1
|
Wang J, Ren J, An Y, Xu X, Yin S, Xin L, Zhang H, Yu Q, Zhan T. Air plasma fast-induced defect-enriched carbon cloth for simultaneous electrochemical detection of dopamine and uric acid. Talanta 2025; 282:127048. [PMID: 39423633 DOI: 10.1016/j.talanta.2024.127048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Herein, we report a fast (10 min) and simple surface treatment of pure carbon cloth (CC) only by an air plasma. The structural characterizations indicate that the air plasma process brings out higher rugosity, more defects, and increased oxygen-related groups on CC surfaces than Ar- or N2-plasma, which can offer abundant capture sites, large electroactive area, and superhydrophilic interface for analytes. As a result, the air-treated CC (CC-PAir) electrode achieves a pronounced improvement of electrocatalytic activity for the [Fe(CN)6]3-/[Fe(CN)6]4- probe evidenced by increased peak currents, decreased peak-to-peak separation, and the lowered resistance of charge transfer. It is also demonstrated that the self-supported CC-PAir electrode possesses excellent sensing performance toward dopamine (DA) and uric acid (UA). The feasibility of the simultaneous electrochemical detection of DA and UA can be verified by their large peak potential gap (∼112 mV) for differential pulse voltammetry. The chronoamperometric sensor yields wide linear ranges of 0.05-100 μM for DA and 0.5-300 μM for UA. The corresponding detection limits are estimated to be 2.6 and 20.4 nM for DA and UA, respectively. The sensor also displays satisfactory selectivity, stability, and reproducibility. Due to good flexibility, the CC-PAir electrode presents great potential for manufacturing wearable and soft electronics for human health monitoring.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Ren
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yutong An
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinyue Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shiqi Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Liantao Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Qingxian Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
2
|
Talha N, El-Sherbeeny AM, Zoubi WA, Abukhadra MR. Synergetic studies on the thermochemical activation and polyaniline integration on the adsorption properties of natural coal for chlorpyrifos pesticide: steric and energetic studies. Sci Rep 2024; 14:21116. [PMID: 39256397 PMCID: PMC11387739 DOI: 10.1038/s41598-024-70676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Three types of synthetic coal-derived adsorbents were characterized as potential enhanced structurers during the removal of chlorpyrifos pesticide. The raw coal (CA) was activated into porous graphitic carbon (AC), and both CA and AC were blended with polyaniline polymers (PANI/CA and PANI/AC) forming two advanced composites. The adsorption performances of the modified structures in comparison with CA were evaluated based on both the steric and energetic parameters of the applied advanced isotherm model (the monolayer model of one energy). The uptake performances reflected higher capacities for the PANI hybridized form (235.8 mg/g (PANI/CA) and 309.75 mg/g (PANI/AC) as compared to AC (156.9 mg/g) and raw coal (135.8 mg/g). This signifies the impact of activation step and PANI blending on the surface and textural properties of coal. The steric investigation determined the saturation of the coal surface with extra active sites after the activation step (Nm(AC) = 62.05 mg/g) and the PANI integration (Nm(PANI/CA) = 113.5 mg/g and Nm(PANI/AC) = 169.7 mg/g) as compared to raw coal (Nm(CA) = 39.6 mg/g). This illustrated the reported uptake efficiencies of the modified samples, which can be attributed to the enhancement in the surface area and the incorporation of additional chemical groups. The results also reflect that each site can be loaded with 3-4 molecules of chlorpyrifos, which are arranged vertically and adsorbed by multi-molecular mechanisms. The energetic studies (< 40 kJ/mol) suggested the physical uptake of pesticide molecules by dipole bonding and hydrogen bonding processes. The thermodynamic functions donate the exothermic properties of 47reactions that occur spontaneously.
