1
|
Kuo CC, Nguyen DB, Chien YH. A Study of Halide Ion Exchange-Induced Phase Transition in CsPbBr 3 Perovskite Quantum Dots for Detecting Chlorinated Volatile Compounds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7043-7055. [PMID: 39835380 PMCID: PMC11788985 DOI: 10.1021/acsami.4c14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr3 PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase. This exchange process, which occurs alongside chloride (Cl) and bromine (Br) ion exchange and halide atom rearrangement, leads to sequential structural changes: the initial CsPbBr3 cubic Pm3̅m phase transitions to the CsPb2BrxCl5-x tetragonal I4/mcm phase, which subsequently transforms into the CsPbBrxCl3-x orthorhombic Pnma phase. The detailed exploration of this proposed mechanism during chlorinated vapor detection with CsPbBr3 PQDs thin films, supported by X-ray diffraction (XRD) analysis and PL spectrum over time, revealed high sensitivity to HCl vapor. The limit of detection (LOD) for HCl vapor was determined to be 0.02 ppm in visual recognition and 0.005 ppm via PL spectra. Additionally, the LOD for NaOCl was established at 0.50 ppm, facilitated by the photolysis reaction accelerating the conversion of NaOCl to HCl vapor under UV light irradiation. These insights have enriched our understanding of the mechanisms involved and broadened the potential use of CsPbBr3 PQDs as PL detection probes for chloride ions.
Collapse
Affiliation(s)
- Chia-Chien Kuo
- Department
of Materials Science and Engineering, Feng
Chia University, Taichung
City, 40724, Taiwan
| | - Duc-Binh Nguyen
- Department
of Materials Science and Engineering, Feng
Chia University, Taichung
City, 40724, Taiwan
| | - Yi-Hsin Chien
- Department
of Materials Science and Engineering, Feng
Chia University, Taichung
City, 40724, Taiwan
| |
Collapse
|
2
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
3
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
4
|
Zhang P, Chen L, Cai X, Luo B, Chen T, Chen H, Chen G, Li F. Fluorescence wavelength shifts combined with light scattering for ratiometric sensing of chloride in the serum based on CsPbBr 3@SiO 2 perovskite nanocrystal composite halide exchanges. Dalton Trans 2023; 52:15353-15359. [PMID: 37540044 DOI: 10.1039/d3dt01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A traditional fluorescence-scattering intensity based ratiometric sensing system utilizes both inherent scattering and fluorescence intensity and has drawn extensive attention owing to its simplicity and self-calibration properties. In this work, we propose a novel ratiometric fluorescence sensing system that combines a fluorescence wavelength shift and scattering in a single window, using second-order scattering (SOS) as the representative scattering signal based on the halide exchange of CsPbBr3@SiO2 perovskite nanocrystal composites. We observe a fast halide exchange within 10 seconds, resulting in an identifiable fluorescence wavelength blue shift, while the scattering wavelength remains relatively constant for self-correction. This system could be applied for ratiometric sensing of Cl- in the serum without any sample treatment. The established wavelength-based ratiometric system demonstrates high reliability and reproducibility, paving a new way for fluorescence sensing.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Liming Chen
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Xiaoyan Cai
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Binbin Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China.
| | - Tianju Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Haini Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Guoliang Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| |
Collapse
|
5
|
Doane T, Cruz KJ, Chiang TH, Maye MM. Using the Photoluminescence Color Change in Cesium Lead Iodide Nanoparticles to Monitor the Kinetics of an External Organohalide Chemical Reaction by Halide Exchange. ACS NANOSCIENCE AU 2023; 3:418-423. [PMID: 37868221 PMCID: PMC10588436 DOI: 10.1021/acsnanoscienceau.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 10/24/2023]
Abstract
In this work, we demonstrate a photoluminescence-based method to monitor the kinetics of an organohalide reaction by way of detecting released bromide ions at cesium lead halide nanoparticles. Small aliquots of the reaction are added to an assay with known concentrations of CsPbI3, and the resulting Br-to-I halide exchange (HE) results in rapid and sensitive wavelength blueshifts (Δλ) due to CsPbBrxI3-x intermediate concentrations, the wavelengths of which are proportional to concentrations. An assay response factor, C, relates Δλ to Br- concentration as a function of CsPbI3 concentration. The observed kinetics, as well as calculated rate constants, equilibrium, and activation energy of the solvolysis reaction tested correspond closely to synthetic literature values, validating the assay. Factors that influence the sensitivity and performance of the assay, such as CsPbI3 size, morphology, and concentration, are discussed.
