tetramethyl zinc (4-pyridinyl) porphyrin (ZnTPyP). In this system, based on the peroxidase-like activity of DTAB-ZnTPyP, H2O2 decomposes to produce hydroxyl radicals, which oxidize TMB, resulting in blue oxidation products. The OPs (trichlorfon, dichlorvos, and thimet) were first combined with DTAB-ZnTPyP through electrostatic interactions. The OPs caused a decrease in the peroxidase-like activity of DTAB-ZnTPyP due to spatial site blocking. At the same time, π-interactions occurred between them, and these interactions also inhibited the oxidation of TMB (652 nm), thus making the detection of OPs possible. The limits of detection for trichlorfon, dichlorvos, and thimet were 0.25, 1.02, and 0.66 μg/L, respectively, and the corresponding linear ranges were 1-35, 5-45, and 1-40 μg/L, respectively. Moreover, the assay was successfully used to determine OPs in cabbage, apple, soil, and traditional Chinese medicine samples (the recovery ratios were 91.8-109.8%), showing a great promising potential for detecting OPs also in other complex samples.
Collapse
Affiliation(s)
- Gaoqiong Deng
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Qiong Shi
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Lixue Ren
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Ke Liang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xiaole Han
- Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
10
|
Wang G, Dong H, Han J, Zhang M, Huang J, Sun J, Guan F, Shen Z, Xu D, Sun X, Guo Y, Zhao S. Interference-resistant aptasensor with tetrahedral DNA nanostructure for profenofos detection based on the composites of graphene oxide and polyaniline. Bioelectrochemistry 2022; 148:108227. [PMID: 35973324 DOI: 10.1016/j.bioelechem.2022.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
In this work, an interference-resistant electrochemical aptasensor that could detect profenofos in vegetables was constructed based on complexes of graphene oxide and polyaniline (GO@PANI) and gold nanoparticles-tetrahedral DNA nanostructure (Au-TDN). Compared with a single chain aptamer, the tetrahedral DNA nanostructure is highly stable and allows the aptamer on this structure to stand in a highly ordered position on an electrode surface. Moreover, the AuNPs are biocompatible and can protect the activity of the aptamer, which can improve the assembly success rate of Au-TDN. Besides, the conductivity of PANI had been tremendously enhanced thanks to the existence of GO, which improved the dispersion of PANI. The GO@PANI was prepared by a chemical synthesis method, which had a large surface area and was able to adsorb many Au-TDN. Under optimal working parameters, the constructed aptasensor exhibited good electrochemical sensing performance with a detection limit of 10.50 pg/mL and a linear range of 1.0 × 102-1.0 × 107 pg/mL. In addition, it was employed in detecting profenofos in vegetables with a good recovery rate of 90.41-116.37 %. More importantly, the aptasensor also has excellent stability and high selectivity. This study provides a promising method to avoid interference in the detection of profenofos by sensors.
Collapse
Affiliation(s)
- Guanjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haowei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Fukai Guan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Shancang Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
| |
Collapse
|
11
|
Modern Analytical Methods for the Analysis of Pesticides in Grapes: A Review. Foods 2022; 11:foods11111623. [PMID: 35681373 PMCID: PMC9180315 DOI: 10.3390/foods11111623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, research on the determination of pesticides in food products is very popular. Information obtained from research conducted so far mainly concerns the development of a methodology to determine the content of pesticides in food products. However, they do not describe the content of the pesticide used in viticulture in the resulting product. Over the past decade, this study has examined analytical methodologies for assessing pesticide residues in grapes. Scopus, Web of Science, Science Direct, PubMed, and Springer databases were searched for relevant publications. The phrases “pesticides” and “grapes” and their combinations were used to search for articles. The titles and annotations of the extracted articles have been read and studied to ensure that they meet the review criteria. The selected articles were used to compile a systematic review based on scientific research and reliable sources. The need to study the detection of pesticide residues in grapes using advanced analytical methods is confirmed by our systematic review. This review also highlights modern methods of sample preparation, such as QuEChERS, SPME, PLE, dLLME, and ADLL-ME, as well as the most used methods of separation and identification of pesticides in grapes. An overview of the countries where residual grape pesticide amounts are most studied is presented, along with the data on commonly used pesticides to control pests and diseases in grape cultivation. Finally, future possibilities and trends in the analysis of pesticide residues in grapes are discussed by various analytical methods.
