1
|
Rana N, Narang J, Chauhan A. Advancing Frontiers: Graphene-Based Nano-biosensor Platforms for Cutting-Edge Research and Future Innovations. Indian J Microbiol 2025; 65:453-476. [PMID: 40371023 PMCID: PMC12069184 DOI: 10.1007/s12088-024-01318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/20/2024] [Indexed: 05/16/2025] Open
Abstract
Graphene and its derivatives have excellent electrical, mechanical, and optical capabilities, making it the perfect foundation for sensing living things. Graphene-based nano biosensors have shown exceptional sensitivity, selectivity, and quick response times when used to detect a range of analytes, such as biomolecules, cells, and pathogens. The main uses of graphene-based nano biosensors are disease diagnosis, environmental monitoring, food safety, and drug development. It also explores prospective future strategies, such as methods for functionalizing nanomaterials, their incorporation with other nanomaterials, and the creation of wearable and implantable gadgets. Various signalling techniques, such as fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, etc., can be coupled with graphene-based biosensors to quantitatively detect disease-associated DNA, RNA, and protein biomarkers quantitatively. Graphene-based nano biosensors, combined with cutting-edge innovations like artificial intelligence and the Internet of Things, can completely transform industries like healthcare and environmental monitoring. Developing these biosensors with high sensitivity and low detection limits provides a new direction in medical and personal care. The later portion of the review covers the difficulties, prospective fixes, and opportunities of graphene-based biosensors.
Collapse
Affiliation(s)
- Niket Rana
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014 India
| | - Jasjeet Narang
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413 India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh 281406 India
| |
Collapse
|
2
|
Bott-Neto JL, Martins TS, Pimentel GJC, Oliveira ON, Marken F. Photoelectrochemical Performance of Brookite Titanium Dioxide Electrodeposited on Graphene Foam for Portable Biosensors. ACS OMEGA 2024; 9:51474-51480. [PMID: 39758679 PMCID: PMC11696410 DOI: 10.1021/acsomega.4c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
We discuss the photoelectroanalytical performance of a brookite-phase titanium dioxide (TiO2) platform electrodeposited onto graphene foam (GF) at low temperatures. The scalable electrosynthesis process eliminates the need for thermal annealing, which is impractical for carbon-based electrodes. Films resulting from a 10 min electrodeposition (TiO2-10/GF) exhibit enhanced photocurrents, reaching 170 μA cm-2 GEO-twice the value for TiO2 films on traditional screen-printed carbon electrodes (82 μA cm-2 GEO). The increased photocurrent density makes TiO2-10/GF ideal for on-site photoelectrochemical biosensors as it allows for the use of compact systems with low-power LEDs.
Collapse
Affiliation(s)
- José L. Bott-Neto
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos, São Paulo 13560-970, Brazil
- Department
of Chemistry, University of Bath, Claverton Down, Bath, England BA2 7AY, U.K.
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Thiago S. Martins
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos, São Paulo 13560-970, Brazil
- Department
of Chemistry, Molecular Sciences Research
Hub, Imperial College London, 82 Wood Lane, London, England W12 0BZ, U.K.
| | - Gabriel J. C. Pimentel
- Brazilian
Nanotechnology National Laboratory, Brazilian
Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute
of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos, São Paulo 13560-970, Brazil
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath, England BA2 7AY, U.K.
| |
Collapse
|
3
|
Yan Q, Wu R, Wang J, Zeng T, Yang L. An ultrasensitive sandwich-type electrochemical immunosensor based on rGO-TEPA/ZIF67@ZIF8/Au and AuPdRu for the detection of tumor markers CA72-4. Bioelectrochemistry 2024; 160:108755. [PMID: 38878457 DOI: 10.1016/j.bioelechem.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 09/15/2024]
Abstract
Cancer antigen 72-4 (CA72-4) is an important marker of cancer detection, and accurate detection of CA72-4 is urgently required. Herein, a sandwich-type immunosensor was constructed for detection CA72-4 based on composite nanomaterial as the substrate material and trimetal nanoparticles as the nanoprobe. The composite nanomaterial rGO-TEPA/ZIF67@ZIF8/Au used as a selective bio-recognition element were modified on the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the AuPdRu trimeric metal. After the target antigen 72-4 were captured, the nanoprobes were further assembled to form an antibody1 (Ab1)- antigen-antibody2 (Ab2) nanoprobes sandwich-like system on the electrode surface. Then, hybrid the substrate material rGO-TEPA/ZIF67@ZIF8/Au and the AuPdRu trimeric metal nanoprobes efficiently catalyzed the reduction of H2O2 and amplified the electrochemical signals. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and Chronoamperometry (I-T) methods were used to characterize the performance and detection capabilities for CA72-4 of the prepared immunosensors. The results showed that the detection limit was 1.8 × 10-5 U/mL (S/N = 3), and the linear range was 0.001-1000 U/mL. This study provides a new signal amplification strategy for electrochemical sensors and a theoretical basis for the clinical application of immunosensor to detect other tumor markers.
