1
|
Saddique Z, Shahzad N, Saeed M, Afzal A. Biomimetic Polythiophene: g-C 3N 4 Nanotube Composites with Induced Creatinine and Uric Acid Specificity for Portable CKD and Gout Detection. ACS APPLIED BIO MATERIALS 2025; 8:4262-4271. [PMID: 40337995 DOI: 10.1021/acsabm.5c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Despite significant advancements in disease diagnostics, the development of portable, highly selective, and low-cost electrochemical sensors for real-time, noninvasive detection of chronic kidney disease (CKD) and gout biomarkers remains a challenge. In this work, we demonstrate an inexpensive CKD and gout diagnostic platform with the incorporation of biomimetic polymer matrix nanocomposites based on creatinine (CRE) and uric acid (UA) imprinted conducting polythiophene (MIP) and graphitic carbon nitride nanotubes (NTs). These nanocomposites are termed CRE-MIPNT or UA-MIPNT, depending on the template. Disposable electrochemical devices are fabricated by anchoring CRE-MIPNT or UA-MIPNT nanocomposites on screen-printed Au microelectrodes. The surface micrographs exhibit the integration of NTs in the polymer matrix, resulting in highly leptokurtic surfaces. Consequently, the charge transfer resistance at the electrode-electrolyte interface is significantly reduced, as characterized by electrochemical impedance spectroscopy. An increase in the electroactive surface area and charge transfer kinetics is also observed for the CRE-MIPNT/Au-SPE and UA-MIPNT/Au-SPE sensors. In comparison to nonimprinted sensors, their performance is investigated in terms of their voltammetric response toward various biomarker concentrations in standard redox solutions. The sensitivity in the CV measurements is 0.59 μA cm-2 nM-1 for CRE-MIPNT/Au-SPE and 0.78 μA cm-2 μM-1 for UA-MIPNT/Au-SPE sensors, with detection limits of 390 pM and 162 nM for CRE and UA, respectively. The sensors demonstrate high selectivity toward the target analytes while showing minimal interference from other metabolites. Moreover, recovery rates for spiked saliva samples ranged between 97 and 102%, which indicates the reliability of the sensor for real-world applications.
Collapse
Affiliation(s)
- Zohaib Saddique
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
- Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Noor Shahzad
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Maleeha Saeed
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
2
|
Bai X, Luo W, Zhou W, Chen W, Guo X, Shen A, Hu J. A sensitive SERS-based assay technique for accurate detection of foodborne pathogens without interference. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7683-7688. [PMID: 39494559 DOI: 10.1039/d4ay01555j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The accurate and sensitive detection of foodborne pathogens is critical for timely food quality supervision and human health. To address this issue, herein, we developed a simple and novel surface-enhanced Raman scattering (SERS) assay using p-mercaptobenzoic acid (MBN)-modified gold nanoparticles (Au NPs) and magnetic beads for interference-free detection of Escherichia coli (E. coli). This assay technique cleverly reduced silver ions (Ag+) on the surface of E. coli (bacteria@Ag NPs), and the functionalized magnetic beads (capture probes) captured and enriched bacteria@Ag NPs, forming the structure of the capture probes-bacteria@Ag NPs. Then, the capture probes-bacteria@Ag NPs were dissolved in the acidic medium, and the Ag NPs on the surface of E. coli was converted to Ag+ again. Due to the special coordination between Ag+ and MBN-modified Au NPs (functionalized Au NPs), the SERS intensity of MBN exhibited a positive correlation with the E. coli concentration, and the SERS detection assay of E. coli was established. The signal of the functionalized Au NPs located at 2228 cm-1 perfectly avoided the spectral overlap with coexisting materials in the Raman fingerprint region, which ensured the accuracy of the technique. The controlled aggregation of the functionalized Au NPs ensured the reproducibility and reliability of the detection system; the emergence of MBs greatly reduced the reaction time and made sure the operation was rapid, simple and portable. The limit of detection (LOD) for E. coli was as low as 10 cfu mL-1, and the detection assay was successfully applied for the detection of E. coli in bottled water and milk. As a sensitive and accurate analytical technique for the detection of pathogens, this SERS-based method has great potential to be applied in the field of food safety.
