1
|
Dai C, Xu Y, Ke L, Zhu M, Deng R, Wang X, Zhou Y. Multiple-Signal Amplification Strategy to Fabricate an Ultrasensitive Electrochemiluminescence Magnetic Immunosensor for Detecting Biomarkers of Alzheimer's Disease via Iridium-Based Self-Enhancing Nanoemitters. ACS Sens 2025; 10:1083-1092. [PMID: 39835816 DOI: 10.1021/acssensors.4c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline, significantly impairing the daily life of elderly individuals. The low abundance of blood-based biomarkers in AD necessitates higher analytical technique requirements. Herein, one novel iridium-based ECL self-enhanced nanoemitter (TPrA@Ir-SiO2) was unprecedentedly reported, and it was further used to construct an ultrasensitive ECL magnetic immunosensor by a multiple-signal amplification strategy to unequally sensitively and accurately detect the AD blood-based biomarker (P-tau181) in this work. The initial signal amplification was accomplished via incorporating a new efficient iridium-based luminophore named Ir(mdq)2(acac) and a corresponding coreactant into silica nanoparticles to successfully obtain TPrA@Ir-SiO2. In addition, the specific and high-affinity interactions between streptavidin and biotin were subsequently employed to further facilitate signal amplification. Based on the advantages of the luminophore itself and the high-affinity interactions between biotin and streptavidin, the corresponding ECL immunosensor proposed in this work exhibited remarkable sensitivity, covering a wide linear range from 0.1 pg/mL to 0.1 μg/mL, and achieved an ultralow limit of detection of 68.58 fg/mL (S/N = 3), and it also exhibited outstanding recovery (98-104%) and RSD (1.92-4.86%) in the detection of serum samples by the spiking method. These remarkable results undoubtedly demonstrate the potential of self-enhanced ECL nanoemitters combined with a synergistic signal amplification strategy bearing streptavidin-biotin in detecting AD blood-based biomarkers, providing accurate and reliable solutions for early diagnosis and monitoring of AD, which would open a new avenue to effectively reduce the burden on AD patients' families and society in the future.
Collapse
Affiliation(s)
- Chenji Dai
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Libing Ke
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Mengjiao Zhu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Rongxiu Deng
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
2
|
Yao L, Zhi J, Wang W, Li Q, Jiang D, Chen X, Chen Z. A mini-review on the research progress and application of nanomaterials in electrochemiluminescent sensors in the detection of water environmental pollutants. Mikrochim Acta 2025; 192:130. [PMID: 39904773 DOI: 10.1007/s00604-025-06973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
With the increasingly serious problem of environmental pollution, the development of new and efficient detection technology has become an urgent need. Electrochemiluminescence (ECL) sensors have attracted wide attention in environmental pollution detection due to their advantages of low cost, fast analysis speed, high sensitivity, and good selectivity. At the same time, with the rapid development of nanotechnology, nanomaterials are widely used to construct ECL sensors. Based on the different roles of nanomaterials in the construction of ECL sensors, they can be summarized as (1) nanomaterials for signal amplification; (2) ECL nanoemitters; (3) Nanomaterials as receptors for ECL resonance energy transfer. In this paper, the construction and luminescence mechanism of ECL sensors are discussed from the above three aspects. Finally, the challenges and prospects of nanomaterials ECL sensors in the field of environmental pollution detection in the future are discussed.
Collapse
Affiliation(s)
- Longmei Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213032, Jiangsu, China.
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit Co., Ltd, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Sezgin P, Gulcay-Ozcan E, Vučkovski M, Bondžić AM, Erucar I, Keskin S. Biomedical Applications of Metal-Organic Frameworks Revisited. Ind Eng Chem Res 2025; 64:1907-1932. [PMID: 39906289 PMCID: PMC11789151 DOI: 10.1021/acs.iecr.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
Metal-organic frameworks (MOFs) have been shown to be great alternatives to traditional porous materials in various chemical applications, and they have been very widely studied for biomedical applications in the past decade specifically for drug storage. After our review published in 2011 [Keskin and Kızılel, Ind. Eng. Chem. Res. 2011, 50 (4), 1799-1812, 10.1021/ie101312k], we have witnessed a very fast growth not only in the number and variety of MOFs but also in their usage across a broad spectrum of biomedical fields. With the recent integration of molecular modeling and data science approaches to the experimental studies, biomedical applications of MOFs have been significantly accelerated positioning them as pivotal components in the regenerative medicine, medical imaging, and diagnostics. In this review, we visited the diverse biomedical applications of MOFs considering the recent experimental and computational efforts on drug storage and delivery, bioimaging, and biosensing. We focused on the underlying mechanisms governing the molecular interactions between MOFs and biological systems and discussed both the opportunities and challenges in the field to highlight the potential of MOFs in advanced therapeutics for cancer and neurological diseases.