Collapse
Affiliation(s)
- Qinghua Yan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Ruixue Wu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaxin Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Tianyi Zeng
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Li Yang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
4
|
Shen Y, Sun Z, Zhao S, Chen F, Shi P, Zhao N, Sun K, Ye C, Lin C, Fu L. Screen-Printed Electrodes as Low-Cost Sensors for Breast Cancer Biomarker Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5679. [PMID: 39275589 PMCID: PMC11398123 DOI: 10.3390/s24175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
This review explores the emerging role of screen-printed electrodes (SPEs) in the detection of breast cancer biomarkers. We discuss the fundamental principles and fabrication techniques of SPEs, highlighting their adaptability and cost-effectiveness. The review examines various modification strategies, including nanomaterial incorporation, polymer coatings, and biomolecule immobilization, which enhance sensor performance. We analyze the application of SPEs in detecting protein, genetic, and metabolite biomarkers associated with breast cancer, presenting recent advancements and innovative approaches. The integration of SPEs with microfluidic systems and their potential in wearable devices for continuous monitoring are explored. While emphasizing the promising aspects of SPE-based biosensors, we also address current challenges in sensitivity, specificity, and real-world applicability. The review concludes by discussing future perspectives, including the potential for early screening and therapy monitoring, and the steps required for clinical implementation. This comprehensive overview aims to stimulate further research and development in SPE-based biosensors for improved breast cancer management.
Collapse
Grants
- 52272053, 52075527, 52102055 National Natural Science Foundation of China
- 2022YFA1203100, 2022YFB3706602, 2021YFB3701801 National Key R&D Program of China
- 2021Z120, 2021Z115, 2022Z084, 2022Z191 Ningbo Key Scientific and Technological Project
- 2021A-037-C, 2021A-108-G the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- 2020M681965, 2022M713243 China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- 2021ZDYF020196, 2021ZDYF020198 Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001 the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Yin Shen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Shichao Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Kaiqiang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Chengte Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
5
|
Liu L, Xiong H, Wang X, Jiang H. Gold nanomaterials: important vectors in biosensing of breast cancer biomarkers. Anal Bioanal Chem 2024; 416:3869-3885. [PMID: 38277010 DOI: 10.1007/s00216-024-05151-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women worldwide, and its incidence is increasing every year. Early diagnosis and treatment are critical to improve the curability and prognosis of patients. However, existing detection methods often suffer from insufficient sensitivity and specificity, which limits their clinical application. Fortunately, the rapid development of nanotechnology offers new possibilities for diagnosing BC. For example, the unique physicochemical properties of gold nanomaterials (Au NMs), such as fascinating optical properties and quantum size effect, along with excellent biocompatibility and modifiability, enable them to manifest great potential in the field of biosensing, especially in the detection of BC biomarkers. Through fine surface modification and functionalization, Au NMs can accurately bind to specific antibodies, nucleic acids, and other biomolecules, thus achieving sensitive and precise detection of specific biomarkers. Here, we focus on the research progress of Au NMs as a key biosensing vector in BC biomarker detection. From four major perspectives of early diagnosis, prognostic evaluation, risk prediction, and bioimaging applications, we have thoroughly analyzed the broad application of Au NMs in BC biomarker detection and prospectively addressed its possible future trends. We hope this review will provide more comprehensive ideas for future researchers and promote the further development of this field.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
6
|
Han L, Cai S, Chen X. Atomically Co-dispersed nitrogen-doped carbon for sensitive electrochemical immunoassay of breast cancer biomarker CA15-3. Mikrochim Acta 2024; 191:370. [PMID: 38837084 DOI: 10.1007/s00604-024-06448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