Collapse
Affiliation(s)
- Xiangru Bai
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang 464007, P.R. China.
| | - Wei Luo
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang 464007, P.R. China.
| | - Wenyu Zhou
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang 464007, P.R. China.
| | - Wei Chen
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang 464007, P.R. China.
| | - Xinling Guo
- School of Pharmacy, Xinyang Agriculture and Forestry University, Xinyang 464007, P.R. China.
| | - Aiguo Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
3
|
Ma X, Deng L, Zou Z, Pan Z, Feng L, Huang Z, Liang Z, Liu X, Li M, Su Z, Zheng H. Novel portable photoelectrochemical sensor based on CdS/Au/TiO 2 nanotube arrays for sensitive, non-invasive, and instantaneous uric acid detection in saliva. Talanta 2024; 271:125646. [PMID: 38218058 DOI: 10.1016/j.talanta.2024.125646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Uric acid (UA) monitoring is the most effective method for diagnosis and treatment of gout, hyperuricemia, hypertension, and other diseases. However, challenges remain regarding detection efficiency and rapid on-site detection. Here, we first synthesized a CdS/Au/TiO2-NTAs Z-scheme heterojunction material using a titanium dioxide nanotube array (TiO2-NTAs) as the substrate and modified with gold nanoparticles (Au) and cadmium sulfide particles (CdS). This material achieves bandgap alignment to generate a large number of electron-hole pairs under illumination. Then, using CdS/Au/TiO2-NTAs as the working electrode and molecularly imprinted polymers (MIP) as the recognition unit, we constructed a portable photoelectrochemical (PEC) sensor for non-invasive instant detection of UA concentration in human saliva, which has unique advantages in the field of high-sensitivity PEC instant detection. The portable MIP-PEC sensor achieves a linear range of 0.01-50 μM and a detection limit as low as 5.07 nM (S/N = 3). At the same time, the portable MIP-PEC sensor exhibits excellent sensitivity, specificity as well as stability, and shows no statistically significant difference compared to traditional high-performance liquid chromatography (HPLC) in practical sample detection. Compared to traditional PEC modes, this work demonstrates a novel and universal method for high-sensitivity instant detection in the field of PEC.
Collapse
Affiliation(s)
- Xiaolong Ma
- Institute of Life Sciences, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Ziwei Zou
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Zheng Huang
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Zhenwu Liang
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Xinli Liu
- Institute of Life Sciences, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China
| | - Mei Li
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| | - Hua Zheng
- Institute of Life Sciences, Guangxi Medical University, No. 22 Shuang Yong Road, Qingxiu District, Nanning, 530021, China.
| |
Collapse
|
4
|
Bao T, Tang C, Li S, Qi Y, Zhang J, She P, Rao H, Qin JS. Hollow structured CdS@ZnIn 2S 4 Z-scheme heterojunction for bifunctional photocatalytic hydrogen evolution and selective benzylamine oxidation. J Colloid Interface Sci 2024; 659:788-798. [PMID: 38215615 DOI: 10.1016/j.jcis.2023.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Photocatalytic hydrogen evolution (PHE) is frequently constrained by inadequate light utilization and the rapid combination rate of the photogenerated electron-hole pairs. Additionally, conventional PHE processes are often facilitated by the addition of sacrificial reagents to consume photo-induced holes, which makes this approach economically unfavorable. Herein, we designed a spatially separated bifunctional cocatalyst decorated Z-scheme heterojunction of hollow structured CdS (HCdS) @ZnIn2S4 (ZIS), which was prepared by a sacrificial hard template method followed by photo-deposition. Consequently, PdOx@HCdS@ZIS@Pt exhibited efficient PHE (86.38 mmol·g-1·h-1) and benzylamine (BA) oxidation coupling (164.75 mmol·g-1·h-1) with high selectivity (97.34 %). The unique hollow core-shelled morphology and bifunctional cocatalyst loading in this work hold great potential for the design and synthesis of bifunctional Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Tengfei Bao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
5
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|
6
|
Zhang L, Wang Z, Li D, Yuan Y, Ouyang H, Li J. Development of Levo-Lansoprazole Chiral Molecularly Imprinted Polymer Sensor Based on the Polylysine-Phenylalanine Complex Framework Conformational Separation. BIOSENSORS 2023; 13:bios13050509. [PMID: 37232870 DOI: 10.3390/bios13050509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
The efficacies and toxicities of chiral drug enantiomers are often dissimilar, necessitating chiral recognition methods. Herein, a polylysine-phenylalanine complex framework was used to prepare molecularly imprinted polymers (MIPs) as sensors with enhanced specific recognition capabilities for levo-lansoprazole. The properties of the MIP sensor were investigated using Fourier-transform infrared spectroscopy and electrochemical methods. The optimal sensor performance was achieved by applying self-assembly times of 30.0 and 25.0 min for the complex framework and levo-lansoprazole, respectively, eight electropolymerization cycles with o-phenylenediamine as the functional monomer, an elution time of 5.0 min using an ethanol/acetic acid/H2O mixture (2/3/8, V/V/V) as the eluent, and a rebound time of 10.0 min. A linear relationship was observed between the sensor response intensity (ΔI) and logarithm of the levo-lansoprazole concentration (l-g C) in the range of 1.0 × 10-13-3.0 × 10-11 mol/L. Compared with a conventional MIP sensor, the proposed sensor showed more efficient enantiomeric recognition, with high selectivity and specificity for levo-lansoprazole. The sensor was successfully applied to levo-lansoprazole detection in enteric-coated lansoprazole tablets, thus demonstrating its suitability for practical applications.