Collapse
Affiliation(s)
- Pelin Sezgin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| | - Ezgi Gulcay-Ozcan
- Sabanci
University, Faculty of Engineering
and Natural Sciences, Istanbul 34956, Turkey
| | - Marija Vučkovski
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aleksandra M. Bondžić
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ilknur Erucar
- Ozyegin
University, Department of Natural
and Mathematical Sciences, Faculty of Engineering, 34794 Istanbul, Turkey
| | - Seda Keskin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| |
Collapse
|
4
|
Wu S, Wang Y, Han S, Hui G, Teng Y, Liu W, Zhao Y. Smartphone-assisted ratiometric fluorescent sensor to quantitatively detect curcumin in traditional Chinese medicine based on Förster resonance energy transfer. Mikrochim Acta 2024; 191:629. [PMID: 39331185 DOI: 10.1007/s00604-024-06670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
A ratiometric fluorescence sensor (Fe-MIL-88-NH2/curcumin) based on luminescent metal-organic frameworks (LMOFs) for the determination of curcumin was constructed. Upon the addition of curcumin, the 535-nm emission of curcumin was enhanced, while the fluorescence emission at 438 nm was quenched, under 367-nm excitation. This sensor demonstrated a broad linear range from 1.5 to 40 μM, a low detection limit of 35 nM, and a fast response time of at most 30 s. We verified the Förster resonance energy transfer (FRET) mechanism between donor (Fe-MIL-88-NH2) and acceptor (curcumin), which further proved the selectivity of the approach. The sensing system enabled the detection of curcumin in the traditional Chinese medicine (TCM) Turmeric. A smartphone-assisted sensing platform was prepared to visually detect curcumin in a portable manner. This study represents the first attempt to fabricate LMOFs for ratiometric fluorescence detection of curcumin, which has promising potential for application in TCM.
Collapse
Affiliation(s)
- Shuang Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Yunhan Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Shikai Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Ge Hui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Ye Teng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Wei Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130017, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China.
| |
Collapse
|
5
|
Lin J, Lin D, Wang S, Liao Q, Meng F, Chen J, Han Z. Improved photoelectrochemical performance of TiO2-in-MIL-101(Cr)@CDs@AgNPs and application for the detection of ultralow level AβO. MICROPOROUS AND MESOPOROUS MATERIALS 2024; 377:113214. [DOI: 10.1016/j.micromeso.2024.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Han Z, Yuan M, Nguyen N, Zhou HC, Hubbard JE, Wang Y. Brain-specific targeted delivery of therapeutic agents using metal–organic framework-based nanomedicine. Coord Chem Rev 2024; 514:215926. [DOI: 10.1016/j.ccr.2024.215926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Shen H, Liu K, Kong F, Ren M, Wang X, Wang S. Strategies for measuring concentrations and forms of amyloid-β peptides. Biosens Bioelectron 2024; 259:116405. [PMID: 38776801 DOI: 10.1016/j.bios.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is affecting more and more people worldwide without the effective treatment, while the existed pathological mechanism has been confirmed barely useful in the treatment. Amyloid-β peptide (Aβ), a main component of senile plaque, is regarded as the most promising target in AD treatment. Aβ clearance from AD brain seems to be a reliably therapeutic strategy, as the two exited drugs, GV-971 and aducanumab, are both developed based on it. However, doubt still exists. To exhaustive expound on the pathological mechanism of Aβ, rigorous analyses on the concentrations and aggregation forms are essential. Thus, it is attracting broad attention these years. However, most of the sensors have not been used in pathological studies, as the lack of the bridge between analytical chemist and pathologists. In this review, we made a brief introduce on Aβ-related pathological mechanism included in β-amyloid hypothesis to elucidate the detection conditions of sensor methods. Furthermore, a summary of the sensor methods was made, which were based on Aβ concentrations and form detections that have been developed in the past 10 years. As the greatest number of the sensors were built on fluorescent spectroscopy, electrochemistry, and Roman spectroscopy, detailed elucidation on them was made. Notably, the aggregation process is another important factor in revealing the progress of AD and developing the treatment methods, so the sensors on monitoring Aβ aggregation processes were also summarized.
Collapse
Affiliation(s)
- Hangyu Shen
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Keyin Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong, 264333, PR China.
| | - Shoujuan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
8
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
9
|
Maru K, Singh A, Jangir R, Jangir KK. Amyloid detection in neurodegenerative diseases using MOFs. J Mater Chem B 2024; 12:4553-4573. [PMID: 38646795 DOI: 10.1039/d4tb00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (amyloid diseases such as Alzheimer's and Parkinson's), stemming from protein misfolding and aggregation, encompass a spectrum of disorders with severe systemic implications. Timely detection is pivotal in managing these diseases owing to their significant impact on organ function and high mortality rates. The diverse array of amyloid disorders, spanning localized and systemic manifestations, underscores the complexity of these conditions and highlights the need for advanced detection methods. Traditional approaches have focused on identifying biomarkers using imaging techniques (PET and MRI) or invasive procedures. However, recent efforts have focused on the use of metal-organic frameworks (MOFs), a versatile class of materials known for their unique properties, in revolutionizing amyloid disease detection. The high porosity, customizable structures, and biocompatibility of MOFs enable their integration with biomolecules, laying the groundwork for highly sensitive and specific biosensors. These sensors have been employed using electrochemical and photophysical techniques that target amyloid species under neurodegenerative conditions. The adaptability of MOFs allows for the precise detection and quantification of amyloid proteins, offering potential advancements in early diagnosis and disease management. This review article delves into how MOFs contribute to detecting amyloid diseases by categorizing their uses based on different sensing methods, such as electrochemical (EC), electrochemiluminescence (ECL), fluorescence, Förster resonance energy transfer (FRET), up-conversion luminescence resonance energy transfer (ULRET), and photoelectrochemical (PEC) sensing. The drawbacks of MOF biosensors and the challenges encountered in the field are also briefly explored from our perspective.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Amarendra Singh
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | | |
Collapse
|
10
|