Collapse
|
12
|
Musarurwa H, Tavengwa NT. Advances in the application of chitosan-based metal organic frameworks as adsorbents for environmental remediation. Carbohydr Polym 2022; 283:119153. [DOI: 10.1016/j.carbpol.2022.119153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
|
13
|
Metal-organic framework modified carbon cloth for electric field enhanced thin film microextraction of sulfonamides in animal-derived food. J Chromatogr A 2022; 1674:463120. [DOI: 10.1016/j.chroma.2022.463120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
|
14
|
Nasiri M, Ahmadzadeh H, Amiri A. Magnetic solid‐phase extraction of organophosphorus pesticides from apple juice and environmental water samples using magnetic graphene oxide coated with poly(2‐aminoterephthalic acid‐co‐aniline) nanocomposite as a sorbent. J Sep Sci 2022; 45:2301-2309. [DOI: 10.1002/jssc.202100873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Maryam Nasiri
- Department of Chemistry Faculty of Science Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Hossein Ahmadzadeh
- Department of Chemistry Faculty of Science Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Amirhassan Amiri
- Department of Chemistry Faculty of Science Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| |
Collapse
|
15
|
Ren H, Tianxiang W. Electrochemical Synthesis Methods of Metal‐Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem 2022. [DOI: 10.1002/celc.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ren
- Nanjing Normal University School of Environment CHINA
| | - Wei Tianxiang
- Nanjing Normal University No. 1 Wenyuan Road, Qixia District Nanjing CHINA
| |
Collapse
|
16
|
Chen L, Chen B, Zhou Z, Liang Y, Wu Z, He M, Hu B. Covalent organic framework-based magnetic solid phase extraction coupled with micellar electrokinetic chromatography for the analysis of trace organophosphorus pesticides in environmental water and atmospheric particulates. J Chromatogr A 2022; 1673:463030. [DOI: 10.1016/j.chroma.2022.463030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
17
|
Cheng Y, Shen M, Huang H, Wang Y, Xu W, Liao M, Chen X. Redistribution mechanism on the preparation of dichlorodimethylsilane by the ZnCl2/MIL-53(Al) catalyst. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Wan N, Chang Q, Hou F, Li J, Zang X, Zhang S, Wang C, Wang Z. Efficient solid-phase microextraction of twelve halogens-containing environmental hormones from fruits and vegetables by triazine-based conjugated microporous polymer coating. Anal Chim Acta 2022; 1195:339458. [DOI: 10.1016/j.aca.2022.339458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
|
19
|
Khodayari A, Sohrabnezhad S, Moinfar S, Pourahmad A. GNP/Al-MOF nanocomposite as an efficient fiber coating of headspace solid-phase micro-extraction for the determination of organophosphorus pesticides in food samples. Mikrochim Acta 2022; 189:45. [PMID: 34985689 DOI: 10.1007/s00604-021-05101-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
The synthesis and utilization of a high porous nanocomposite comprising MIL-53(Al) metal-organic framework (Al-MOF) and graphene nanopowder (GNP) is reported as a fiber coating for headspace solid-phase micro-extraction (HS-SPME) of selected organophosphorus pesticides (OPPs) from apple, potato, grape juice, tomato, and river water. The adsorbed OPPs on the coated fiber were subsequently determined using GC-MS. Several parameters affecting the efficiency of extraction including time and temperature of extraction, desorption condition of extracted analytes, pH and agitation of sample solution, and salt concentration were investigated. The optimum extraction condition was achieved at 70 °C with an extraction time of 40 min, pH = 4-8, and NaCl concentration of 6.0% (w/v). The best condition of desorption were observed at 280 °C for 2.0 min under a flow of helium gas in the GC inlet. Under optimal conditions, the detection limits ranged from 0.2 to 1.5 ng g-1 and the linear ranges between 0.8 and 600 ng g-1. The proposed method showed very good repeatability with RSD values ranging from 4.5 to 7.3% (n = 5). The relative recoveries were between 88% and 109% at the spiked level of 25.0 ng g-1 for the tomato sample. The fabricated fiber exhibited good enrichment factor (62-195) at optimum condition of HS-SPME. The applied HS-SPME technique is facile, fast, and inexpensive. The thermally stable GNP/Al-MOF exhibited a high sensitivity toward OPPs. So, this nanocomposite can be considered as a sorbent for the micro-extraction of other pesticides in food.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran
| | - Shabnam Sohrabnezhad
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran.
