1
|
Hou J, Hu C, Li H, Liu H, Xiang Y, Wu G, Li Y. Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2025; 253:116543. [PMID: 39486391 DOI: 10.1016/j.jpba.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Magnetic solid-phase extraction (MSPE) holds significant scientific and technological interest as a novel sample preparation method for complex samples due to its easy operation, swift separation, high adsorption efficiency, and environmental friendliness. As the core of MSPE, magnetic sorbents have captured tremendous attention in recent years. Various promising nanomaterials, such as metal-organic frameworks and covalent organic frameworks, have been synthesized and utilized as sorbents in pharmaceutical and biomedical analysis. This review intends to (1) summarize recent progress of magnetic sorbents applied in this area and discuss their advantages, disadvantages, possible interaction mechanisms with the target substances; (2) explore their innovative applications in the analysis of pharmaceuticals, proteins, peptides, nucleic acids, nucleosides, metabolites, and other disease biomarkers from 2021 to 2024; (3) present the integration of MSPE with emerging analytical technologies; and (4) discuss the current challenges and future perspectives. It is expected to provide references and insights for the development of novel magnetic sorbents and their applications in bioanalysis.
Collapse
Affiliation(s)
- Jingxin Hou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Hu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hanyin Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongmei Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yangjiayi Xiang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Jing'an Branch, the Affiliated Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Gou Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Yan X, Du Y, Chen X, Wang L, Li Y, Wu D. Magnetic polyimide nanosheet strings for determination of anabolic androgenic steroids in tap-water, functional drink, and external drug by magnetic solid-phase extraction combined with gas chromatography-mass spectrometry. J Chromatogr A 2023; 1712:464473. [PMID: 39491275 DOI: 10.1016/j.chroma.2023.464473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Magnetic polyimide (PI) nanosheet strings were prepared by wrapping PI nanosheets around the γ-Fe2O3 nanowires. The γ-Fe2O3/PIs composite was successfully used for magnetic solid-phase extraction (MSPE) of anabolic androgenic steroids (AASs). The γ-Fe2O3/PIs composite possessed adequate saturation magnetic strength (8.7 emu/g) from inner γ-Fe2O3 nanowires, and large specific surface area (154.1 m2/g) for high adsorption capacity (≥ 8.9 μg/mg for selected 9 AASs) from outer PI nanosheets. Subsequently, trace AASs in water were extracted by γ-Fe2O3/PIs and determined by gas chromatography-mass spectrometry (GC-MS) after desorption and derivatization. Under the optimized extraction and desorption conditions, the MSPE of AASs based on γ-Fe2O3/PIs was established. For purified water, the linear range was 0.01-100, 0.02-100, 0.05-100, 0.1-100 or 0.2-100 μg/L with determination coefficients (R2) greater than 0.9950. The recoveries ranged from 78.3% to 115.7%, with relative standard deviations (RSDs) between 1.9 and 11.8%. The limits of detection (LODs) were in the range of 0.0025-0.046 μg/L. For the three real samples, tap-water, functional drink, and external analgesic aerosol drug, the recoveries were 68.8-119.0%, and the corresponding RSDs were 0.4-11.0%. This study provides a new strategy for the preparation of magnetic adsorption materials and an alternative method for the detection of pollutants in aqueous samples.
Collapse
Affiliation(s)
- Xiaohui Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xianzhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liuxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanshuo Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dapeng Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Aladaghlo Z, Javanbakht S, Sahragard A, Reza Fakhari A, Shaabani A. Cellulose-based nanocomposite for ultrasonic assisted dispersive solid phase microextraction of triazole fungicides from water, fruits, and vegetables samples. Food Chem 2023; 403:134273. [DOI: 10.1016/j.foodchem.2022.134273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
|
4
|
Chatzimitakos T, Vasilas A, Stalikas C. Layered Double Hydroxide/Graphene Quantum Dots as a New Sorbent for the Dispersive Solid-Phase Microextraction of Selected Benzophenones, Phenols, and Parabens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238388. [PMID: 36500480 PMCID: PMC9738325 DOI: 10.3390/molecules27238388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
In this study, the synthesis of a layered double hydroxide (LDH) composite with graphene quantum dots (GQDs) and its utilization for the development of a dispersive solid-phase extraction procedure are described. To this end, a carbonate-free Mg-Al LDH was synthesized. The development of the composite material made feasible the use of GQDs in a sample preparation procedure, while the incorporation of the GQDs in the LDH structure resulted in an 80% increase in extraction efficiency, compared to the bare LDH. As a proof of concept, the composite material was used for the development of an analytical method for the extraction, and preconcentration, of benzophenones, phenols, and parabens in lake water using high-performance liquid chromatography, coupled to a diode array detector. The analytical method exhibits low limits of quantification (0.10-1.33 μg L-1), good recoveries (92-100%), and satisfactory enrichment factors (169-186). Due to the abovementioned merits, the easy synthesis and simple extraction, the developed method can be used for the routine analysis of the target compounds.
