1
|
Fiallos N, Acuña S, Correa-Otero D, Venegas-Toloza M, Beldarrain T, Burgos J, Fuentes F, Bustamante F, Christiansen G, Roa V, Schott E, Alarcón-Enos J, Pastene-Navarrete E. Centrifugal Partition Chromatography Is a Powerful Tool for the Isolation of Antibiofilm Quantum Carbon Dots Synthesized by Hydrothermal Treatment of Avocado Peels. Molecules 2025; 30:1525. [PMID: 40286120 PMCID: PMC11990913 DOI: 10.3390/molecules30071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Carbon quantum dots (CQD) are an emergent nanomaterial with unique optical and biological properties. However, the purification of CQD is one of the bottlenecks that makes it difficult to scale for application in different areas. In this work, we explore for the first time the potential of centrifugal partition chromatography (CPC) as an alternative preparative technology to achieve the purification of CQD at the gram scale. The hydrothermal method was used to synthesize CQD from avocado peels. After 6 h at 250 °C, a complex mix of strong blue-fluorescent CQDs were obtained and submitted to CPC fractionation without pretreatment. The best results were obtained with the solvent system n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v/v/v), in an elution-extrusion protocol. Nine fractions were obtained and were characterized by UV-VIS spectrophotometry, Fourier transform infrared (F-TIR), and field emission scanning electron microscopy (FESEM), confirming the presence of CQD of different sizes. CPC fractionations indicate that a polarity-based separation mechanism can be used to purify CQD. Interestingly, four fractions showed antibacterial and anti-biofilm effects on Pseudomonas putida and Listeria monocytogenes. Therefore, CPC allows for better refining of this type of nanomaterial, and in combination with other techniques, it would serve to obtain CQD of higher purity, facilitating the physicochemical and bioactivity characterization of these particles. CPC would also allow the use of waste, such as avocado peels, to obtain new materials.
Collapse
Affiliation(s)
- Nandis Fiallos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Sergio Acuña
- Facultad de Ciencias de la Salud y los Alimentos, University of Bío-Bío, Chillán 4050231, Chile; (S.A.); (T.B.)
| | - Diana Correa-Otero
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Matías Venegas-Toloza
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Tatiana Beldarrain
- Facultad de Ciencias de la Salud y los Alimentos, University of Bío-Bío, Chillán 4050231, Chile; (S.A.); (T.B.)
| | - Josefina Burgos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Francisca Fuentes
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Francisco Bustamante
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Girlenne Christiansen
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Vanesa Roa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7510000, Chile; (V.R.); (E.S.)
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7510000, Chile; (V.R.); (E.S.)
| | - Julio Alarcón-Enos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| | - Edgar Pastene-Navarrete
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillan 3800708, Chile; (N.F.); (D.C.-O.); (M.V.-T.); (J.B.); (F.F.); (F.B.); (G.C.); (J.A.-E.)
| |
Collapse
|
2
|
Roch R, Deschanels X, Singaravelu CM, André N, Rey C, Causse J. Evidence of the contribution of molecular fluorophores to the luminescence of carbon entities formed by solvothermal treatment of trinitropyrene. RSC Adv 2024; 14:39858-39866. [PMID: 39703732 PMCID: PMC11656156 DOI: 10.1039/d4ra07553f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Carbon dots are a subset of carbon nanomaterials with fluorescent properties that render them attractive for various potential applications such as bioimaging and sensing. The past years saw significant progress being made in the understanding of the formation and the underlying fluorescent property. Nevertheless, efforts are still necessary to unravel the formation of carbon dots and the origin of their luminescence, especially for new types of precursor material such as polycyclic aromatic compounds. Trinitropyrene, a nitroaromatic derivative of pyrene, is increasingly being used as an organic precursor for carbon dot synthesis by bottom-up method. This work aims to study the luminescent products obtained by microwave-assisted solvothermal treatment of trinitropyrene in a common organic solvent for nanoparticle synthesis, dimethylformamide. By employing flash chromatography, we isolated different fractions from which mainly stems the fluorescence observed from the crude sample obtained post solvothermal treatment. By performing structural and spectroscopic characterization techniques, we observed that they possess quiet similar chemical composition and luminescent properties but significant differences from a structural point of view. From these observations, we suggest that the fractions mainly consist of molecular derivatives of the precursor material. This study calls attention to the need of separation and purification techniques in order to better assess the properties of carbon dots.