Collapse
Affiliation(s)
| | - Kevin J. Cruz
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Tsung-Hsing Chiang
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Mathew M. Maye
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Liu L, Peng M, Xu K, Xia H, Peng X, Peng L, Zhang JZ. Molecularly imprinted fluorescence assay based on lead halide perovskite quantum dots for determination of benzo(a)pyrene. Mikrochim Acta 2023; 190:380. [PMID: 37695413 DOI: 10.1007/s00604-023-05951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Molecularly imprinted polymers with methylammonium lead halide perovskite quantum dots (MIP@MAPbBr3 PQDs) have been prepared and applied to the determination of benzo(a)pyrene (BaP) for the first time. The photoluminescence (PL) of MIP@MAPbBr3 PQDs was enhanced due to the surface passivation of defects by BaP. PL excitation and emission spectra, X-ray diffraction, Fourier transform infrared, and time-resolved PL studies suggest that the interaction between MIP@MAPbBr3 PQDs and BaP is a dynamic process. After MIP@MAPbBr3 PQDs were incubated with BaP, the benzene ring in the molecular structure of BaP can interact with MIP@MAPbBr3 PQDs through π electrons, which reduces non-radiative recombination of MIP@MAPbBr3 PQDs and lengthens excited state lifetime. The PL intensity of the MIP@MAPbBr3 PQDs-BaP system was monitored at 520 nm with 375 nm excitation. Under optimized conditions, the PL intensity of MIP@MAPbBr3 PQDs is linear with the concentration of BaP in the 10 to 100 ng·mL-1 range, with a detection limit of 1.6 ng·mL-1. The imprinting factor was 3.9, indicating excellent specificity of MIP@MAPbBr3 PQDs for BaP. The MIP@MAPbBr3 PQDs were subsequently applied to the PL analysis of BaP in sunflower seed oil, cured meat, and grilled fish samples, achieving recoveries from 79.3 to 107%, and relative standard deviations below 10%. This molecularly imprinted fluorescence assay improves the selectivity of BaP in complex mixtures and could be extended to other analytes.
Collapse
Affiliation(s)
- Li Liu
- Research Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Science, Wuhan, 430064, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, China
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Maomin Peng
- Research Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Science, Wuhan, 430064, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, China
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong Xia
- Research Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Science, Wuhan, 430064, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, China
| | - Xitian Peng
- Research Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Science, Wuhan, 430064, China.
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, China.
| | - Lijun Peng
- Research Institute of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Science, Wuhan, 430064, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, China
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
7
|
Zhang P, Xiong C, Liu Z, Chen H, Li S. CsPbBr3 nanocrystals as luminescent probe for in situ detection of chloride and iodide ions in water. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Shi X, Kralj M, Zhang Y. Colorimetric paper test strips based on cesium lead bromide perovskite nanocrystals for rapid detection of ciprofloxacin hydrochloride. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:304002. [PMID: 35533658 DOI: 10.1088/1361-648x/ac6e1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
The detection of drugs containing hydrochloric salt with conventional methods is time consuming and expensive. In this work, upon exposure to ciprofloxacin hydrochloride at different concentrations, the emission from CsPbBr3NCs shifts to the blue from 513 nm to 442 nm. CsPbBr(3-x)ClxNCs are formed by the ion exchange and substitution of Br-and Cl-ions from surface to core of NCs. The first-principles calculations suggest that the substitution of Br-by Cl-ions plays a critical role in the tuning of the energy bandgap. The color of paper test strips changes immediately after exposure to different Ciproxan solutions. We propose that this rapid and portable method has a high potential application in other chloride salts for food safety.