Collapse
|
5
|
Barzegarzadeh M, Amini-Fazl MS, Nasrizadeh H. A rapid and sensitive method to detection of Cr3+by using the Fe3O4@Pectin-polymethacrylimide@graphene quantum dot as a sensitive material. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
ILSnCl2-mGO nanocomposite for efficient preconcentration of Red 2G via ultrasonic-assisted dispersive magnetic solid-phase extraction method: isotherm adsorption. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04793-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Enhancement of natural dyeing properties and
UV
resistance of silk fibers modified by phenylboronic acid/hydroxypropyl‐β‐cyclodextrin functionalized
Fe
3
O
4
particle. J Appl Polym Sci 2022. [DOI: 10.1002/app.52253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Qin P, Han L, Zhang X, Li M, Li D, Lu M, Cai Z. MIL-101(Fe)-derived magnetic porous carbon as sorbent for stir bar sorptive-dispersive microextraction of sulfonamides. Mikrochim Acta 2021; 188:340. [PMID: 34523015 DOI: 10.1007/s00604-021-04993-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023]
Abstract
Using MIL-101(Fe) as the source of carbon and Fe, a magnetic porous carbon (MPC) material with Fe3C nanoparticles encapsulated in porous carbon was prepared through one-pot pyrolysis under N2 atmosphere. With MPC as adsorption material, a stir bar sorptive-dispersive microextraction (SBSDME) method was proposed to extract and preconcentrate sulfonamides (SAs) prior to HPLC-DAD determination. To investigate their extraction ability, different MPC materials were prepared under different carbonization temperatures (600, 700, 800, 900, and 1000 °C). The material prepared under 900 °C (MPC-900) exhibited the highest extraction ability for SAs. The as-prepared MPC materials were also characterized by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, zeta potential, and other techniques. The main parameters that affect extraction were systematically studied. Under optimal conditions, favorable linearity (R2 ≥ 0.9938) and detection limits (0.02-0.04 ng mL-1) of sulfonamides were obtained. The average recoveries for spiked milk and lake water samples ranged from 76.9 to 109% and from 75.4 to 118% with RSDs of 3.10-9.63% and 1.71-11.3%, respectively. Sulfameter and sulfisoxazole were detected in milk sample. Sulfisoxazole was detected in the lake water sample. The MPC-900 material demonstrated excellent reusability. It can be reused 24 times with peak areas having no obvious decline. The method can be applied to extract ultra-trace compounds in complex sample matrices. Schematic presentation of a stir bar sorptive-dispersive microextraction (SBSDME) by using magnetic porous carbon (MPC) composites as sorbent combined with high-performance liquid chromatography for sensitive analysis of sulfonamides in milk and lake water samples.
Collapse
Affiliation(s)
- Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Lizhen Han
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaowan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Mengyuan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Dan Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China
| |
Collapse
|
10
|
Aladaghlo Z, Maddah B, Fakhari AR. Fabrication of Co 3O 4 quantum dot incorporated polyacrylamide ethylene glycol dimethacrylate as a new fiber for solid phase microextraction and trace determination of organophosphorus pesticides in environmental water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3394-3401. [PMID: 34236068 DOI: 10.1039/d1ay00855b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a novel solid phase microextraction fiber based on Co3O4 quantum dot incorporated polyacrylamide-co-ethylene glycol dimethacrylate followed by corona discharge ion mobility spectrometry is presented for the trace determination of organophosphorus pesticides in environmental water samples. Ion mobility spectrometry is a comparatively inexpensive, well-known, robust, and easy to operate analytical instrument. This combination would provide a low-cost, fast, selective, and sensitive quantitative system for detection of organophosphorus pesticides. In order to obtain the best extraction efficiency, the optimization of parameters affecting this method was carried out. After optimization, a solution pH of 7.0, extraction temperature of 60 °C, adsorption temperature of 260 °C, extraction time of 30 min, stirring speed of 750 rpm, and ionic strength of 10% w/w were obtained. Consequently, the presented method showed low limits of detection (0.3-0.6 ng mL-1), excellent enrichment factors (PF = 221-263), good linearity (R2 > 0.995), and repeatabilities (intra-day: 3.4 to 4.8%) and (inter-day: 4.7 to 6.1%). The reproducibility (RSD% of fiber to fiber) was also investigated by analyzing three as-prepared fibers under the same conditions and was found to be less than 7.6%. Finally, the developed fiber was used for determination of organophosphorus pesticides in the field samples.
Collapse
Affiliation(s)
- Zolfaghar Aladaghlo
- Department of Analytical Chemistry, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | | | |
Collapse
|
11
|
Huang Y, Li Y, Luo Q, Huang X. One-Pot Strategy as a Green and Rapid Method to Fabricate Magnetic Molecularly Imprinted Nanoparticles for Selective Capture of Sulfonylurea Herbicides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37280-37288. [PMID: 34324296 DOI: 10.1021/acsami.1c11433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic solid-phase extraction (MSPE) based on molecularly imprinted nanoparticles (MINs) has attracted wide attention in sample pretreatment because it combines the merits of high selectivity and quick extraction procedures. However, laborious, time and solvent-consuming steps were involved in the synthesis of magnetic imprinted particles in existing approaches. To circumvent this dilemma, a green and rapid "one-pot" strategy was proposed to prepare MINs. Halosulfuron-methyl (HSM) was selected as a template molecule, and Gaussian 09 simulation software was employed to screen the 2,4,6-trivinylboroxin pyridine complex (TBP) as a functional monomer. Subsequently, the fabrication was simply conducted using a hydrothermal approach by mixing self-assembly solution of TBP-HSM, Fe3+, Fe2+, dimethyl sulfoxide, and azobisisobutyronitrile in one-pot with a total reaction time of 3.0 h. Various characterized results well evidenced the successful imprint of HSM and the resultant HSM-MINs presented satisfying superparamagnetism and saturation magnetism. Under the optimized parameters, the obtained HSM-MINs displayed good recognition capability and selectivity toward HSM (recognition coefficient was 2.60), as well as a satisfactory saturation adsorption capacity (1781 μg/g). The quantification of sulfonylurea herbicides at trace levels in environmental water and soil samples was selected as a paradigm to demonstrate the practicality and reliability of HSM-MINs/MSPE. The present study provides a convenient, reliable, and green approach for fabricating a magnetic molecular-imprinting adsorbent for MSPE.
Collapse
Affiliation(s)
- Youfang Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yanyun Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Luo
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaojia Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies; College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| |
Collapse
|