Collapse
Affiliation(s)
- Rayan Roch
- ICSM, University Montpellier, CEA, CNRS, ENSCM 30207 Marcoule France
| | - Xavier Deschanels
- ICSM, University Montpellier, CEA, CNRS, ENSCM 30207 Marcoule France
| | | | - Noé André
- ICSM, University Montpellier, CEA, CNRS, ENSCM 30207 Marcoule France
| | - Cyrielle Rey
- ICSM, University Montpellier, CEA, CNRS, ENSCM 30207 Marcoule France
| | - Jérémy Causse
- ICSM, University Montpellier, CEA, CNRS, ENSCM 30207 Marcoule France
| |
Collapse
|
3
|
Kundu A, Basu S, Maity B. Upcycling Waste: Citrus limon Peel-Derived Carbon Quantum Dots for Sensitive Detection of Tetracycline in the Nanomolar Range. ACS OMEGA 2023; 8:36449-36459. [PMID: 37810728 PMCID: PMC10552100 DOI: 10.1021/acsomega.3c05424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
In this work, a sustainable method was developed for the production of water-soluble carbon quantum dots employing a green approach. The synthetic protocol was employed using the microwave pyrolysis technique, while lemon peel served as a carbon precursor. Fabrication of highly fluorescent lemon-peel-derived CQDs (LP-CQDs) having inherent nitrogen functionality was validated by X-ray photoelectron spectroscopy, FTIR, X-ray diffraction, Raman spectroscopic analysis, and TEM techniques. The average particle size of fabricated LP-CQDs was 4.46 nm. LP-CQDs yielded a remarkable quantum yield of 49.5%, which displayed excellent salinity, photostability, storage time, conditions, and pH stability. LP-CQDs displayed encouraging results for tetracycline (TC) detection using a PL turn-off approach. The sensitivity of LP-CQDs toward TC was seen in a nanomolar range having a detection limit of 50.4 nM. Method validation was comprehensively studied to ensure the precision of the nanosensor. A complete analysis of different photophysical parameters of LP-CQDs was performed with TC to gain a deeper understanding of the sensing mechanism. Fabricated LP-CQDs showed fluorescence quenching toward TC, elucidated by the inner filter effect (IFE) mechanism. The synthesized nanoprobe demonstrated a lesser detection limit with a broad linear range, enabling facile, cheap, environmentally friendly, and fast detection of TC. Practicality of the detection method was assessed through analysis of real samples, resulting in satisfactory recovery percentage and relative standard deviation with respect to the developed probes. Furthermore, LP-CQDs were used as fluorescent inks and to fabricate paper-based fluorescent strips. This study lays the door for the sensing platform of LP-CQDs toward detection of TC, which may impact the potential role of environmental sustainability.
Collapse
Affiliation(s)
- Aayushi Kundu
- School
of Chemistry and Biochemistry, Senior Research Fellow—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Soumen Basu
- School
of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Banibrata Maity
- School
of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
4
|
Guirguis A, Yang W, Conlan XA, Kong L, Cahill DM, Wang Y. Boosting Plant Photosynthesis with Carbon Dots: A Critical Review of Performance and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300671. [PMID: 37381636 DOI: 10.1002/smll.202300671] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Artificially augmented photosynthesis in nano-bionic plants requires tunable nano-antenna structures with physiochemical and optoelectronic properties, as well as unique light conversion capabilities. The use of nanomaterials to promote light capture across photosystems, primarily by carbon dots, has shown promising results in enhancing photosynthesis through tunable uptake, translocation, and biocompatibility. Carbon dots possess the ability to perform both down and up-light conversions, making them effective light promoters for harnessing solar energy beyond visible light wavelengths.This review presents and discusses the recent progress in fabrication, chemistry, and morphology, as well as other properties such as photoluminescence and energy conversion efficiency of nano-antennas based on carbon dots. The performance of artificially boosted photosynthesis is discussed and then correlated with the conversion properties of carbon dots and how they are applied to plant models. The challenges related to the nanomaterial delivery and the performance evaluation practices in modified photosystems, consideration of the reliability of this approach, and the potential avenues for performance improvements through other types of nano-antennas based on alternative nanomaterials are also critically evaluated. It is anticipated that this review will stimulate more high-quality research in plant nano-bionics and provide avenues to enhance photosynthesis for future agricultural applications.
