1
|
Zhou G, Liu Z, Huang Y, Yang R, Guo X, Jia Y, Liu P, Li Z, Cui W. Colorimetric determination of tyrosinase activity and high-throughput screening of inhibitors based on in-situ formation of gold nanoparticles. Mikrochim Acta 2025; 192:326. [PMID: 40295455 DOI: 10.1007/s00604-025-07155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
A colorimetric method is presented for detecting tyrosinase activity and screening inhibitors, leveraging the in-situ formation of gold nanoparticles mediated by catechol. The active tyrosinase converses catechol into o-quinone leading to changes in both the size of AuNPs and their corresponding UV-Vis absorption spectrum as well as visual color. This enzyme-mediated alteration can be modulated by tyrosinase inhibitors through chemical regulation of enzyme activity. Based on these, facile detection of tyrosinase and high-throughput screening for its inhibitors can be achieved simply by visually observing color changes in solution. The proposed method is characterized by its sensitivity, simplicity, rapidity, and accuracy, allowing for quantitative determination of tyrosinase within the range 0.5 to 25 U/mL, with a detection limit of 0.038 U/mL. Furthermore, visual or instrumental observation of the color changes in gold nanoparticles enables high-throughput screening of inhibitors and calculation of their IC50 values. We anticipate that this approach will significantly contribute to tyrosinase research and facilitate the development, discovery, and high-throughput screening of effective inhibitors.
Collapse
Affiliation(s)
- Guohua Zhou
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China.
| | - Zhicheng Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Yuning Huang
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Rufei Yang
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Xin Guo
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Yongmei Jia
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China.
| | - Peilian Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China.
| | - Zhiguo Li
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| | - Wenjuan Cui
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, , Lingnan Normal University, Zhanjiang, 524048, Guangdong, China
| |
Collapse
|
2
|
Peng J, Zhang X, Wang J, Wei J, Chen Q, Chen X, Chen Q, Chen X. An electrochemiluminescent dual-signal immunosensor based on a Ru(bpy) 32+-doped silica nanoparticle/copper nanocluster composite for okadaic acid detection. Food Chem 2024; 455:139844. [PMID: 38823134 DOI: 10.1016/j.foodchem.2024.139844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
In this study, a sensitive dual-signal electrochemiluminescence (ECL) immunosensor was developed for okadaic acid (OA) detection utilizing copper nanoclusters (CuNCs) and Ru(bpy)32+-doped silica nanoparticles (RuSiNPs). Interestingly, the CuNCs could simultaneously enhance both cathodic (-0.95 V) and anodic (+1.15 V) ECL signals of RuSiNPs, forming a dual-signal ECL sensing platform. Further, RuSiNPs@CuNCs were used as immunomarkers by covalently conjugating them with an anti-OA monoclonal antibody (mAb) to form probes. Finally, dual ECL signals of the immunosensor were fabricated and showed good linear relationships with OA concentrations in the range of 0.05-70 ng mL-1, having a median inhibitory concentration (IC50) of 1.972 ng mL-1 and a limit of detection of 0.039 ng mL-1. Moreover, the constant ratio of the cathodic and anodic ECL peaks achieved self-calibration of the detection signal and improved the reliability of the results. Finally, we successfully applied the ECL sensor to detect OA in spiked oyster samples.
Collapse
Affiliation(s)
- Jiawei Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Xinyan Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jinjin Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
3
|
Liu H, Liu W, Li Y, Jiang X, Wang S, Zhang G, Luo X, Zhao Y. Fluorescent covalent organic framework as an ultrasensitive fluorescent probe for tyrosinase activity monitoring and inhibitor screening. Anal Chim Acta 2024; 1320:343026. [PMID: 39142791 DOI: 10.1016/j.aca.2024.343026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND As a significant biomarker of melanocytic lesions, tyrosinase (TYR) plays an essential role in the clinical diagnosis and treatment of melanin-related diseases. Thus, it is important to develop robust methods for assessing TYR activity. Covalent organic frameworks (COFs) have garnered considerable attention owing to their unique properties, including high chemical stability, good biocompatibility, and large surface area compared with organic dyes, noble metal nanoclusters, and semiconductor quantum dots. However, most COFs are insoluble in water and exhibit weak or no fluorescence emission. Therefore, the development of a water-soluble fluorescent COF for detecting TYR activity in biological samples remains highly desired. RESULTS In this work, a sensitive and facile fluorometric method based on fluorescent COF was constructed for the detection of TYR activity in human serum samples. The water-soluble COF was fabricated through the condensation polymerization of 4',4‴,4''''',4'''''''-(1,2-ethene-diylidene) tetrakis [1,1'-biphenyl]-4-carboxaldehyde and 2,4,6-tris-(4-aminophenyl)-triazine. The resulting COF displayed yellow-green fluorescence with a maximum emission peak at 560 nm. Tyrosine was catalyzed by TYR to produce melanin-like polymers which formed a coating on the surface of COF and effectively quenched its fluorescence due to fluorescence resonance energy transfer. The proposed approach demonstrated a strong linear correlation in the range of 0.5-80 U/L with a low detection limit of 0.09 U/L. Additionally, the limit of detection for kojic acid, serving as a representative TYR inhibitor, was determined to be 0.0004 μg/mL. SIGNIFICANCE Our proposed fluorometric sensing platform exhibited exceptional selectivity, sensitivity, and satisfactory recoveries in human serum samples, which is of paramount importance for the clinical diagnostics of melanin-related diseases. Furthermore, the proposed approach was further employed for the screening of TYR inhibitors, suggesting the potential applications in clinical treatment and pharmaceutical research.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
4
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
5
|
Zhou Q, Zhou T, Tu Y, Yan J. Determination of tyrosinase activity with manganese dioxide nanosheet-assisted fluorescence. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
Wang R, Chen C, Yang W, Zhou P, Zhu F, Xu H, Hu G, Sun W, Shen W, Hu Y. Solubility determination, model correlation and preferential solvation of methyldopa in binary mixed solvents from 278.15 K to 323.15 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ding Y, Yang L, Shen J, Wei Y, Wang C. A novel fluorescent off–on probe based on 4-methylumbelliferone for highly sensitive determination of tyrosinase. NEW J CHEM 2022. [DOI: 10.1039/d2nj00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent probe for high-sensitivity determination of tyrosinase, with 4-methylumbelliferone as the fluorophore and 3-hydroxybenzyl as the recognition group.