| | | | - Afshin Pourahmad
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
20
|
Ma C, Wang X, Zhang H, Liu W, Wang D, Liu F, Lu H, Huang L. High-throughput screening and spatial profiling of low-mass pesticides using a novel Ti 3C 2 MXene nanowire (TMN) as MALDI MS matrix. CHEMOSPHERE 2022; 286:131826. [PMID: 34426141 DOI: 10.1016/j.chemosphere.2021.131826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Pesticides play critical roles in agricultural fields; however, pesticide residues can cause serious damage to human health and the ecological environment; therefore, developing a rapid and sensitive method for pesticide detection is urgently needed. Nanostructure-assisted matrix laser desorption/ionization (MALDI) mass spectrometry (MS) has great potential for the detection of low-mass pesticides. In this study, a novel Ti3C2 MXene nanowire (TMN) was prepared by a facile sol-gel method and served as a matrix to enhance MALDI MS performance in the analysis of pesticides in positive ion mode. The TMN showed superior performance in the high-throughput detection of six kinds of pesticides (organophosphorus, organochlorine, carbamate, neonicotinoids, triazole, and oxadiazines), with ultrahigh sensitivity (detection limits at sub-ppt levels), remarkable repeatability, excellent salt tolerance, and extremely low background compared to traditional organic matrices due to the specific polyaromatic structure and the doping of nitrogen. Furthermore, this matrix was successfully employed for the analysis of residual pesticides in traditional Chinese herbs, and the level of diniconazole was quantified with a linear range of 0-50 ng/mL (R2 > 0.99). More importantly, the spatial distribution of various endogenous compounds (e.g., amino acids and saccharides, fatty acids, alkaloids, and plant hormones) and xenobiotic pesticides from the intact root of the medicinal plant P. quinquefolium was clearly visualized using the TMN self-assembly film as a matrix for MALDI imaging mass spectrometry (IMS). With superior advantages such as sensitivity, simplicity, rapidness, and minimal sample requirement, TMN as a matrix-assisted MALDI MS shows great promise for various applications.
Collapse
Affiliation(s)
- Chunxia Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 1007002, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, China; Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 1007002, China; Post Doctoral Management Office, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, China.
| | - Huamin Zhang
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 1007002, China
| | - Wei Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, China
| | - Daijie Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, China
| | - Feng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, China
| | - Heng Lu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 1007002, China.
| |
Collapse
|
21
|
moinfar S, Khodayari A, Sami HZ, Ali MK, Abdi NN. Investigation of five metal organic frameworks as sorbent in syringe filters-SPE method for determination of metronidazole and cephalexin in water samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj00907b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we evaluated the preparation and utilization of NH2-MIL-101(Al) and NH2-MIL-101(Cr) as two efficient adsorbents for extraction of metronidazole and cephalexin in water samples using syringe filters-SPE method....
Collapse
|
22
|
Li Y, Li B, Qi Y, Zhang Z, Cong S, She Y, Cao X. Synthesis of metal-organic framework @molecularly imprinted polymer adsorbents for solid phase extraction of organophosphorus pesticides from agricultural products. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1188:123081. [PMID: 34911000 DOI: 10.1016/j.jchromb.2021.123081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
The novel core-shell structural zeolitic imidazolate framework-8 @molecularly imprinted polymers were successfully synthesized by surface imprinting technique and used as adsorbents for solid-phase extraction of organophosphorus pesticides. The obtained hybrid composites were characterized by scanning electron microscopy, transmission electron microscopy and Fourier-transform infrared, and their adsorbing and recognition performance were evaluated by binding experiments. The results showed that zeolitic imidazolate framework-8 @molecularly imprinted polymers presented a typically core-shell structure with molecularly imprinted shell (about 50 nm) homogeneously polymerized on the surface of zeolitic imidazolate framework-8 core, and exhibited specific recognition towards organophosphorus pesticides with fast adsorption capacity. The adsorption and desorption conditions including sample loading solvent, sample pH, washing and elution solvent were optimized. Under optimum conditions, the solid-phase extraction based on zeolitic imidazolate framework-8 @molecularly imprinted polymers combined with high liquid chromatography-tandem mass spectrometry method for determining organophosphorus pesticides was established and exhibited good linearity (R2 ≥ 0.9927) in the range of 1-200 µg/L. With spiked at three different concentration levels in agricultural products (cauliflower, radish, pear, muskmelon), the recoveries ranged from 82.5% to 123.0% with relative standard deviations lower than 8.24%. The developed method was sensitive, convenient and efficient. More importantly, this study could provide a promising strategy for designing new adsorbents with extremely fast mass transfer rate for other potential trace contaminants.
Collapse
Affiliation(s)
- Yang Li
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Bingzhi Li
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Yan Qi
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Ziping Zhang
- College of Life Science, Yantai University, Yantai 264005, PR China
| | - Shuang Cong
- College of Life Science, Yantai University, Yantai 264005, PR China.