Vajedi FS, Rasoolzadeh R, Angnes L, Santos ECS, Silva LDPC. Ultrasensitive Aptasensing Platform for the Detection of β-Amyloid-42 Peptide Based on MOF Containing Bimetallic Porphyrin Graphene Oxide and Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:2218-2239. [PMID: 38527228 DOI: 10.1021/acsabm.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The prompt detection of diseases hinges on the accessibility and the capability to identify relevant biomarkers. The integration of aptamers and the incorporation of nanomaterials into signal transducers have not only expedited but also enhanced the development of nanoaptasensors, enabling heightened sensitivity and selectivity. Here, the bimetallic nickel-cobalt-porphyrin metal-organic framework ((Ni + Cu)TPyP MOF) is regarded as an electron mediator, immobilization platform for an Alzheimer aptamer and to increase the electrochemical signal for the detection of the main biomarker of Alzheimer's disease (AD), amyloid β (Aβ-42). Furthermore, the ((Ni + Cu)TPyP MOF) was combined with reduced graphene oxide (rGO) and gold nanoparticles (AuNPs), on a gold electrode (GE) to provide an efficient interface for immobilizing aptamer strands. Concurrently, the incorporation of rGO and AuNPs imparts enhanced electrical conductivity and efficacious catalytic activity, establishing them as adept electrochemical indicators. Owing to the superior excellent electrical conductivity of rGO and AuNPs, coupled with the presence of ample mesoporous channels and numerous Ni and Cu metal sites within (Ni + Cu)TPyP MOF, this nanostructure with abundant functional groups is proficient in immobilizing a substantial quantity of aptamer. These interactions are achieved through robust π-π stacking and electrostatic interactions, alongside the high affinity between the thiol group of the aptamer and AuNPs concurrently. The as-prepared ternary (Au@(Ni + Cu)TPyP MOF/rGO) nanostructure electrode exhibited an enhancement in its electrochemically active surface area of about 7 times, compared with the bare electrode and the Aβ-42 redox process is highly accelerated, so the peak currents are significantly higher than those obtained with bare GE substrate. Under the optimized conditions, the designed aptasensor had the quantitative detection of Aβ-42 with a low detection limit of 48.6 fg mL-1 within the linear range of 0.05 pg mL-1 to 5 ng mL-1 by differential pulse voltammetry (DPV), accompanied by precise reproducibility, satisfactory stability (95.6% of the initial activity after 10 days), and minimal impact of interfering agents. Recorded results in human blood plasma demonstrated the high efficacy of porphyrin MOF system sensing even in the clinical matrix. The great performance of this aptasensor indicates that our new design of Au@(Ni + Cu)TPyP MOF/rGO nanostructure provides more opportunities for the detection of chemical signals in early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahimeh Sadat Vajedi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Reza Rasoolzadeh
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, 24020-141 Rio de Janeiro, Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Evelyn C S Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT Bl A, 21941-909 Rio de Janeiro, Brazil
| | - Ludmila de Paula Cabral Silva
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Niterói, 24210-240 Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Pan Y, Xu S, Wang Z, Jiang C, Ma X. Sensitive SERS aptasensor for histamine detection based on Au/Ag nanorods and IRMOF-3@Au based flexible PDMS membrane. Anal Chim Acta 2024; 1288:342147. [PMID: 38220281 DOI: 10.1016/j.aca.2023.342147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Histamine is a kind of biogenic amine with strong toxicity and potential carcinogenicity. Many traditional methods of detecting histamine have the disadvantages of cumbersome detection steps, expensive equipment, and high professional requirements for staff. In contrast, SERS has become the preferred method for quantitative analysis of histamine because of rich fingerprint information, rapidity and economy. However, most of SERS substrates still have technical problems, such as poor stability, low sample collection rate, and detection efficiency. Therefore, there is a great need for new strategies to develop high-performance SERS substrates based sensors. RESULTS In our study, a sensitive SERS aptasensor for the detection of histamine was synthesized. The assembly was formed between IRMOF-3@Au/PDMS (flexible SERS substrate) and AuNR-DTNB@Ag-HA apt (Raman signal probe with both the target capture ability) via π-π stacking interaction from HA aptamer and IRMOF-3. Consequently, the SERS signal of the assembly derived from DTNB reached highest due to the synergistic enhancement effect by AuNR@Ag and IRMOF-3@Au. Meanwhile, HA aptamer can specifically capture histamine, therefore histamine addition competitively bound to the probe, leading to a corresponding decrease in the DTNB signal value on the SERS substrate. The SERS intensity at 1331 cm-1 presented a good linear relationship towards the logarithmic value of histamine concentrations ranging from 0.0001 mg/L to 400 mg/L (R2 = 0.990) with the LOD of 3.6 × 10-5 mg/L. Furthermore, the application in wine samples demonstrated the accuracy and applicability of the developed sensor. SIGNIFICANCE This method effectively improves substrate stability, detection sensitivity and signal response immediacy to amplify the SERS sensor, thus satisfying the histamine detection requirements of various systems. According to this aptasensor design, our strategy can be extended to create other MOF-based SERS substrates for accurately detecting relative targets to ensure food safety.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Shan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Caiyun Jiang
- Department of Health, Jiangsu Engineering and Research Center of Food Safety, Jiangsu Vocational Institute of Commerce, Nanjing, 211168, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Kong S, Wen X, Wang Y, Tan R, Li H, Tu Y. Development of a P-tau217 Electrochemiluminescent Immunosensor Reinforced with Au-Cu Nanoparticles for Alzheimer's Disease Precaution. ACS Chem Neurosci 2023; 14:4176-4184. [PMID: 37939215 DOI: 10.1021/acschemneuro.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
To simply and rapidly detect the highly phosphorylated tau protein at threonine 217 (p-tau217) as a precautionary measure against Alzheimer's disease and distinguish it from other neurodegenerative diseases, a novel immunosensor was prepared using luminol as the electrochemiluminescent (ECL) sensing probe reinforced by Au-Cu nanoparticles (Au-Cu NPs). The Au-Cu alloy NPs were prepared via a co-reduction reaction, exhibiting excellent conductivity and catalytic activity. These properties remarkably enhanced the ECL of luminol, providing a suitable background for the sensing response. After the Au-Cu NPs were decorated on the surface of indium tin oxide glass using 3-amino-propyl trimethoxysilane, the antibody of p-tau217 was immobilized via dominant Au-N bonding to enable the biological specificity of the immunosensor. When p-tau217 specifically interacted with an antibody to form an immune complex on the sensing interface, the ECL signal of the sensor was considerably inhibited by the resulting giant biomolecular complex. This complex prevented luminol diffusion to the electrode surface and electron transfer. The resulting immunosensor showed remarkable sensitivity to p-tau217, with a wide linear detection range from 5 to 600 pg/mL. A detection limit of 0.56 pg/mL was achieved, with recoveries in human serum ranging from 92.3 to 109%. This ECL immunosensor demonstrated high sensitivity and specificity toward p-tau217, along with good reproducibility and stability, providing a new approach for clinical research on Alzheimer's disease.