Collapse
Affiliation(s)
- Lianming Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zian Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Dan Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yali Yuan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Huixiang Ouyang
- College of Chemistry & Environment Engineering, Baise University, Baise 533000, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
7
|
Fumagalli D, Comis S, Pifferi V, Falciola L. Gold Nanoparticles‐Titania Heterojunction: Photoelectrochemical Detection of Ciprofloxacin. ChemElectroChem 2023. [DOI: 10.1002/celc.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Daniele Fumagalli
- Electroanalytical Chemistry Group Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Silvia Comis
- Electroanalytical Chemistry Group Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Valentina Pifferi
- Electroanalytical Chemistry Group Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Luigi Falciola
- Electroanalytical Chemistry Group Department of Chemistry Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| |
Collapse
|
8
|
Zhang Z, Li M, Zhai L, Wu J, Li L. Photoelectrochemical sensing of glutathione using bismuth vanadate (BiVO 4) decorated with polyaniline (PANI) and cadmium sulfide (CdS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:969-978. [PMID: 36727617 DOI: 10.1039/d2ay01615j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A ternary nanocomposite photoelectrode composed of cadmium sulfide (CdS), polyaniline (PANI), and bismuth vanadate (BiVO4) was successfully designed by combining cyclic voltammetry (CV) with electrochemical deposition and high-temperature calcination. The first synthesized CdS/PANI/BiVO4 composite was used as a photoelectrochemical (PEC) monitoring platform for glutathione (GSH). The ternary CdS/PANI/BiVO4 nanocomposites exhibited higher PEC activity, which was attributed to the accelerated electron transfer by the loading of CdS and PANI, which enables the material surface to better adsorb the electrons separated by GSH, thereby oxidizing it into GSSH. The photoanodes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy, and photoelectrochemical experiments. Under the optimal experimental conditions, the BiVO4 electrode modified with CdS and PANI exhibited a linear response in the concentration range of 0.1-20 μM with a sensitivity of 0.669 μA mM-1 cm-2 and a detection limit of 40 nM. Moreover, the PEC sensor exhibits good reproducibility and long-term stability. In summary, the designed materials have excellent electrochemical properties, which make them ideal candidates for PEC detection of GSH.