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture of China, Beijing 100081, PR China
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
23
|
Metal organic framework-based magnetic solid phase extraction of pesticides in complex matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Moinfar S, Khodayari A, Abdulrahman SS, Aghaei A, Sohrabnezhad S, Jamil LA. Development of a SPE/GC-MS method for the determination of organophosphorus pesticides in food samples using syringe filters packed by GNP/MIL-101(Cr) nanocomposite. Food Chem 2021; 371:130997. [PMID: 34537611 DOI: 10.1016/j.foodchem.2021.130997] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023]
Abstract
In this study, we report the synthesis and application of a nanocomposite comprising metal-organic framework MIL-101(Cr) and graphene nanopowder (GNP) as a promising sorbent for the extraction of organophosphorus pesticides (OPPs) in juices, water, vegetables and honey samples. A syringe filter, for the first time, was used to host the synthesized nanocomposite and extract the OPPs followed by GC-MS analysis. Different characterization methods including XRD, FTIR, TGA, BET and SEM were employed to confirm the formation of studied nanocomposite. The results indicated that the GNP/MIL-101(Cr) could provide higher capacity for adsorption of OPPs and lower detection limit compared to pristine MIL-101(Cr). The detection limits were 0.005 to 15.0 µg/Kg and the linear range found between 0.05 and 400 µg/Kg. The proposed method showed very good repeatability with the RSD values ranging from 2.9% to 7.1%. The recoveries were between 84% -110% with the spiked levels of 2.0-100.0 µg/Kg.
Collapse
Affiliation(s)
| | - Ali Khodayari
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran; Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, 56199-11367 Ardabil, Iran
| | | | - Ali Aghaei
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Iraq
| | - Shabnam Sohrabnezhad
- Department of Chemistry, Faculty of Science, University of Guilan, P.O. Box 1914, Rasht, Iran
| | - Lazgin Abdi Jamil
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho, Iraq
| |
Collapse
|
25
|
Kamalabadi M, Madrakian T, Afkhami A, Ghoorchian A. Crystal violet-modified HKUST-1 framework with improved hydrostability as an efficient adsorbent for direct solid-phase microextraction. Mikrochim Acta 2021; 188:305. [PMID: 34448045 DOI: 10.1007/s00604-021-04966-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Metal-organic frameworks (MOFs) have received extensive attention in adsorption applications owing to their high surface area. However, some MOFs do not perform well as the extraction medium when used under aqueous conditions. The low hydrostability of MOFs limits the practical application of these materials in solid-phase microextraction (SPME). Here, the fabrication of a water resistance SPME fiber coating is introduced based on the crystal violet (CV)-modified HKUST-1 framework on copper (Cu@HKUST-1@CV). The HKUST-1 was prepared by the in situ growth method, followed by post-synthetic modification of HKUST-1 with the CV layer. The preparation of the modified HKUST-1 was characterized by FESEM, XRD, FTIR, and DFT approaches. The prepared SPME coating was successfully employed for the quantification of anthracene (AN), as a model analyte, in water samples. The limit of detection was 0.8 ng mL-1. The developed method will open up a new door towards searching for promising materials in SPME applications.
Collapse
Affiliation(s)
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran. .,D-8 International University, Hamedan, Iran.
| | | |
Collapse
|
26
|
Wan M, Xiang F, Liu Z, Guan D, Shao Y, Zheng L, Jin M, She Y, Cao L, Jin F, Chen R, Wang S, Wu Y, Abd El-Aty AM, Wang J. Novel Fe 3O 4@metal-organic framework@polymer core-shell-shell nanospheres for fast extraction and specific preconcentration of nine organophosphorus pesticides from complex matrices. Food Chem 2021; 365:130485. [PMID: 34364008 DOI: 10.1016/j.foodchem.2021.130485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Herein, a novel core-shell-shell magnetic nanosphere denoted as Fe3O4@ZIF-8@polymer was fabricated by sequential in situ self-assembly and precipitation polymerization for effective magnetic solid-phase extraction of nine organophosphorus pesticides (OPPs) from river water, pear, and cabbage samples. The integrated Fe3O4@ZIF-8@polymer featured convenient magnetic separation property and excellent multi-target binding ability. More importantly, the functional polymer coating greatly improved the extraction performance of Fe3O4@ZIF-8 for OPPs, thus facilitating the simultaneous determination of trace OPP residues in real samples. The developed MPSE-LC-MS/MS method exhibited good linearity (R2 ≥ 0.9991) over the concentration range of 0.2-200 µg L-1, low limits of detection of 0.0002-0.005 μg L-1 for river water and 0.006-0.185 μg kg-1 for pear and cabbage, satisfactory precision with relative standard deviations ≤ 9.7% and accuracy with recoveries of 69.5-94.3%. These results highlight that the combination of polymers with MOFs has great potential to fabricate excellent adsorbents for high-throughput analysis of various contaminants in complex matrices.
Collapse
Affiliation(s)
- Mengfei Wan
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China; College of Grain, Henan University of Technology, Zhengzhou 450001, PR China
| | - Fachun Xiang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Zhongdong Liu
- College of Grain, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Denggao Guan
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Liping Cao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing 100054, PR China
| | - Shanshan Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| | - Yijun Wu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|