Collapse
Affiliation(s)
- Susu Kong
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Xi Wen
- Nursing School, Suzhou Medical College of Soochow University, Suzhou 215006, P. R. China
| | - Yueju Wang
- First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Huiling Li
- Nursing School, Suzhou Medical College of Soochow University, Suzhou 215006, P. R. China
- First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Ren Z, Guo W, Sun S, Liu X, Fan Z, Wang F, Ibrahim AA, Umar A, Alkhanjaf AAM, Baskoutas S. Dual-mode transfer response based on electrochemical and fluorescence signals for the detection of amyloid-beta oligomers (AβO). Mikrochim Acta 2023; 190:438. [PMID: 37843728 DOI: 10.1007/s00604-023-06014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
An aptamer sensor has been developed utilizing a dual-mode and stimuli-responsive strategy for quantitative detection of AβO (amyloid-beta oligomers) through simultaneous electrochemical and fluorescence detection. To achieve this, we employed UIO-66-NH2 as a carrier container to load MB (Methylene Blue), and Fe3O4 MNPs (iron oxide magnetic nanoparticles) with aptamer (ssDNA-Fe3O4 MNPs) fixed on their surface for biological gating. The ssDNA-Fe3O4 MNPs were immobilized onto the surface of UIO-66-NH2 through hydrogen bonding between the aptamer and the -NH2 group on the surface of UIO-66-NH2, thereby encapsulating MB and forming ssDNA-Fe3O4@MB@UIO-66-NH2. During the detection of AβO, the aptamer selectively reacted with AβO to form the AβO-ssDNA-Fe3O4 complex, leading to its detachment from the surface of UIO-66-NH2. This detachment facilitated the release of MB, enabling its electrochemical detection. Simultaneously, the AβO-ssDNA-Fe3O4 complex was efficiently collected and separated using a magnet after leaving the container's surface. Furthermore, the addition of NaOH facilitated the disconnection of biotin modifications at the 3' end of the aptamer from the avidin modifications on the Fe3O4 MNPs. Consequently, the aptamer detached from the surface of Fe3O4 MNPs, resulting in the restoration of fluorescence intensity of FAM (fluorescein-5'-carboxamidite) modified at its 5' end for fluorescence detection. The dual-mode sensor exhibited significantly enhanced differential pulse voltammetry signals and fluorescence intensity compared to those in the absence of AβO. The sensor demonstrated a wide detection range of 10 fM to 10 μM, with a detection limit of 3.4 fM. It displayed excellent performance in detecting actual samples and holds promising prospects for early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhe Ren
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Wenjuan Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China.
| | - Shuqian Sun
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Xin Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Zelong Fan
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Fangfang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Abdulrab Ahmed M Alkhanjaf
- Centre for Health Research, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - S Baskoutas
- Department of Materials Science, University of Patras, Patras, Greece
| |
Collapse
|
14
|
Moderne M, Abrao-Nemeir I, Meyer N, Du J, Charles-Achille S, Janot JM, Torrent J, Lepoitevin M, Balme S. Combining iontronic, chromatography and nanopipette for Aβ42 aggregates detection and separation. Anal Chim Acta 2023; 1275:341587. [PMID: 37524475 DOI: 10.1016/j.aca.2023.341587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
In this work, we aim to capture, detect and analysis at single molecule level Aβ42 aggregates. To this end, two strategies of track-etched nanopore membranes functionalization were investigated. The first one uses an aptamer and requires only three steps, whereas the second strategy uses Lecanemab antibodies and requires six steps. Out of the two presented strategies, the second one was found to be the most suitable to detect Aβ42 aggregates using a quick current-voltage readout. The resulting single nanopore was then upscale to multipore membranes to capture the Aβ42 aggregates before analysis through them through a single-molecule approach. By comparing the species present in the retentate and filtrate, we confirmed the membrane's affinity for the larger Aβ42 aggregates present in the sample. We found that chromatographic membranes combined with an ionic diode for binary on/off readout are powerful tools for detecting rare biomarkers before single molecule analysis.