Collapse
Affiliation(s)
- Norhan Talha
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Ahmed M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Mostafa R Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
- Geology Department, Faculty of Science, Beni-Suef University, Beni Suef City, Egypt.
| |
Collapse
|
3
|
Zhang H, Wang J, Li K, Yang R, Cai S, Li Y, Zhan T. Highly conductive Ti 3C 2 MXene-supported CoAl-layered double hydroxide nanosheets for ultrasensitive electrochemical detection of organophosphate pesticide fenitrothion. Mikrochim Acta 2024; 191:475. [PMID: 39037453 DOI: 10.1007/s00604-024-06549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
A novel electrochemical method is presented for ultrasensitive detection of the organophosphate pesticide (OPP) fenitrothion by using Ti3C2 MXene/CoAl-LDH nanocomposite as the electrode modifier. The Ti3C2 MXene/CoAl-LDH nanocomposite is synthesized by growing CoAl-LDH in situ on MXene nanosheets. The combination of two ultrathin 2D materials provides more active sites, larger specific surface area, superior adsorption properties, and better electrical conductivity, which leads to rapid electron-transfer and mass-transfer between the substrate electrode and analytes when it is acted as the electrochemical sensing material. In addition, through the chelation of phosphate groups with the Ti defect sites enriched in MXene, OPP is adsorbed on the electrode. Consequently, the corresponding modified electrode gives rise to a wide linear response range of 0.03 ~ 120 μmol/L for the differential pulse voltammetry detection of fenitrothion with a low detection limit of 5.8 nmol/L (3σ). The method offers good repeatability, stability, selectivity, and practicability for real samples. This strategy provides a reference platform for the electrochemical monitoring of trace OPPs residue by using MXene/LDH-based nanocomposites.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Jun Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Kaili Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ruixue Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Shifeng Cai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yang Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
4
|
Wahyuni WT, Putra BR, Rahman HA, Ivandini TA, Irkham, Khalil M, Rahmawati I. Effect of Aspect Ratio of a Gold-Nanorod-Modified Screen-Printed Carbon Electrode for Carbaryl Detection in Three Different Samples of Vegetables. ACS OMEGA 2024; 9:1497-1515. [PMID: 38239286 PMCID: PMC10796111 DOI: 10.1021/acsomega.3c07831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024]
Abstract
In this study, three different sizes of gold nanorods (AuNRs) were synthesized using the seed-growth method by adding various volumes of AgNO3 as 400, 600, and 800 μL into the growth solution of gold nanoparticles. Three different sizes of AuNRs were then characterized using UV-vis spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) patterns, and atomic force microscopy (AFM) to investigate the surface morphology, topography, and aspect ratios of each synthesized AuNR. The aspect ratios from the histogram of size distributions of three AuNRs as 2.21, 2.53, and 2.85 can be calculated corresponding to the addition of AgNO3 volumes of 400, 600, and 800 μL. Moreover, each AuNR in three different aspect ratios was drop-cast onto the surface of a commercial screen-printed carbon electrode (SPCE) to obtain three different SPCE-modified AuNRs (SPCE-A400, SPCE-A600, and SPCE-A800, respectively). All SPCE-modified AuNRs were then evaluated for their electrochemical behavior using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques and the highest electrochemical performance was shown as the order of magnitude of SPCE-A400 > SPCE-A600/SPCE-A800. The reason for the highest electrocatalytic activity of SPCE-A400 might be due to the smallest particle size and uniform distribution of AuNRs ∼ 2.2, which enhanced the charge transfer, thus providing the highest electroactive surface area (0.6685 cm2) compared to other electrodes. These results also confirm that the sensing mechanism for all SPCE-modified AuNRs is controlled by diffusion phenomena. In addition, the optimum pH was obtained as 4 for carbaryl detection for all SPCE-modified AuNRs with the highest current