Collapse
Affiliation(s)
- Zuxing Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Mingqing Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Liying Zhai
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Jiahui Wu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Li Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| |
Collapse
|
9
|
Ganganboina AB, Khoris IM, Konno A, Li TC, Okamoto A, Park EY. CdSe-Co 3O 4@TiO 2 nanoflower-based photoelectrochemical platform probing visible light-driven virus detection. Mikrochim Acta 2023; 190:46. [PMID: 36604350 PMCID: PMC9816014 DOI: 10.1007/s00604-022-05623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
The design and construction of a visible light-driven photoelectrochemical (PEC) device is described based on a CdSe-Co3O4@TiO2 nanoflower (NF). Moreover, an application to the ultrasensitive detection of viruses, such as hepatitis E virus (HEV), HEV-like particles (HEV-LPs), and SARS-CoV-2 spike protein in complicated lysate solution, is demonstrated. The photocurrent response output of a PEC device based on CdSe-Co3O4@TiO2 is enhanced compared with the individual components, TiO2 and CdSe-Co3O4. This can be attributed to the CdSe quantum dot (QD) sensitization effect and strong visible light absorption to improve overall system stability. A robust oxygen-evolving catalyst (Co3O4) coupled at the hole-trapping site (CdSe) extends the interfacial carrier lifetime, and the energy conversion efficiency was improved. The effective hybridization between the antibody and virus resulted in a linear relationship between the change in photocurrent density and the HEV-LP concentration ranging from 10 fg mL-1 to 10 ng mL-1, with a detection limit of 3.5 fg mL-1. This CdSe-Co3O4@TiO2-based PEC device achieved considerable sensitivity, good specificity, and acceptable stability and demonstrated a significant ability to develop an upgraded device with affordable and portable biosensing capabilities.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- International Center for Young Scientists ICYS-NAMIKI, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
| | - Indra Memdi Khoris
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529 Japan
| | - Akinori Konno
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka 432-8561 Japan
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-Shi, Tokyo, 208-0011 Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA) and Center for Sensor and Actuator Material, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
| | - Enoch Y. Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529 Japan ,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529 Japan
| |
Collapse
|
10
|
Zhou H, Guo Y, Yao J. Construction of a dual-signal molecularly imprinted photoelectrochemical sensor based on bias potential control for selective sensing of tetracycline. NEW J CHEM 2023. [DOI: 10.1039/d2nj06137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The two signals validate each other to improve the accuracy and sensitivity of the MIP-PEC sensor.
Collapse
Affiliation(s)
- Hongyan Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
| | - Yongjun Guo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- Sichuan Guangya Polymer Chemical Co., Ltd, Chengdu 610500, Sichuan Province, People's Republic of China
| | - Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8 Xindu Avenue, Chengdu 610500, People's Republic of China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, People's Republic of China
| |
Collapse
|
11
|
Alam MM, Asiri AM, Rahman MM. An Efficient Enzyme-Less Uric Acid Sensor Development Based on PbO-Doped NiO Nanocomposites. BIOSENSORS 2022; 12:bios12060381. [PMID: 35735529 PMCID: PMC9221126 DOI: 10.3390/bios12060381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Here, the voltammetric electrochemical approach was applied to detect uric acid (UA) in a conductive sensing medium (phosphate buffer solution-PBS) by using PbO-doped NiO nanocomposites (NCs)-decorated glassy carbon electrode (GCE) performing as working electrode. The wet-chemically prepared PbO-doped NiO NCs were subjected to characterization by the implementation of XRD, FESEM, XPS, and EDS analysis. The modified GCE was used to detect uric acid (UA) in an enzyme-free conductive buffer (PBS) of pH = 7.0. As the outcomes of this study reveal, it exhibited good sensitivity of 0.2315 µAµM−1cm−2 and 0.2233 µAµM−1cm−2, corresponding to cyclic (CV) and differential pulse (DPV) voltammetric analysis of UA, respectively. Furthermore, the proposed UA sensor showed a wider detection (0.15~1.35 mM) range in both electrochemical analysis methods (CV & DPV). In addition, the investigated UA sensor displayed appreciable limit of detection (LOD) of 41.0 ± 2.05 µM by CV and 43.0 ± 2.14 µM by DPV. Good reproducibility performance, faster response time and long-time stability in detection of UA were perceived in both electrochemical analysis methods. Finally, successful analysis of the bio-samples was performed using the recovery method, and the results were found to be quite acceptable in terms of accuracy. Thus, the findings indicate a reliable approach for the development of 5th generation biosensors using metal-oxides as sensing substrate to fulfill the requirements of portable use for in situ detection.
Collapse
Affiliation(s)
- Md Mahmud Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.M.A.); (A.M.A.)
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.M.A.); (A.M.A.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.M.A.); (A.M.A.)