The development of an ultrasensitive and precise measurement of a breast cancer biomarker (cancer antigen 15-3; CA15-3) in complex human serum is essential for the early diagnosis of cancer in groups of healthy populations and the treatment of patients. However, currently available testing technologies suffer from insufficient sensitivity toward CA15-3, which severely limits early large-scale screening of breast cancer patients. We report a versatile electrochemical immunoassay method based on atomically cobalt-dispersed nitrogen-doped carbon (Co-NC)-modified disposable screen-printed carbon electrode (SPCE) with alkaline phosphatase (ALP) and its metabolite, ascorbic acid 2-phosphate (AAP), as the electrochemical labeling and redox signaling unit for sensitive detection of low-abundance CA15-3. During electrochemical detection by differential pulse voltammetry (DPV), it was found that the Co-NC-SPCE electrode did not have a current signal response to the AAP substrate; however, it had an extremely favorable response current to ascorbic acid (AA). Based on the above principle, the target CA15-3-triggered immunoassay enriched ALP-catalyzed AAP produces a large amount of AA, resulting in a significant change in the system current signal, thereby realizing the highly sensitive detection of CA15-3. Under the optimal AAP substrate concentration and ALP catalysis time, the Co-NC-SPCE-based electrochemical immunoassay demonstrated a good DPV current for CA15-3 in the assay interval of 1.0 mU/mL to 10,000 mU/mL, with a calculated limit of detection of 0.38 mU/mL. Since Co-NC-SPCE has an excellent DPV current response to AA and employs split-type scheme, the constructed electrochemical immunoassay has the merits of high preciseness and anti-interference, and its clinical diagnostic results are comparable to those of commercial kits.
Collapse
Affiliation(s)
- Lei Han
- Department of Breast Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China.
| | - Shuanglong Cai
- Department of Breast Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaogeng Chen
- Department of Breast Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| |
Collapse
|
7
|
Zhou R, Li T, Chen T, Tang Y, Chen Y, Huang X, Gao W. An electrochemiluminescence immunosensor based on signal magnification of luminol using OER-activated NiFe 2O 4@C@CeO 2/Au as effective co-reaction accelerator. Talanta 2023; 260:124580. [PMID: 37141827 DOI: 10.1016/j.talanta.2023.124580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
In this work, a novel, label-free electrochemiluminescence (ECL) immunosensor was constructed for the ultrasensitive detection of carbohydrate antigen 15-3 (CA15-3) by the combined use of NiFe2O4@C@CeO2/Au hexahedral microbox and luminol luminophore. The synthesis of the co-reaction accelerator (NiFe2O4@C@CeO2/Au) was related to the calcination of FeNi-based metal-organic framework (MOF), as well as the ingrowth of CeO2 nanoparticles and modification of Au nanoparticles. To be specific, the electrical conductivity will be boosted due to the Au nanoparticles, the synergetic effect generated between CeO2 and calcination FeNi-MOF could offer better activity of oxygen evolution reaction (OER). Herein, the NiFe2O4@C@CeO2/Au hexahedral microbox as a co-reaction accelerator has excellent OER activity and production of reactive oxygen species (ROS), thus increasing the ECL intensity of luminol in a neutral medium without other co-reactants such as H2O2. Because of these benefits, the constructed ECL immunosensor was applied to detect CA15-3 as an example under optimum conditions, the designed ECL immunosensor exhibited high-level selectivity and sensitivity for CA15-3 biomarker within a linear response range of 0.01-100 U mL-1 and an ultralow detection limit of 0.545 mU mL-1 (S/N = 3), demonstrating its potentially valuable application in the area of clinical analysis.
Collapse
Affiliation(s)
- Runzhi Zhou
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Ting Li
- Guangdong Chaozhou Supervision & Inspection Institute of Quality & Metrology, Chaozhou, Guangdong, 521011, PR China
| | - Tufeng Chen
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Yixiang Tang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Yaowen Chen
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Xiaochun Huang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China.
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China.
| |
Collapse
|
8
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
9
|
Sadeghi M, Sadeghi S, Naghib SM, Garshasbi HR. A Comprehensive Review on Electrochemical Nano Biosensors for Precise Detection of Blood-Based Oncomarkers in Breast Cancer. BIOSENSORS 2023; 13:bios13040481. [PMID: 37185556 PMCID: PMC10136762 DOI: 10.3390/bios13040481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Breast cancer (BC), one of the most common and life-threatening cancers, has the highest incidence rate among women. Early diagnosis of BC oncomarkers is considered the most effective strategy for detecting and treating BC. Finding the type and stage of BC in women as soon as possible is one of the greatest ways to stop its incidence and negative effects on medical treatment. The development of biosensors for early, sensitive, and selective detection of oncomarkers has recently attracted much attention. An electrochemical nano biosensor (EN) is a very suitable option for a powerful tool for cancer diagnosis. This comprehensive review provides information about the prevalence and pathobiology of BC, recent advances in clinically available BC oncomarkers, and the most common electrochemical nano biosensors for point-of-care (POC) detection of various BC oncomarkers using nanomaterial-based signal amplification techniques.