shown by SPCE-A400. Furthermore, SPCE-A400 has the highest fundamental parameters (surface coverage, catalytic rate constant, electron transfer rate constant, and adsorption capacity) for carbaryl detection, which were investigated using cyclic voltammetry and chronoamperometric techniques. The electroanalytical performances of all SPCE-modified AuNRs for carbaryl detection were also investigated with SPCE-A400 displaying the best performance among other electrodes in terms of its linearity (0.2-100 μM), limit of detection (LOD) ∼ 0.07 μM, and limit of quantification (LOQ) ∼ 0.2 μM. All SPCE-modified AuNRs were also subsequently evaluated for their stability, reproducibility, and selectivity in the presence of interfering species such as NaNO2, NH4NO3, Zn(CH3CO2)2, FeSO4, diazinon, and glucose and show reliable results as depicted from %RSD values less than 3%. At last, all SPCE-modified AuNRs have been employed for carbaryl detection using a standard addition technique in three different samples of vegetables (cabbage, cucumber, and Chinese cabbage) with its results (%recovery ≈ 100%) within the acceptable analytical range. In conclusion, this work demonstrates the great potential of a disposable device based on an AuNR-modified SPCE for rapid detection and high sensitivity in monitoring the concentration of carbaryl as a residual pesticide in vegetable samples.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Analytical
Chemistry Division, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical
Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University, Bogor 16680, Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research
and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South
Tangerang, Banten 15315, Indonesia
| | - Hemas Arif Rahman
- Analytical
Chemistry Division, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Tribidasari A. Ivandini
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Irkham
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Padjajaran, Bandung 45363, Indonesia
| | - Munawar Khalil
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Isnaini Rahmawati
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| |
Collapse
|
5
|
Adel Sayed M, Mohamed A, Ahmed SA, El-Sherbeeny AM, Al Zoubi W, Abukhadra MR. Advanced Equilibrium Studies for the Synergetic Impact of Polyaniline on the Adsorption of Rhodamine B Dye by Polyaniline/Coal Composite. ACS OMEGA 2023; 8:47210-47223. [PMID: 38107958 PMCID: PMC10720286 DOI: 10.1021/acsomega.3c07355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The synergetic improvement effect of the polyaniline (PANI) hybridization process on the adsorption of rhodamine B dye (RB) by PANI/coal hybrid material (PANI/C) has been evaluated using both traditional equilibrium modeling and advanced isotherm investigations. The composite was prepared by polymerizing polyaniline in the presence of coal fractions with a surface area of 27.7 m2/g. The PANI/C hybrid has an improved capacity to adsorb RB dye (423.5 mg/g) in comparison to coal particles (254.3 mg/g). The maintained increase in the elimination properties of PANI/C has been illustrated using the steric characteristics of active site density (Nm) as well as the total number of adsorbed RB on a single active site (n). However, the incorporation of PANI did not yield any substantial impact on the existing active sites' quantity, but the hybridization processes greatly influenced the selectivity and affinity of each active site, in addition to the aggregation characteristics of the dye as it interacts with the composite's surface. Whereas raw coal can only adsorb three molecules of RB, each active site throughout the PANI/C surface can adsorb approximately eight RB molecules. This is also evidence of RB dye adsorption in a vertical arrangement, which involves multimolecular processes. The Gaussian energy (4.01-5.59 kJ/mol) and adsorption energy (-4.34-4.68 kJ/mol) revealed the controllable impact of physical mechanisms. These mechanisms may include van der Waals forces, dipole-dipole interactions, and hydrogen bonds (<30 kJ/mol). The thermodynamic functions, such as enthalpy, internal energy, and entropy, that have been assessed provide evidence supporting the exothermic and spontaneous nature of the RB uptake processes by PANI/C.