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
12
|
Chen Q, Yuan C, He Z, Wang J, Zhai C, Bin D, Zhu M. A label-free photoelectrochemical sensor of S, N co-doped graphene quantum dot (S, N-GQD)-modified electrode for ultrasensitive detection of bisphenol A. Mikrochim Acta 2022; 189:208. [PMID: 35501498 DOI: 10.1007/s00604-022-05289-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/19/2022] [Indexed: 01/01/2023]
Abstract
S, N co-doped graphene quantum dot (S, N-GQD) materials have been composited via a one-pot pattern and used as photosensitive materials to construct a label-free photoelectrochemical (PEC) sensor. The PEC experiments show an enhanced photocurrent response toward Bisphenol A (BPA) sensing due to the increased charge transfer rate and the enhanced absorption of visible light. Compared with dark conditions, the photocurrent signal (- 0.2 V vs. SCE) is greatly increased because of the effective oxidation of BPA by photogenerated holes and the rapid electron transfer of S, N-GQDs on the PEC sensing platform. Under optimal conditions linear current response to BPA is in two ranges of 0.12-5 µM and 5-40 µM. The limit of detection is 0.04 µM (S/N = 3). The designed sensor has enduring stability and admirable interference immunity. It provides an alternative approach for BPA determination in real samples with recoveries of 99.3-103% and RSD of 2.0-4.1%.
Collapse
Affiliation(s)
- Qiaowei Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Chen Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zhilong He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Duan Bin
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Dashtian K, Hajati S, Ghaedi M. Molecular Imprinted Poly(2,5-benzimidazole)-Modified VO 2-CuWO 4 Homotype Heterojunction for Photoelectrochemical Dopamine Sensing. Anal Chem 2022; 94:6781-6790. [PMID: 35467838 DOI: 10.1021/acs.analchem.2c00485] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A photoactive molecularly imprinted poly(2,5-benzimidazole)-modified vanadium dioxide-cupric tungstate (VO2-CuWO4) as an efficient photosensitive n-n type-II heterojunction thin film was electrochemically deposited on Ti substrate for the selective and robust photoelectrochemical (PEC) bioanalysis of dopamine (DA). The optical absorption of n-VO2/n-CuWO4 type-II heterojunction was capably broadened toward the visible region, which permitted superior light-harvesting and robust carriers generation, separation, and transfer processes significantly enhancing the anodic photocurrent, as confirmed by a series of PEC analyses. Findings revealed that the as-prepared label-free MIP-PEC sensor can quantitatively monitor DA in a linear range of 1 nM to 200 μM with a detection limit of 0.15 nM. This MIP-PEC sensor showed robust selectivity under conditions with high concentrations of interfering substances, which can be recovered in the real samples of urine, cocoa chocolate, and diluted yogurt, indicating its promising potential applications in biological and food samples. This work not only featured the use of photoelectrically active MIP/VO2-CuWO4 for PEC detection of DA, but also provided a new horizon for the design and implementation of functional polymers/metal oxides heterojunction materials in the field of PEC sensors and biosensors.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | - Shaaker Hajati
- Department of Semiconductors, Materials and Energy Research Center (MERC), Tehran 31787-316, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
14
|
Oxygen Vacancies and Bi2S3 Nanoparticles Co-sensitized TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Sensing of Chlorpyrifos. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Li P, Wang M, Jiang M, Lai W, Li J, Liu K, Li H, Hong C. Application of CuS/Au Heterostructure with peroxidase-like activity in immunosensors. NEW J CHEM 2022. [DOI: 10.1039/d2nj02738k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Early detection of tumour markers is essential for the timely treatment of cancer to realise the sensitive detection of Carcinoembryonic antigen (CEA). We chose electrochemical immunosensor as a simple analytical...
Collapse
|
16
|
Putra BR, Nisa U, Heryanto R, Khalil M, Khoerunnisa F, Ridhova A, Thaha YN, Marken F, Wahyuni WT. Selective non-enzymatic uric acid sensing in the presence of dopamine: electropolymerized poly-pyrrole modified with a reduced graphene oxide/PEDOT:PSS composite. Analyst 2022; 147:5334-5346. [DOI: 10.1039/d2an01463g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A molecularly imprinted polymer (MIP) with uric acid cavities increases the selectivity of uric acid measurement in the presence of dopamine as an interferent.
Collapse
Affiliation(s)
- Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Ulfiatun Nisa
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Rudi Heryanto
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University, Bogor 16680, Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Fitri Khoerunnisa
- Department of Chemistry, Universitas Pendidikan Indonesia, Setiabudi 229, Bandung, 40154, West Java, Indonesia
| | - Aga Ridhova
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Yudi Nugraha Thaha
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Wulan Tri Wahyuni
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
17
|
Promotion effect of rhenium on MoS2/ReS2@CdS nanostructures for photocatalytic hydrogen production. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|