Collapse
Affiliation(s)
- Albert Guirguis
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Wenrong Yang
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Xavier A Conlan
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David M Cahill
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Yichao Wang
- School of Life & Environment Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
5
|
Moniruzzaman M, Kim J. Synthesis and post-synthesis strategies for polychromatic carbon dots toward unique and tunable multicolor photoluminescence and associated emission mechanism. NANOSCALE 2023; 15:13858-13885. [PMID: 37535002 DOI: 10.1039/d3nr02367b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Carbon dots (CDs) with unique and tunable multicolor photoluminescence (PL) emission has attracted tremendous attention in the past few years due to their potential multifaceted application, specially in the biomedical and optoelectronic fields. There has been extensive deliberation and efforts to engineer the synthesis or post synthesis approach to obtain multicolor-emissive CDs and tune their optical properties toward longer wavelength. This review mainly focuses on the advancement of strategies for synthesis and post-synthesis techniques of CDs toward tunable multicolor emission. Based on the above discussion to achieve desired goals, several synthesis strategies (selection of proper benzenoid precursor, acid/base treatment of biomass, optimization of reaction conditions, optimization of the reagents, solvent engineering, acid strength regulation, reaction temperature regulation, chemical doping) and various post synthesis strategies (column chromatographic separation or purification, solvatochromism, pH variation, surface functionalization, concentration variation) have been reviewed. Although numerous research articles have been published on the synthesis of multicolor CDs for multifaceted application, there is still a lack of a concise review article focusing on systematic synthesis/post synthesis strategies with PL mechanism elucidation. Thus, we focused on providing a comprehensive overview of the state-of-the-art advances on the strategies for the preparation of polychromatic CDs with tunable emission and elucidating their emission mechanism.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
6
|
Dang DK, Nguyen VN, Tahir Z, Jeong H, Kim S, Tran HN, Cho S, Park YC, Bae JS, Le CT, Yoon J, Kim YS. An Efficient Green Approach to Constructing Adenine Sulfate-Derived Multicolor Sulfur- and Nitrogen-Codoped Carbon Dots and Their Bioimaging Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366002 DOI: 10.1021/acsami.3c06093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.
Collapse
Affiliation(s)
- Dinh Khoi Dang
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Viet Nam
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Zeeshan Tahir
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hyunsun Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sungdo Kim
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hong Nhan Tran
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Shinuk Cho
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Yun Chang Park
- Measurement and Analysis Division, National Nanofab Center, Daejeon 34141, South Korea
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, South Korea
| | - Chinh Tam Le
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yong Soo Kim
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
7
|
Guo G, Li T, Wang Y, Hu H, Xing H, Tang S, Gao S, Leng X, Chen D. Aggregation-induced bimodal excitation of nitrogen-doped carbon dots for ratiometric sensing of new coccine and solid-state multicolor lighting. J Colloid Interface Sci 2023; 645:96-106. [PMID: 37146383 DOI: 10.1016/j.jcis.2023.04.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Trace detection of foodstuff pigments have gained increasing attention because of their close association with biological and environmental processes. Herein, we propose an innovative bimodal excitation nitrogen-doped carbon dots (N-CDs) for ratiometric sensing of new coccine (NC) pigment, which are synthesized by using melamine and o-phenylenediamine as precursors via solvothermal treatment. With the increase of the N-CDs concentration, N-CDs exhibit not only a concentration-dependent tunable color behavior, but also a novel aggregation-induced bimodal excitation phenomenon. Considering this distinctive bimodal excitation behavior, a ratiometric sensor based on N-CDs has been developed for the detection of the NC in different organic solvents due to the inner filter effect and fluorescence resonance energy transfer. The intensity ratio of two excitation signals is linear with the NC concentration in the range of 0.032-100 µM, and the limit of detection is as low as 32.1 nM. Meanwhile, we realize the design of multicolor-emission N-CDs/polymer films. All in all, this work presents a novel kind view of the mechanism of distinctive bimodal excitation of N-CDs, and further proposes an innovative ratiometric method for the screening analysis of NC in food samples and environmental pollutants.