Collapse
Affiliation(s)
- Mathilde Moderne
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Imad Abrao-Nemeir
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France; INM, University of Montpellier, INSERM, Montpellier, France
| | - Jun Du
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Université, 75005, Paris, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier, Cedex 5, France.
| |
Collapse
|
15
|
Păun C, Motelică L, Ficai D, Ficai A, Andronescu E. Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6143. [PMID: 37763421 PMCID: PMC10532503 DOI: 10.3390/ma16186143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
This review article explores the multiple applications and potential of metal-organic frameworks (MOFs) in the biomedical field. With their highly versatile and tunable properties, MOFs present many possibilities, including drug delivery, biomolecule recognition, biosensors, and immunotherapy. Their crystal structure allows precise tuning, with the ligand typology and metal geometry playing critical roles. MOFs' ability to encapsulate drugs and exhibit pH-triggered release makes them ideal candidates for precision medicine, including cancer treatment. They are also potential gene carriers for genetic disorders and have been used in biosensors and as contrast agents for magnetic resonance imaging. Despite the complexities encountered in modulating properties and interactions with biological systems, further research on MOFs is imperative. The primary focus of this review is to provide a comprehensive examination of MOFs in these applications, highlighting the current achievements and complexities encountered. Such efforts will uncover their untapped potential in creating innovative tools for biomedical applications, emphasizing the need to invest in the continued exploration of this promising field.
Collapse
Affiliation(s)
- Cătălin Păun
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ludmila Motelică
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| |
Collapse
|
16
|
Hu Y, Lu X, Shen L, Dong J, Liang Z, Xie J, Peng T, Yu X, Dai X. Difunctional Magnetic Nanoparticles Employed in Immunochromatographic Assay for Rapid and Quantitative Detection of Carcinoembryonic Antigen. Int J Mol Sci 2023; 24:12562. [PMID: 37628743 PMCID: PMC10454329 DOI: 10.3390/ijms241612562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Immunochromatographic assay (ICA) plays an important role in in vitro diagnostics because of its simpleness, convenience, fastness, sensitivity, accuracy, and low cost. The employment of magnetic nanoparticles (MNPs), possessing both excellent optical properties and magnetic separation functions, can effectively promote the performances of ICA. In this study, an ICA based on MNPs (MNP-ICA) has been successfully developed for the sensitive detection of carcinoembryonic antigen (CEA). The magnetic probes were prepared by covalently conjugating carboxylated MNPs with the specific monoclonal antibody against CEA, which were not only employed to enrich and extract CEA from serum samples under an external magnetic field but also used as a signal output with its inherent optical property. Under the optimal parameters, the limit of detection (LOD) for qualitative detection with naked eyes was 1.0 ng/mL, and the quantitative detection could be realized with the help of a portable optical reader, indicating that the ratio of optical signal intensity correlated well with CEA concentration ranging from 1.0 ng/mL to 64.0 ng/mL (R2 = 0.9997). Additionally, method comparison demonstrated that the magnetic probes were beneficial for sensitivity improvement due to the matrix effect reduction after magnetic separation, and the MNP-ICA is eight times higher sensitive than ICA based on colloidal gold nanoparticles. The developed MNP-ICA will provide sensitive, convenient, and efficient technical support for biomarkers rapid screening in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yalin Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xin Lu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Liyue Shen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jiahui Dong
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Zhanwei Liang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| |
Collapse
|
17
|
Niu H, Bu H, Zhao J, Zhu Y. Metal-Organic Frameworks-Based Nanoplatforms for the Theranostic Applications of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206575. [PMID: 36908079 DOI: 10.1002/smll.202206575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.
Collapse
Affiliation(s)
- Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Vodyashkin AA, Sergorodceva AV, Kezimana P, Stanishevskiy YM. Metal-Organic Framework (MOF)-A Universal Material for Biomedicine. Int J Mol Sci 2023; 24:7819. [PMID: 37175523 PMCID: PMC10178275 DOI: 10.3390/ijms24097819] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Antonina V. Sergorodceva
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| |
Collapse
|
19
|
Leite JP, Figueira F, Mendes RF, Almeida Paz FA, Gales L. Metal-Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sens 2023; 8:1033-1053. [PMID: 36892002 PMCID: PMC10043940 DOI: 10.1021/acssensors.2c02741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Metal-organic frameworks (MOFs) are versatile compounds with emergent applications in the fabrication of biosensors for amyloid diseases. They hold great potential in biospecimen protection and unprecedented probing capabilities for optical and redox receptors. In this Review, we summarize the main methodologies employed in the fabrication of MOF-based sensors for amyloid diseases and collect all available data in the literature related to their performance (detection range, limit of detection, recovery, time of analysis, among other parameters). Nowadays, MOF sensors have evolved to a point where they can, in some cases, outperform technologies employed in the detection of several amyloid biomarkers (amyloid β peptide, α-synuclein, insulin, procalcitonin, and prolactin) present in biological fluids, such as cerebrospinal fluid and blood. A special emphasis has been given by researchers on Alzheimer's disease monitoring to the detriment of other amyloidosis that are underexploited despite their societal relevance (e.g., Parkinson's disease). There are still important obstacles to overcome in order to selectively detect the various peptide isoforms and soluble amyloid species associated with Alzheimer's disease. Furthermore, MOF contrast agents for imaging peptide soluble oligomers in living humans are also scarce (if not nonexistent), and action in this direction is unquestionably required to clarify the contentious link between the amyloidogenic species and the disease, guiding research toward the most promising therapeutic strategies.