Collapse
Affiliation(s)
- Yu Ding
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Lihong Yang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Jiwei Shen
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Yinmao Wei
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| | - Chaozhan Wang
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Chang’an District, Xi’an 710127, P. R. China
| |
Collapse
|
8
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
9
|
Huang X, Lan M, Wang J, Guo L, Lin Z, Sun N, Wu C, Qiu B. A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of β-galactosidase based on the effects of AIE and host-guest recognition. Biosens Bioelectron 2020; 169:112655. [DOI: 10.1016/j.bios.2020.112655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
|
10
|
Liu H, Liu B, Huang P, Wu Y, Wu FY, Ma L. Colorimetric determination of tyrosinase based on in situ silver metallization catalyzed by gold nanoparticles. Mikrochim Acta 2020; 187:551. [PMID: 32894361 DOI: 10.1007/s00604-020-04463-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles (AuNPs) catalyze the mild reaction between the weak reducing agent kojic acid (KA) and silver ions (Ag+) to form Au@Ag bimetallic NPs by the combination of the intrinsic catalysis with plasmonic properties This is proposed as a novel optical assay to determine the tyrosinase (TYRase) concentration. The nanoparticles have been characterized by UV-vis spectroscopy, transmission electron microscope (TEM) images, and X-ray photoelectron spectroscopy (XPS). The sensing mechanism is based on the fact that KA binds to TYRase by chelating with dicopper active site of TYRase and the introduction of TYRase restrains the Au@Ag bimetallic NP formation by the precedent binding with KA. A clear color variation from yellow to pink and UV-vis spectral changes are observed at the optimal wavelength of 410 nm. The assay works in the range 0.13~0.73 U mL-1 with a detection limit (LOD) of 0.019 U mL-1. The impact from matrix interfering substances including glucose, uric acid, common oxidases, and amino acids is negligible. The applicability is demonstrated by quantitative determination of TYRase in human serum samples with 74 to 89% recovery and RSD less than 4.0%, which accords with the level for bio-sample analysis. Graphical abstract Schematic presentation of colorimetric assay for tyrosinase (TYRase) based on the inhibition effect on silver deposition onto catalytically active gold nanoparticles (AuNPs) and its application with a smartphone. Tyrosinase (TYRase); silver ions (Ag+); kojic acid (KA); gold nanoparticles (AuNPs); gold-silver core-shell nanoparticles (Au@Ag NPs).
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Bowen Liu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Yangyang Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang, 330031, China. .,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, 330031, China.
| | - Lihua Ma
- College of Science and Engineering, University of Houston at Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA
| |
Collapse
|
11
|
Li Q, Li Y, Li H, Yan X, Han G, Chen F, Song Z, Zhang J, Fan W, Yi C, Xu Z, Tan B, Yan W. Highly Luminescent Copper Nanoclusters Stabilized by Ascorbic Acid for the Quantitative Detection of 4-Aminoazobenzene. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1531. [PMID: 32759865 PMCID: PMC7466603 DOI: 10.3390/nano10081531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022]
Abstract
As one of the widely studied metal nanoclusters, the preparation of copper nanoclusters (Cu NCs) by a facile method with high fluorescence performance has been the interest of researchers. In this paper, a simple, green, clean, and time-saving chemical etching method was used to synthesize water-soluble Cu NCs using ascorbic acid (AA) as the reducing agent. The as-prepared Cu NCs showed strong green fluorescence (with a quantum yield as high as 33.6%) and high ion stability, and good antioxidant activity as well. The resultant Cu NCs were used for the detection of 4-aminoazobenzene (one of 24 kinds of prohibited textile compounds) in water with a minimum detection limit of 1.44 μM, which has good potential for fabric safety monitoring.
Collapse
Affiliation(s)
- Qiang Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Yunhao Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Research Institution of Chemical Defense, Beijing 100191, China; (X.Y.); (G.H.)
| | - Xiaoshan Yan
- State Key Laboratory of NBC Protection for Civilian, Research Institution of Chemical Defense, Beijing 100191, China; (X.Y.); (G.H.)
| | - Guolin Han
- State Key Laboratory of NBC Protection for Civilian, Research Institution of Chemical Defense, Beijing 100191, China; (X.Y.); (G.H.)
| | - Feng Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Zhengwei Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Jianqiao Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Wen Fan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Changfeng Yi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; (Q.L.); (Y.L.); (F.C.); (Z.S.); (W.F.); (C.Y.); (Z.X.)
| |
Collapse
|