1
|
Li T, Zhang Y, Cheng W, Wang T, Hou S, Zhao S, Pan L, Chen M, Ding C, Liu Q. Advancements in DNAzyme-based biosensors for the detection of hazardous substances in foodstuff: current applications and future perspectives. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40188422 DOI: 10.1080/10408398.2025.2486268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
DNAzyme-based biosensors have emerged as a promising tool for ensuring food safety due to their high sensitivity, specificity, and potential for rapid, cost-effective detection of hazardous substances. These biosensors leverage DNAzymes-catalytically active DNA molecules-to detect a range of contaminants, including metal ions, fungal toxins, pesticides, and pathogens. While DNAzyme-based biosensors show significant advantages over conventional techniques, challenges such as nuclease degradation, interference from complex sample matrices, and the high costs associated with DNAzyme synthesis still hinder their widespread application. Recent advancements in the stability of DNAzymes, their immobilization strategies, and integration with nanomaterials are progressively addressing these limitations, enhancing the performance and reliability of DNAzyme-based sensors. This review highlights the structural and catalytic characteristics of DNAzymes, assesses their current applications in food safety, and discusses innovative strategies to overcome existing challenges. The continuous evolution of DNAzyme-based biosensors, particularly in design and device integration, holds great promise for their future role in routine, reliable food analysis.
Collapse
Affiliation(s)
- Taolin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Yijia Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Weiwei Cheng
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Tiantian Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Shuai Hou
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Siqi Zhao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
- National Engineering Research Center of Grain Storage and Logistics, Nanjing, China
| |
Collapse
|
2
|
Zhang Y, Xu S, Luo M, Chen J, Wang L, Yang F, Ye J, Liu J, He B, Weng L, Li S, Zhang D. Hairpin-Empowered Invasive Reaction Combined with Catalytic Hairpin Assembly Cascade Amplification for the Specific Detection of Single-Nucleotide Polymorphisms. Anal Chem 2024; 96:10283-10293. [PMID: 38864304 DOI: 10.1021/acs.analchem.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Single-nucleotide polymorphism (SNP) is widely used in the study of disease-related genes and in the genetic study of animal and plant strains. Therefore, SNP detection is crucial for biomedical diagnosis and treatment as well as for molecular design breeding of animals and plants. In this regard, this article describes a novel technique for detecting SNP using flap endonuclease 1 (FEN 1) as a specific recognition element and catalytic hairpin assembly (CHA) cascade reaction as a signal amplification strategy. The mutant target (MT) was hybridized with a biotin-modified upstream probe and hairpin-type downstream probe (DP) to form a specific three-base overlapping structure. Then, FEN 1 was employed for three-base overlapping structure-specific recognition, namely, the precise SNP site identification and the 5' flap of DP dissociation. After dissociation, the hybridized probes were magnetically separated by a streptavidin-biotin complex. Especially, the ability to establish such a hairpin-type DP provided a powerful tool that could be used to hide the cut sequence (CS) and avoid false-positive signals. The cleaved CS initiated the CHA reaction and allowed superior fluorescence signal generation. Owing to the high specificity of FEN 1 for single base recognition, only the MT could be distinguished from the wild-type target and mismatched DNA. Owing to the dual signal amplification, as low as 0.36 fM MT and 1% mutation abundance from the mixtures could be detected, respectively. Furthermore, it could accurately identify SNPs from human cancer cells, as well as soybean leaf genome extracts. This strategy paves the way for the development of more precise and sensitive tools for diagnosing early onset diseases as well as molecular design breeding tools.
Collapse
Affiliation(s)
- Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Ma Luo
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Lanyue Wang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Fang Yang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jing Ye
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Jichong Liu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Bingxiao He
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
3
|
Li R, He M, Cui Y, Ji X, Zhang L, Lan X, Wang L, Han Z, Xiao H. Silver-palladium bimetallic nanoparticles stabilized by elm pod polysaccharide with peroxidase-like properties for glutathione detection and photothermal anti-tumor ability. Int J Biol Macromol 2024; 264:130673. [PMID: 38458290 DOI: 10.1016/j.ijbiomac.2024.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Noble metal nanoparticles show good application prospects in biosensors and anti-tumor drug research. Herein, the near-spherical silver‑palladium bimetallic nanoparticles supported by elm pod polysaccharide (EPP-AgPd1.5 NPs) were prepared by using the elm pod polysaccharide (EPP). EPP acts as a stabilizer and reducing agent due to its water solubility and weak reducing ability. The particle size of EPP-AgPd1.5 NPs was 33.6 ± 5.5 nm. In addition, EPP-AgPd1.5 NPs had peroxidase-like activity to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB by catalyzing H2O2 to OH. Based on the peroxidase-like activity of EPP-AgPd1.5 NPs, a method for detecting glutathione was established, and the detection limit and linear range of glutathione concentration were 0.279 μM and 0-400 μM, respectively. More importantly, the photothermal conversion efficiency of EPP-AgPd1.5 NPs reached 39.7 %, and their inhibition rate in HeLa cells reached 69.9 %. Silver‑palladium bimetallic nanoparticles stabilized by EPP had good performance in glutathione detection and anti-tumor drugs.
Collapse
Affiliation(s)
- Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Mengmeng He
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yanshuai Cui
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Xianbing Ji
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Lu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Xifan Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Zengsheng Han
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Haiyan Xiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Yang N, Ding N, Qi S, Shang Z, Ma P, Khan IM, Wang Z, Xia Y, Zhang Y, Zhang L. High-affinity truncated aptamers for detection of Cronobacter spp with magnetic separation-assisted DNAzyme-driven 3D DNA walker. Mikrochim Acta 2024; 191:130. [PMID: 38351361 DOI: 10.1007/s00604-024-06199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024]
Abstract
After optimizing the original aptamer sequence by truncation strategy, a magnetic separation-assisted DNAzyme-driven 3D DNA walker fluorescent aptasensor was developed for detecting the food-borne pathogen Cronobacter species. Iron oxide magnetic nanoparticles (MNPs) modified with a hybrid of truncated aptamer probe and DNAzyme strand (AP-E1) denoted as MNPs@AP-E1, were employed as capture probes. Simultaneously, a DNAzyme-driven 3D-DNA walker was utilized as the signal amplification element. The substrate strand (Sub) was conjugated with the gold nanoparticles (AuNPs), resulting in the formation of AuNPs@Sub, which served as a 3D walking track. In the presence of the target bacteria and Mg2+, E1-DNAzyme was activated and moved along AuNPs@Sub, continuously releasing the signal probe. Under optimized conditions, a strong linear correlation was observed for Cronobacter sakazakii (C. sakazakii) in the concentration range 101 to 106 CFU mL-1, with a low detection limit of 2 CFU mL-1. The fluorescence signal responses for different Cronobacter species exhibited insignificant differences, with a relative standard deviation of 3.6%. Moreover, the aptasensor was successfully applied to determine C. sakazakii in real samples with recoveries of 92.86%-108.33%. Therefore, the novel method could be a good candidate for ultra-sensitive and selective detection of Cronobacter species without complex manipulation.
Collapse
Affiliation(s)
- Ningru Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zixuan Shang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Pengfei Ma
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
- College of Ocean Food and Biological Engineering, Jimmie University, Jimei University, Jimei District, Xiamen City, 361021, Fujian Province, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
| | - Yu Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Lili Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|