Collapse
Affiliation(s)
- José P Leite
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Flávio Figueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Gales
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
An electrochemiluminescence aptasensor for amyloid-β protein with signal enhancement from AuNPs/Fe-MOFs nanocomposite. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
21
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
22
|
SERS- and absorbance-based catalytic assay for determination of isocarbophos using aptamer-modified FeMOF nanozyme and in situ generated silver nanoparticles. Mikrochim Acta 2022; 190:4. [PMID: 36469128 DOI: 10.1007/s00604-022-05549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022]
Abstract
A new Fe metal-organic framework-loaded liquid crystal 4-octoxybenzoic acid (FeMOF@OCTB) nanosol was synthesized using 1,3,5-phthalic acid, ferrous sulfate, and OCTB as precursors. The FeMOF@OCTB exhibits good stability and strong catalytic effect for the polyethylene glycol 400-Ag (I) indicator reaction, which was evaluated rapidly by the slope procedure. The generated silver nanoparticles have a strong surface-enhanced Raman scattering (SERS) effect and a surface plasmon resonance absorption (Abs) peak at 420 nm. This new bimodal nanosilver indicator reaction was coupled with the isocarbophos (IPS)-aptamer (Apt) reaction. A FeMOF@OCTB nanocatalytic amplified-SERS/Abs bimodal Apt assay for IPS was established. The SERS assay can detect IPS in the concentration range 0.02-1.2 nM, with a detection limit of 0.010 nM. It has been applied to the determination of IPS in rice samples. The relative standard deviation was 4.4-5.8%, and the recovery was 97.7-104%. An Ag nanosol plasmon SERS/Abs dimode aptamer assay was fabricated for trace isocarbophos, based on highly catalysis MOF@OCTB nanoenzyme.
Collapse
|
23
|
Miao YB, Zhong Q, Ren HX. Engineering a thermostable biosensor based on biomimetic mineralization HRP@Fe-MOF for Alzheimer's disease. Anal Bioanal Chem 2022; 414:8331-8339. [PMID: 36258085 DOI: 10.1007/s00216-022-04367-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
The development of disease detection by biosensors represents one of the key components of medical science. However, millions of people are still misdiagnosed each year due to the poor efficacy and thermal instability of biosensors. Using horseradish peroxidase (HRP) as a paradigm, we offer a rational design strategy to optimize the thermostability and activity of biosensors by biomimetic mineralization. To overcome the weak thermostability of the biosensor, the mineralization of Fe-MOF forms an armor on HRP that protects against high temperature. Additionally, the biomimetic mineralization HRP@Fe-MOF can double-catalyze the TMB/H2O2 chromogenic system for color development. The biosensor can also be recycled through simple heat treatment due to the thermally stable aptamer and biomimetic mineralization HRP@Fe-MOF. The optical biosensor based on this sensitive spectral transformation was successfully developed for the measurement of AβO with an outstanding linear range (0.0001-10 nM) and a low limit of detection (LOD) of 0.03 pM. This promising platform will open up new avenues for the detection of AβO in the early diagnosis of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | | | - Hong-Xia Ren
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Guizhou, 563000, China.
| |
Collapse
|
24
|
Padmakumari Kurup C, Abdullah Lim S, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry 2022; 147:108170. [DOI: 10.1016/j.bioelechem.2022.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
|
25
|
Wang X, Chen R, Hu J, Yuan W. An adjustable amyloid-β oligomers aptasensor based on the synergistic effect of self-enhanced metal-organic gel luminophore and triple-helix DNA system. Int J Biol Macromol 2022; 222:794-802. [PMID: 36174865 DOI: 10.1016/j.ijbiomac.2022.09.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
Amyloid-β oligomers (AβOs) was the core-biomarker of Alzheimer's disease (AD), and the detection of AβOs is very important for the early diagnosis of AD. However, existing tests for AβOs are majorly suffering from complex process and poor sensitivity. Thus, an adjustable AβOs electrochemiluminescence (ECL) aptasensor based on the synergistic effect of self-enhanced metal-organic gel (AgCNS) and triple-helix DNA system (THS) was successfully constructed. AgCNS was prepared by an extremely simple one-pot method and was an innovative luminophore with excellent ECL performance. The AgCNS-labeled complementary sequence (AgCNS@CP) was interlaced with the unlabeled aptamer (Apt) carrying two short-arms fixed on the gold electrode (GE) to form the THS. Along with the specific-binding of AβOs and Apt, the THS was disrupted and adjusted flexibly between "on" and "off", resulting in significant changes in the ECL signals. Thus, ECL detection of AβOs was sensitively achieved with a detection limit as low as 0.23 fM and the different forms of Aβ can be specifically distinguished. The aptasensor also exhibited satisfactory selectivity, stability and reproducibility. Moreover, when proposed method and ELISA-kit were simultaneously applied to artificial cerebrospinal fluid (A-CSF) samples, the obtained results were completely consistent, reflecting the potential clinical application value of this work.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rong Chen
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Juanjuan Hu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wei Yuan
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
26
|
Design strategies, current applications and future perspective of aptasensors for neurological disease biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ding Y, Jin Y, Peng T, Gao Y, Zang Y, He H, Li F, Zhang Y, Zhang H, Chen L. Fabrication of multifunctional metal-organic frameworks nanoparticles via layer-by-layer self-assembly to efficiently discover PSD95-nNOS uncouplers for stroke treatment. J Nanobiotechnology 2022; 20:379. [PMID: 35964123 PMCID: PMC9375364 DOI: 10.1186/s12951-022-01583-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Disruption of the postsynaptic density protein-95 (PSD95)—neuronal nitric oxide synthase (nNOS) coupling is an effective way to treat ischemic stroke, however, it still faces some challenges, especially lack of satisfactory PSD95-nNOS uncouplers and the efficient high throughput screening model to discover them. Results Herein, the multifunctional metal–organic framework (MMOF) nanoparticles as a new screening system were innovatively fabricated via layer-by-layer self-assembly in which His-tagged nNOS was selectively immobilized on the surface of magnetic MOF, and then PSD95 with green fluorescent protein (GFP-PSD95) was specifically bound on it. It was found that MMOF nanoparticles not only exhibited the superior performances including the high loading efficiency, reusability, and anti-interference ability, but also possessed the good fluorescent sensitivity to detect the coupled GFP-PSD95. After MMOF nanoparticles interacted with the uncouplers, they would be rapidly separated from uncoupled GFP-PSD95 by magnet, and the fluorescent intensities could be determined to assay the uncoupling efficiency at high throughput level. Conclusions In conclusion, MMOF nanoparticles were successfully fabricated and applied to screen the natural actives as potential PSD95-nNOS uncouplers. Taken together, our newly developed method provided a new material as a platform for efficiently discovering PSD95-nNOS uncouplers for stoke treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01583-7.