Collapse
Affiliation(s)
- Xiaoqing Shi
- International Joint Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, People's Republic of China
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Zagreb 10000, Croatia
| | - Yang Zhang
- International Joint Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, People's Republic of China
| |
Collapse
|
9
|
Photoluminescence Sensing of Chloride Ions in Sea Sand Using Alcohol-Dispersed CsPbBr3@SiO2 Perovskite Nanocrystal Composites. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, CsPbBr3@SiO2 perovskite nanocrystal composites (CsPbBr3@SiO2 PNCCs) were synthesized by a benzyl bromide nucleophilic substitution strategy. Homogeneous halide exchange between CsPbBr3@SiO2 PNCCs and Cl− solution (aqueous phase) was applied to the determination of Cl− in sea sand samples. Fast halide exchange with Cl− in the aqueous phase without any magnetic stirring or pH regulation resulted in the blue shift of the photoluminescence (PL) wavelength and vivid PL color changes from green to blue. The results show that the PL sensing of Cl− in aqueous samples could be implemented by using the halide exchange of CsPbBr3@SiO2 PNCCs. A linear relationship between the PL wavelength shift and the Cl− concentration in the range of 0 to 3.0% was found, which was applied to the determination of Cl− concentration in sea sand samples. This method greatly simplifies the detection process and provides a new idea for further broadening PL sensing using the CsPbBr3 PNC halide.
Collapse
|
10
|
Shu Y, Wang Y, Guan J, Ji Z, Xu Q, Hu X. Amphiphilic Polymer Ligand-Assisted Synthesis of Highly Luminescent and Stable Perovskite Nanocrystals for Sweat Fluorescent Sensing. Anal Chem 2022; 94:5415-5424. [PMID: 35325531 DOI: 10.1021/acs.analchem.2c00235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The weak interfacial binding affinities of the inorganic perovskite core with ligands and high density of surface defect states induce the facile detachment of surface ligands from nanocrystals (NCs), resulting in their poor colloidal stability and fluorescence in aqueous. In this work, a powerful ligand engineering strategy was proposed for eliminating the surface defects and aggregation of the NCs. Using an amphiphilic polymer octylamine-modified polyacrylic acid (OPA) as a capping ligand, the as-synthesized CsPbBr3 NCs retain high photoluminescence intensity and stability by the modified ligand-assisted reprecipitation method. The increase in the fluorescence lifetime and NC size could also be observed, and how the NC particle size influences fluorescence lifetime was further studied. In addition, the water stability, photostability, and thermal stability were significantly improved, and the fluorescence of NCs can maintain 80.13% of the original value in water for 15 d. We further validated that the strong binding affinity of OPA and oleylamine ligands with CsPbBr3 NCs leads to a reduction in surface trap states, and a large amount of carboxyl groups of the OPA made the NCs preserve good water solubility. In addition, the OPA has the ability of adjusting the particle size of NCs. Furthermore, a wavelength-shifted colorimetric sensor based on these NCs was constructed for detection of Cl- in sweat, which enables the rapid and visual detection of Cl- with high accuracy and stability. Overall, these CsPbBr3 NCs synthesized by the ligand engineering strategy validated their wide applications in biomedical sensing fields.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Jie Guan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| |
Collapse
|
11
|
Zhang H, Li Y, Lu H, Gan F. A ratiometric fluorescence and colorimetric dual-mode sensing platform based on sulfur quantum dots and carbon quantum dots for selective detection of Cu 2. Anal Bioanal Chem 2022; 414:2471-2480. [PMID: 35169908 DOI: 10.1007/s00216-022-03888-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 01/30/2023]
Abstract
A new dual-mode ratiometric fluorescence and colorimetric probe for selective determination of Cu2+ was developed based on blue-emission sulfur quantum dots (SQDs) and yellow-emission carbon quantum dots (CQDs). The fluorescence and absorbance of CQDs increased in the presence of Cu2+ due to the Cu2+ -oxidized o-phenylenediamine group on the surface of the CQDs. Because of the inner filter effect between SQDs and CQDs-Cu2+, the fluorescence response of SQDs decreased following the introduction of Cu2+. Furthermore, in the presence of Cu2+, the dual-mode SQD-CQD probe showed visible color changes under both ultraviolet light and sunlight. Under optimal conditions, the dual-mode probe was used to quantitatively detect Cu2+ with a linear range of 0.1-5.0 μM for ratiometric fluorescence and colorimetry, with a limit of detection of about 31 nM and 47 nM, respectively. Finally, the dual-mode probe was used for the determination of Cu2+ in practical samples to expand the practical application, and the difference between ratiometric fluorescence and colorimetric methods was compared. The recovery results confirmed the high accuracy of the dual-mode probe, showing that it has immense potential for sensitive and selective detection of Cu2+ in practical samples.