Collapse
Affiliation(s)
- Mohamed Adel Sayed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, 62514 Beni Suef City, Egypt
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City, Egypt
| | - Abdelrahman Mohamed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, 62514 Beni Suef City, Egypt
| | - Sayed A. Ahmed
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, 62514 Beni Suef City, Egypt
- Basic
Science Department, Faculty of Engineering, Nahda University, Beni Suef 62764, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial
Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mostafa R. Abukhadra
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef City, Egypt
- Geology Department,
Faculty of Science, Beni-Suef University, Beni Suef62521, Egypt
| |
Collapse
|
6
|
El Sayed GA, Abukhadra MR, Mostafa SM, Rabia M, Korany MA, Khalil MM. A novel potentiometric sensor based on ZnO decorated polyaniline/coal nanocomposite for diltiazem determination. RSC Adv 2023; 13:34715-34723. [PMID: 38035231 PMCID: PMC10683044 DOI: 10.1039/d3ra06849h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Diltiazem (DTZ) is one of the most effective medications for treating cardiovascular diseases. It has been widely used for the treatment of angina pectoris, hypertension and some types of arrhythmia. The development and application of a modified carbon paste sensor with improved detection limits for the potentiometric determination of diltiazem are the main goals of the current study. Sensitivity, long-term stability, reproducibility and improving the electrochemical performance are among the characteristics that have undergone careful examination. A modified carbon paste sensor based on β-cyclodextrin (β-CD) as ionophore, a lipophilic anionic additive (NaTPB) and a ZnO-decorated polyaniline/coal nanocomposite (ZnO@PANI/C) dissolved in dibutyl phthalate plasticizer, exhibited the best performance and Nernstian slope. The ZnO@PANI/C based sensor succeeded in lowering the detection limit to 5.0 × 10-7 through the linear range 1.0 × 10-6 to 1.0 × 10-2 mol L-1 with fast response time ≤ 10.0 s. The prepared nanomaterial was characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The surface properties of the proposed sensor were characterized by electrochemical impedance spectroscopy (EIS). The selectivity behavior of the investigated sensor was tested against a drug with similar chemical structure and biologically important blood electrolytes (Na+, K+, Mg2+, and Ca2+). The proposed analytical method was applied for DTZ analysis in pure drug, pharmaceutical products and industrial water samples with excellent recovery data.
Collapse
Affiliation(s)
- G A El Sayed
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Mostafa R Abukhadra
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - S M Mostafa
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - M Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Mohamed Ali Korany
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - M M Khalil
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
7
|
Ji M, Zhong Y, Li M, Tan R, Hu Y, Li G. Determination of acetic acid in enzymes based on the cataluminescence activity of graphene oxide-supported carbon nanotubes coated with NiMn layered double hydroxides. Mikrochim Acta 2023; 190:231. [PMID: 37209139 DOI: 10.1007/s00604-023-05808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/22/2023]
Abstract
A cataluminescence (CTL) method has been developed for the rapid determination of acetic acid in enzyme products. The NiMn LDH/CNT/GO was synthesized based on the nanohybridization of NiMn layered double hydroxide (NiMn LDH), carbon nanotubes (CNTs), and graphene oxide (GO). The composite has excellent CTL activity against acetic acid. It could be ascribed to the larger specific surface area and more exposure to active sites. NiMn LDH/CNT/GO is used as a catalyst in the CTL method based on its special structure and advantages. There is a linear relationship between CTL response and the acetic acid concentration in the range 0.31-12.00 mg·L-1 with the detection limit of 0.10 mg·L-1. The developed method is rapid and takes only about 13 s. The method is applied to the determination of acetic acid in enzyme samples with little sample preparation. The result of the CTL method shows good agreement with that of the gas chromatography method. The proposed CTL method possesses promising potential in the quality monitoring of enzymes.