Collapse
Affiliation(s)
- Yingying Ding
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Tao Peng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yankun Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Zang
- College of Economics and Management, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Hongliang He
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
28
|
Yang G, Zhang Y, Zhao J, He Y, Yuan R, Chen S. Dual-emitting Iridium nanorods combining dual-regulating coreaction accelerator Ag nanoparticles for electrochemiluminescence ratio determination of amyloid-β oligomers. Biosens Bioelectron 2022; 216:114629. [PMID: 36001932 DOI: 10.1016/j.bios.2022.114629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Iridium(III) complexes have been developed as eminent electrochemiluminescence (ECL) luminophores, but their current applications are only limited to anodic ECL emission because of weak cathodic ECL emission. This work explored poly(styrene-co-maleicanhydride) (PSMA) as functional reagent to modulate iridium(III) complexes to simultaneously emit bipolar ECL signals. The prepared iridium(III) nanorods (Ir NRs) were detected strong bipolar ECL emissions at +0.9 V and -2.0 V with N,N-diisopropylethylenediamine (DPEA) and persulfate (S2O82-) as coreactant, respectively. Meanwhile, Ag nanoparticles (Ag NPs) were developed as dual-regulating coreaction accelerator to boost the bipolar emissions of Ir NRs simultaneously. The dual-emitting Ir NRs coupled with dual-regulating coreaction accelerator Ag NPs facilitated the construction of mono-luminophore-based ECL ratio strategy for detecting amyloid-β oligomers (AβO). When the target AβO appeared, the Mg2+-dependent DNAzyme-powered biped walkers were unlocked to cleave single-stranded S1 immobilized on the surface of magnetic beads (MBs), resulting in the production of massive single-stranded ST. Then, the output ST cleaved hairpin H1 captured by Ir NRs modified electrode to produce numerous single strands, which could initiate the hybridization chain reaction (HCR) between Ag NPs-labeled H2 and Ag NPs-labeled H3 to introduce abundant Ag NPs onto the electrode surface. Due to the enhancement effect of Ag NPs on the bipolar ECL emissions from Ir NRs, the ECL ratio detection of AβO was achieved with the detection limit of 0.62 pM. The unique dual-emitting properties of Ir NRs coupled with dual-regulating effect of Ag NPs provided an interesting mono-luminophore-based ECL ratio sensing platform for biological analysis.
Collapse
Affiliation(s)
- Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanyuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
29
|
Zhang Y, Shi F, Zhang C, Sheng X, Zhong Y, Chong H, Yang Z, Wang C. Detection of avian influenza virus H9N2 based on self-driving and self-sensing microcantilever piezoelectric sensor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Chen Z, Li Y, Qin H, Yang X, Cao W. A dual-mechanism-driven electrochemiluminescence aptasensor for sensitive detection of β-amyloid peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1739-1746. [PMID: 35468173 DOI: 10.1039/d2ay00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
β-Amyloid (Aβ) peptides can bind both Cu2+ and heme cofactors simultaneously to form heme-Cu2+-Aβ complexes, which are proposed to generate toxic partially reduced oxygen species (PROS, e.g., H2O2) and play a vital role in Alzheimer's disease (AD). In this paper, a competitive dual-mechanism-driven electrochemiluminescence (ECL) aptasensor integrating the synergistic enhancement and steric hindrance effect was described for Aβ detection. Specifically, graphite carbon nitride (g-C3N4) as an effective ECL luminescent substrate and Au nanoparticles were sequentially assembled on the Au electrode surface, and then a thiol-modified aptamer for capturing Aβ peptide was attached to the surface of the electrode through the Au-S bond. Aβ peptides were simultaneously incubated with heme and Cu2+, and the forming heme-Cu2+-Aβ complexes were subsequently anchored on the electrode through the specific recognition between the target Aβ and the aptamer. When the concentration of the target Aβ is low, the synergistic enhancement effect arising from K2S2O8 with in situ generated H2O2 is predominant, resulting in an increase in the ECL signal of g-C3N4. In contrast, when the concentration of Aβ is high, the steric hindrance effect generated from heme-Cu2+-Aβ complexes is dominant, leading to a decrease in the ECL signal. The present sensor exhibits a favorable linear response for the detection of Aβ with a relatively low detection limit of 0.24 pM, and provides a more sensitive and selective platform for bioanalysis.