Collapse
Affiliation(s)
- Hanqiang Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yufei Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Haixin Lu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Feng Gan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
12
|
Ornelas-González A, Ortiz-Martínez M, González-González M, Rito-Palomares M. Enzymatic Methods for Salivary Biomarkers Detection: Overview and Current Challenges. Molecules 2021; 26:7026. [PMID: 34834116 PMCID: PMC8624596 DOI: 10.3390/molecules26227026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection is a key factor in patient fate. Currently, multiple biomolecules have been recognized as biomarkers. Nevertheless, their identification is only the starting line on the way to their implementation in disease diagnosis. Although blood is the biofluid par excellence for the quantification of biomarkers, its extraction is uncomfortable and painful for many patients. In this sense, there is a gap in which saliva emerges as a non-invasive and valuable source of information, as it contains many of the biomarkers found in blood. Recent technological advances have made it possible to detect and quantify biomarkers in saliva samples. However, there are opportunity areas in terms of cost and complexity, which could be solved using simpler methodologies such as those based on enzymes. Many reviews have focused on presenting the state-of-the-art in identifying biomarkers in saliva samples. However, just a few of them provide critical analysis of technical elements for biomarker quantification in enzymatic methods for large-scale clinical applications. Thus, this review proposes enzymatic assays as a cost-effective alternative to overcome the limitations of current methods for the quantification of biomarkers in saliva, highlighting the technical and operational considerations necessary for sampling, method development, optimization, and validation.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| | - Marco Rito-Palomares
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. Morones Prieto 3000, Monterrey 64710, N.L., Mexico; (A.O.-G.); (M.O.-M.)
| |
Collapse
|
13
|
Xie L, Zan J, Yang Z, Wu Q, Chen X, Ou X, Lin C, Chen Q, Yang H. A Perovskite-Based Paper Microfluidic Sensor for Haloalkane Assays. Front Chem 2021; 9:682006. [PMID: 33981679 PMCID: PMC8107377 DOI: 10.3389/fchem.2021.682006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of haloalkanes is of great industrial and scientific importance because some haloalkanes are found serious biological and atmospheric issues. The development of a flexible, wearable sensing device for haloalkane assays is highly desired. Here, we develop a paper-based microfluidic sensor to achieve low-cost, high-throughput, and convenient detection of haloalkanes using perovskite nanocrystals as a nanoprobe through anion exchanging. We demonstrate that the CsPbX3 (X = Cl, Br, or I) nanocrystals are selectively and sensitively in response to haloalkanes (CH2Cl2, CH2Br2), and their concentrations can be determined as a function of photoluminescence spectral shifts of perovskite nanocrystals. In particular, an addition of nucleophilic trialkyl phosphines (TOP) or a UV-photon-induced electron transfer from CsPbX3 nanocrystals is responsible for achieving fast sensing of haloalkanes. We further fabricate a paper-based multichannel microfluidic sensor to implement fast colorimetric assays of CH2Cl2 and CH2Br2. We also demonstrate a direct experimental observation on chemical kinetics of anion exchanging in lead-halide perovskite nanocrystals using a slow solvent diffusion strategy. Our studies may offer an opportunity to develop flexible, wearable microfluidic sensors for haloalkane sensing, and advance the in-depth fundamental understanding of the physical origin of anion-exchanged nanocrystals.
Collapse
Affiliation(s)
- Lili Xie
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Jie Zan
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhijian Yang
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Qinxia Wu
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Xiaofeng Chen
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Xiangyu Ou
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Caihou Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiushui Chen
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
| | - Huanghao Yang
- Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.,Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, China
| |
Collapse
|