Collapse
Affiliation(s)
- Mahdi Sadeghi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
10
|
Li L, Zhang W, Chen H, Zhao Z, Wang M, Chen J. Visual and electrochemical determination of breast cancer marker CA15-3 based on etching of Au@Ag core/shell nanoparticles. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Chen S, Wu M, Shi L, Hong C. Graphene‐Oxide‐Loaded Fe
3
O
4
‐Pd‐Ag Nanoparticles Allow Sensitive Detection of CEA through a Signal Enhancement Strategy**. ChemistrySelect 2023. [DOI: 10.1002/slct.202203063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Siyu Chen
- School of Chemistry and Chemical Engineering Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003, Pepole's Republic of China
| | - Mei Wu
- School of Chemical and Environmental Engineering Key Laboratory of Coal-based Energy and Chemical Industry of Xinjiang Institute of Engineering Urumqi 830000, Pepole's Republic of China
| | - Lei Shi
- School of Chemistry and Chemical Engineering Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003, Pepole's Republic of China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003, Pepole's Republic of China
| |
Collapse
|
12
|
Redox-labelled detection probe enabled immunoassay for simultaneous detection of multiple cancer biomarkers. Mikrochim Acta 2023; 190:86. [PMID: 36757491 DOI: 10.1007/s00604-023-05663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/15/2023] [Indexed: 02/10/2023]
Abstract
Some of the cancer biomarkers often lack specificity and sensitivity; thus, simultaneous detection of multiple biomarkers can make the diagnosis more accurate. Also, simple sensing system without utilization of extra reagents like mediator or substrate during detection event is desirable for point-of-care testing. To address this, mediator and substrate-free amperometric biosensor for simultaneous detection of cancer biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) have been demonstrated by designing two different redox-labelled detection probes. Colloidal nanoparticles of polyaniline-pectin conjugated with AFP antibody along with ferrocene and silver nanoparticles conjugated with CEA antibody along with anthraquinone were used as redox probes to bind with AFP and CEA during the detection event. Sensor constructed using carboxylic acid tethered polyaniline as immobilization matrix displayed 5 times wider linear range than conventional polyaniline for AFP and CEA detection by sandwich electrochemical assay. The detection limit was 30 pg mL-1 for AFP and 80 pg mL-1 for CEA. The biosensor displayed appropriate sensitivity, good specificity, and negligible cross-reactivity between the two targets. The proposed sensor was used to determine APF and CEA in human blood serum. The strategy demonstrated can be further extended for detection of panel of cancer biomarkers by designing appropriate redox probes.
Collapse
|
13
|
Early detection of tumour-associated antigens: Assessment of point-of-care electrochemical immunoassays. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
Wang X, Liao X, Zhang B, Chen S, Zhang M, Mei L, Zhang L, Qiao X, Hong C. Fabrication of a novel electrochemical immunosensor for the sensitive detection of carcinoembryonic antigen using a double signal attenuation strategy. Anal Chim Acta 2022; 1232:340455. [DOI: 10.1016/j.aca.2022.340455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
15
|
Erkmen C, Tığ GA, Uslu B. Nanomaterial-based sandwich-type electrochemical aptasensor platform for sensitive voltammetric determination of leptin. Mikrochim Acta 2022; 189:396. [PMID: 36173490 DOI: 10.1007/s00604-022-05487-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
A sandwich-type electrochemical aptasensor was designed for sensitive detection of leptin in biological samples, including human serum and human plasma. The developed aptasensor was produced by electrodeposition of gold nanoparticles on a screen-printed electrode modified with zinc oxide nanoparticles. The synergy effect of zinc oxide and gold nanoparticles improved the electrocatalytic activity of the aptasensor. The obtained high surface area allowed more aptamer molecules to be loaded on the electrode surface. Signal amplification significantly increases the detection sensitivity of a developed biosensor. Although the use of nanomaterials is the most preferred detection tool for this purpose, as an alternative, enzyme-catalyzed signal amplification is widely used in the construction of a biosensor due to its specificity and high catalytic efficiency. Therefore, both nanomaterial-supported and an alkaline phosphatase-based aptasensor design were developed, which can produce in situ electroactive product by enzymatic hydrolysis of the inactive substrate to achieve a higher signal-to-background ratio. Under optimal conditions, the developed aptasensor exhibited a wide linear concentration range from 0.01 pg mL-1 to 100.0 pg mL-1 with a detection limit of 0.0035 pg mL-1. While the developed aptasensor provided excellent selectivity in the presence of some interfering compounds, it possessed outstanding reproducibility and stability. In addition, the developed aptasensor has been applied with good recoveries in the range 96.31 to 108.79% in human serum and plasma samples. In conclusion, all the obtained results showed the feasibility of the developed aptasensor for practical applications.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.,The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Gözde Aydoğdu Tığ
- Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey.