Collapse
Affiliation(s)
- Zixuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Yinan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Haixin Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Wei Cao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
31
|
Electrochemiluminescence aptasensor for vascular endothelial growth factor 165 detection based on Ru(bpy)32+/Au nanoparticles film modified electrode and double signal amplification. Bioelectrochemistry 2022; 146:108151. [DOI: 10.1016/j.bioelechem.2022.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
|
32
|
Luo Q, Qian X, Mi X, Tu Y. A novel electrochemiluminescent immunosensor for the detection of NT-proBNP based on a Au/ZIF-67 nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Poudel P, Park S. Recent Advances in the Treatment of Alzheimer's Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022; 14:835. [PMID: 35456671 PMCID: PMC9026997 DOI: 10.3390/pharmaceutics14040835] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. Most existing treatments only provide symptomatic solutions. Here, we introduce currently available commercial drugs and new therapeutics, including repositioned drugs, to treat AD. Despite tremendous efforts, treatments targeting the hallmarks of AD show limited efficacy. Challenges in treating AD are partly caused by difficulties in penetrating the blood-brain barrier (BBB). Recently, nanoparticle (NP)-based systems have shown promising potential as precision medicines that can effectively penetrate the BBB and enhance the targeting ability of numerous drugs. Here, we describe how NPs enter the brain by crossing, avoiding, or disrupting the BBB. In addition, we provide an overview of the action of NPs in the microenvironment of the brain for the treatment of AD. Diverse systems, including liposomes, micelles, polymeric NPs, solid-lipid NPs, and inorganic NPs, have been investigated for NP drug loading to relieve AD symptoms, target AD hallmarks, and target moieties to diagnose AD. We also highlight NP-based immunotherapy, which has recently gained special attention as a potential treatment option to disrupt AD progression. Overall, this review focuses on recently investigated NP systems that represent innovative strategies to understand AD pathogenesis and suggests treatment and diagnostic modalities to cure AD.
Collapse
|
34
|
Zamanian J, Khoshbin Z, Abnous K, Taghdisi SM, Hosseinzadeh H, Danesh NM. Current progress in aptamer-based sensing tools for ultra-low level monitoring of Alzheimer's disease biomarkers. Biosens Bioelectron 2022; 197:113789. [PMID: 34798498 DOI: 10.1016/j.bios.2021.113789] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) as common late-life dementia is pathologically associated with the irreversible and progressive disorder, misfolding, deposition, and accumulation of the brain proteins. Especially, the formation of fibrous amyloid plaques by aggregation of amyloid-β peptides is the pathological cause of this neurologic disorder disease. Besides, tau protein isoforms destabilize the microtubule filaments through post-translational modifications and induce nerve cells' death. Amyloid-β peptides and tau proteins are considered as the critical symptom and reliable molecular biomarkers for the early diagnosis of AD. AD is characterized by impaired thinking proficiencies, cognitive decline, memory loss, and behavioral disability. Since there is no efficacious therapy for AD at present, the development of precise sensing tools for the early diagnosis of this disease is essential and crucial. Aptamer-based biosensors (aptasensors) have acquired utmost importance in the field of AD healthcare, due to excellent sensitivity and specificity, ease-of-use, cost-effectiveness, portability, and rapid assay time. Here, we highlight the recent developments and novel perspectives in the field of aptasensor design to quantitatively monitor the AD biomarkers. Finally, some results are represented to achieve a promising viewpoint for introducing the novel aptasensor test kits in the future.
Collapse
Affiliation(s)
- Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic, Iran
| | - Noor Mohammd Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Passive Defense, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
35
|
Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112689. [DOI: 10.1016/j.msec.2022.112689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022]
|
36
|
Chen L, Cheng Z, Peng X, Qiu G, Wang L. Eu-Doped MOF-based high-efficiency fluorescent sensor for detecting 2,4-dinitrophenol and 2,4,6-trinitrophenol simultaneously. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:44-51. [PMID: 34889337 DOI: 10.1039/d1ay01747k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitroaromatic explosives pose a great threat to the environment and human safety. It is very important to design simple, highly efficient and multifunctional sensors for detecting nitroaromatic explosives. However, a few sensors can determine multicomponent nitroaromatic explosives simultaneously. Eu functionalized MOF-253 (Eu@MOF-253) hybrid material was synthesized using the post-synthetic modification method. The introduction of Eu3+ in MOF-253 caused the fluorescence peak of the ligand to show a distinct red-shift due to its polarization enhancement effect in the presence of 2,4-DNP. The emission and excitation spectra of the Eu@MOF-253 sensor showed overlap with the ultraviolet-visible (UV-vis) absorption spectra of the representative nitroaromatic explosives 2,4-dinitrophenol (2,4-DNP) and 2,4,6-trinitrophenol (TNP). Therefore, it is feasible to discriminate and quantify TNP and 2,4-DNP simultaneously. As proposed, the Eu@MOF-253 luminescent sensor was highly sensitive and selective towards TNP and 2,4-DNP. The other coexisting nitroaromatic explosives did not interfere with the determination. Upon addition of TNP, the fluorescence of the Eu@MOF-253 sensor decreased dramatically and showed an excellent quenching constant (Ksv) of 1.58 × 106. The fluorescence intensities of the Eu@MOF-253 sensor presented good linear relationships with concentrations of TNP and 2,4-DNP ranging from 0.01-100 μM and 0.01-25 μM, respectively. Low limits of detection (LOD) for both 2,4-DNP and TNP were approximately 10 nM. The determination mechanism is mainly ascribed to the internal filtration effect (IFE) and electron transfer. This work provides a practical method for the highly efficient determination of nitroaromatic explosives.
Collapse
Affiliation(s)
- Lili Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| | - Zihan Cheng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| | - Xinyue Peng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| | - Guoqiao Qiu
- Department of Visual Communication, Shanghai Institute of Technology, 120 Caobao Road, Shanghai 200235, P. R. China.
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, P. R. China
| |
Collapse
|
37
|
Feng X, Han G, Cai J, Wang X. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J Colloid Interface Sci 2021; 607:1313-1322. [PMID: 34583036 DOI: 10.1016/j.jcis.2021.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.
Collapse
Affiliation(s)
- Xiwen Feng
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Guangda Han
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|