Collapse
Affiliation(s)
- Mengmeng Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongxia Tan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Le Nhat Trang N, Thi Nguyet Nga D, Tufa LT, Tran VT, Hung TT, Ngoc Phan V, Pham TN, Hoang VT, Le AT. Unveiling the effect of crystallinity and particle size of biogenic Ag/ZnO nanocomposites on the electrochemical sensing performance of carbaryl detection in agricultural products. RSC Adv 2023; 13:8753-8764. [PMID: 36936823 PMCID: PMC10016934 DOI: 10.1039/d3ra00399j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
In this study, bio-Ag/ZnO NCs were synthesized via a microwave-assisted biogenic electrochemical method using mangosteen (Garcinia mangostana) peel extract as a biogenic reducing agent for the reduction of Zn2+ and Ag+ ions to form hybrid nanoparticles. The as-synthesized NC samples at three different microwave irradiation temperatures (Z 70, Z 80, Z 90) exhibited a remarkable difference in size and crystallinity that directly impacted their electrocatalytic behaviors as well as electrochemical sensing performance. The obtained results indicate that the Z 90 sample showed the highest electrochemical performance among the investigated samples, which is attributed to the improved particle size distribution and crystal microstructure that enhanced charge transfer and the electroactive surface area. Under the optimal conditions for carbaryl pesticide detection, the proposed nanosensor exhibited a high electrochemical sensitivity of up to 0.303 μA μM-1 cm-2 with a detection limit of LOD ∼0.27 μM for carbaryl pesticide detection in a linear range of 0.25-100 μM. Overall, the present work suggests that bio-Ag/ZnO NCs are a potential candidate for the development of a high-performance electrochemical-based non-enzymatic nanosensor with rapid monitoring, cost-effectiveness, and eco-friendly to detect carbaryl pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Nguyen Le Nhat Trang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Lemma Teshome Tufa
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University Daejeon 34134 Republic of Korea
| | - Van Tan Tran
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University Hanoi 12116 Viet Nam
| | - Thuan-Tran Hung
- Center for Advanced Materials and Environmental Technology, National Center for Technological Progress Hanoi 12116 Viet Nam
| | - Vu Ngoc Phan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University Hanoi 12116 Viet Nam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Van-Tuan Hoang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering (MSE), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
9
|
Lv Y, Zhang Y, Yang Y, Li J, Wang J, Xiao X, Zhang M. Strategy of In Situ Electrochemical Regulation for Highly Enhanced Nonenzymatic Sensing of Carbaryl. Anal Chem 2023; 95:4015-4023. [PMID: 36802553 DOI: 10.1021/acs.analchem.2c04373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Specific and sensitive sensing of most pesticide residues relies on enzymes such as acetylcholinesterase and advanced materials, which need to be loaded on the surface of working electrodes, leading to instability, uneven surface, tedious process, and high cost. Meanwhile, employing certain potential or current in electrolyte solution could also modify the surface in situ and overcome these drawbacks. However, this method is only regarded as electrochemical activation widely applied in the pretreatment of electrodes. In this paper, by means of regulating the electrochemical technique and its parameters, we prepared a proper sensing interface and derivatized the carbaryl (a carbamate pesticide) hydrolyzed form (1-naphthol) to enhance sensing by 100 times within several minutes. After regulation I by chronopotentiometry with 0.2 mA for 20 s or chronoamperometry with 2 V for 10 s, abundant oxygen-containing groups form and the ordered carbon structure is destroyed. Sweeping from -0.5 to 0.9 V through cyclic voltammetry for only one segment, following regulation II, the composition of oxygen-containing groups changes and the disordered structure is alleviated. Finally, on the constructed sensing interface, test by regulation III through differential pulse voltammetry from 0.8 to -0.4 V, resulting in derivatization of 1-naphthol during 0.8-0 V, followed by electroreduction of the derivative at around -0.17 V. Compared with the electro-oxidation peak at 0.5 V in previous reports, it is essential to improve specificity, even toward several other carbamate pesticides with similar structures. Hence, the in situ electrochemical regulation strategy has demonstrated great potential for effective sensing of electroactive molecules.