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| |
Collapse
|
16
|
Stefan-van Staden RI, Musat OR, Gheorghe DC, Ilie-Mihai RM, van Staden J(KF. Carbon Nanopowder-Based Stochastic Sensor for Ultrasensitive Assay of CA 15-3, CEA and HER2 in Whole Blood. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3111. [PMID: 36144899 PMCID: PMC9501540 DOI: 10.3390/nano12183111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Two microsensors obtained by the physical immobilization of 5,10,15,20-tetraphenyl-21H,23H-porphine (TPP) and 5,10,15,20-tetrakis (pentafluorophenyl chloride)-21H,23H-iron (III) porphyrin (Fe(TPFPP)Cl) in carbon nanopowder decorated with gold nanoparticles (AuNp) were designed, characterized, validated and used for the molecular recognition and simultaneous ultrasensitive determination of CEA, CA15-3 and HER2 in whole blood. High sensitivities were recorded for both microsensors. Low limits of quantification were recorded for all biomarkers: CEA (12.8 pg mL-1 by using Fe(TPFPP)Cl/AuNp, and 190 fg mL-1 by using TPP/AuNp), CA 15-3 (100 fU mL-1 for both microsensors) and HER2 (3.9 fg mL-1 by using Fe(TPFPP)Cl/AuNp, and 35 fg mL-1 by using TPP/AuNp). A very good correlation between the results obtained using the proposed microsensors and ELISA, certified by the Student t-test, proves that the screening test can be used for ultrasensitive assays of the three biomarkers in whole blood.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Oana-Raluca Musat
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Damaris-Cristina Gheorghe
- Laboratory of Electrochemistry and PATLAB, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
| | - Ruxandra-Maria Ilie-Mihai
- Laboratory of Electrochemistry and PATLAB, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
| | | |
Collapse
|
17
|
Gajdosova VP, Lorencova L, Kasak P, Jerigova M, Velic D, Orovcik L, Barath M, Farkas P, Tkac J. Redox features of hexaammineruthenium(III) on MXene modified interface: Three options for affinity biosensing. Anal Chim Acta 2022; 1227:340310. [DOI: 10.1016/j.aca.2022.340310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
|
18
|
Martins TS, Bott-Neto JL, Machado SAS, Oliveira ON. Label-Free Electrochemical Immunosensor Made with Tree-like Gold Dendrites for Monitoring 25-Hydroxyvitamin D3 Metabolite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31455-31462. [PMID: 35776164 DOI: 10.1021/acsami.2c08381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible, fully printed immunosensors can meet the requirements of precision nutrition, but this demands optimized molecular architectures to reach the necessary sensitivity. Herein, we report on flexible and label-free immunosensor chips made with tree-like gold dendrites (AuDdrites) electrochemically formed by selective desorption of l-cysteine (L-cys) on (111) gold planes. Electrodeposition was used because it is scalable and cost-effective for a rapid, direct growth of Au hyperbranched dendritic structures. The 25-hydroxyvitamin D3 (25(OH)D3) metabolite was detected within 15 min with a limit of detection (LOD) of 0.03 ng mL-1. This high performance was possible due to the careful optimization of the electroactive layer and working conditions for square wave voltammetry (SWV). Electrocrystallization was manipulated by controlling the deposition potential and the molar ratio between HAuCl4 and L-cys. Metabolite detection was performed on human serum and saliva samples with adequate recovery between 97% and 100%. The immunosensors were stable and reproducible, unresponsive to interference from other molecules in human serum and saliva. They can be extended for use as wearable sensors with their mechanical flexibility and possible customization.
Collapse
Affiliation(s)
- Thiago S Martins
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - José L Bott-Neto
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|