Collapse
Affiliation(s)
- Guoqiang Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Yiru Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Houwen Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Haoming Xing
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Siyuan Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China; Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Sineng Gao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Xuan Leng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
8
|
Tang Y, Dong X, Wang M, Guo B. Dual emission N-doped carbon dots as a ratiometric fluorescent and colorimetric dual-signal probe for indigo carmine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122310. [PMID: 36610210 DOI: 10.1016/j.saa.2022.122310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Novel dual-emission fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized by a facile one-pot hydrothermal method using ascorbic acid and rhodamine B as precursors and melamine as nitrogen source. The obtained N-CDs exhibited dual-emitting peaks at 435 nm and 578 nm under the single excitation of 350 nm. The fluorescence at 578 nm was more effectively quenched by indigo carmine (IC) based on the internal filtration effect and aggregation-induced emission quenching. Meanwhile, the apparent color change of N-CDs from pink to blue-purple after adding various concentrations of IC could be clearly observed with the naked eye. Therefore, a ratiometric fluorescent and colorimetric dual-signal probe based on N-CDs was developed for IC detection with high selectivity and sensitivity. The addition of IC caused the ratiometric fluorescent value (F435/F578) to increase linearly within the range from 0 to100 µM with a detection limit (LOD) of 0.18 µM and the colorimetric signal presented a linear response in the range of 0-133 µM with a LOD of 57.4 nM. Furthermore, the IC in juice drink, candy, and water was successfully detected. Besides, the N-CDs were also designed as a ratiometric temperature probe, and the ratiometric fluorescence signal (F435/F578) was linearly and reversibly responsive to temperature in the range of 20-75 °C.
Collapse
Affiliation(s)
- Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| | - Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Minhui Wang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Beibei Guo
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| |
Collapse
|
9
|
Li J, Gong X. The Emerging Development of Multicolor Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205099. [PMID: 36328736 DOI: 10.1002/smll.202205099] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As a relatively new type of fluorescent carbon-based nanomaterials, multicolor carbon dots (MCDs) have attracted much attention because of their excellent biocompatibility, tunable photoluminescence (PL), high quantum yield, and unique electronic and physicochemical properties. The multicolor emission characteristics of carbon dots (CDs) obviously depend on the carbon source precursor, reaction conditions, and reaction environment, which directly or indirectly determines the multicolor emission characteristics of CDs. Therefore, this review is the first systematic classification and summary of multiple regulation methods of synthetic MCDs and reviews the recent research progress in the synthesis of MCDs from a variety of precursor materials such as aromatic molecules, small organic molecules, and natural biomass, focusing on how different regulation methods produce corresponding MCDs. This review also introduces the innovative applications of MCDs in the fields of biological imaging, light-emitting diodes (LEDs), sensing, and anti-counterfeiting due to their excellent PL properties. It is hoped that by selecting appropriate adjustment methods, this review can inspire and guide the future research on the design of tailored MCDs, and provide corresponding help for the development of multifunctional MCDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
10
|
Acid-mediated synthesis coupled with liquid–liquid extraction separation for obtaining red and orange double-color carbon dots: Application for pH, water sensing and cell-imaging. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
pH and solvent induced discoloration behavior of multicolor fluorescent carbon dots. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|