Collapse
Affiliation(s)
- Yitao Lv
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yi Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yunyin Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Jingyan Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Jiacheng Wang
- Medical College, Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu 225009, China
| | - Xilin Xiao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Rachmawati A, Sanjaya AR, Putri YMTA, Gunlazuardi J, Ivandini TA. An acetylcholinesterase-based biosensor for isoprocarb using a gold nanoparticles-polyaniline modified graphite pencil electrode. ANAL SCI 2023; 39:911-923. [PMID: 36821076 DOI: 10.1007/s44211-023-00296-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
An analysis tool for isoprocarb has been successfully developed as a biosensor system based on enzymatic inhibition of acetylcholinesterase (AChE) by isoprocarb. A gold nanoparticles-polyaniline modified graphite pencil electrode (AuNPs-PANI-GPE) was utilized to detect the change of thiocholine in the presence of isoprocarb. This electrode was prepared by two cyclic voltammetry steps, including the electro-polymerization of aniline on a graphite pencil and the electro-deposition of gold nanoparticles on the polyaniline surface. Characterization performed by SEM-EDX indicates that 8-80 nm size of gold nanoparticles could be deposited on the surface of polyaniline-modified graphite pencil (PANI-GPE). Electrochemical characterization using cyclic voltammetry suggested that the active surface area of the prepared electrode was 0.17019 cm2, which was about 4 times higher than (PANI-GPE) and 13 times higher than the unmodified GPE. Furthermore, an oxidation peak of thiocholine could be observed at the modified GPE at a potential of + 0.675 V (vs. Ag/AgCl), formed by an enzymatic reaction of AChE in the presence of acetylthiocholine. This peak current was found to linearly increase with acetylthiocholine concentrations, while in the presence of isoprocarb in a constant concentration of AChE and acetylthiocholine the peak linearly decreases. At the optimum condition of 0.1 M phosphate buffer solution pH 7.4 containing 0.1 M KCl; 100 mU/ml AChE; and 1 mM acetylthiocholine chloride in an inhibition and contact time of 25 and 15 min, respectively, a linear calibration curve of isoprocarb in the concentration range of 0.05-1.0 μM could be provided. Estimated limits of detection and quantifications of 0.1615 nM and 0.5382 nM, respectively, with a sensitivity of 1.7771 μA/μM.mm2 could be achieved. Furthermore, an excellent stability for 8 times measurements was observed with an RSD of 4.87%, suggesting that the developed tool is promising for the real detection of isoprocarb.
Collapse
Affiliation(s)
- Anita Rachmawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Afiten Rahmin Sanjaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | | | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Tribidasari A Ivandini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| |
Collapse
|
11
|
A kind of new type photoresponsive molecularly imprinted electrochemical sensor based on 5-[(4-(methacryloyloxy)phenyl)diazenyla]isophthalic acid for the detection of carbaryl. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Yamuna A, Karikalan N, Na JH, Lee TY. Lanthanum tin oxide-modified sensor electrode for the rapid detection of environmentally hazardous insecticide carbaryl in soil, water, and vegetable samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129415. [PMID: 35752051 DOI: 10.1016/j.jhazmat.2022.129415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The growing population and global food demands have encouraged the use of pesticides to increase agricultural yields; however, the irrational use of pesticides threatens human health and the environment. Carbaryl (CRBL) is the most widespread insecticide and severely affects soil, water systems, and human health. Thus, it is crucial to monitor CRBL residues in the environment and vegetable samples. This study reports the rapid and sensitive electrochemical detection of CRBL based on a pyrochlore-type lanthanum tin oxide (LSO) nanoparticles (NPs)-modified screen-printed carbon electrode (SPCE). A low-temperature hydrothermal method was employed to prepare the LSO NPs. The structural properties of the LSO NPs were characterized by X-ray diffraction, Raman, and X-ray photoelectron spectroscopy analyses. The LSO NPs/SPCE demonstrated good electroanalytical performance for CRBL detection, with a low detection limit of 0.4 nM (0.08 µg/L) and a sensitivity of 1.05 µA/(µM cm2). Furthermore, the LSO NPs/SPCE exhibited high selectivity among highly interfering carbamate and organophosphorus pesticides, which share similar mechanisms of action. Additionally, the LSO NPs/SPCE sensor achieved > 90% recovery for the detection of CRBL in soil, water, and vegetable samples, thus verifying its suitability for the rapid detection of CRBL.
Collapse
Affiliation(s)
- Annamalai Yamuna
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Natarajan Karikalan
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jun-Hee Na
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, South Korea
| | - Tae Yoon Lee
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, South Korea; Department of Technology Education, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|