1
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
2
|
Huo J, Dong W, Xu J, Ma L, You C. Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in autophagy activation following subarachnoid hemorrhage. Exp Neurol 2024; 371:114577. [PMID: 37863305 DOI: 10.1016/j.expneurol.2023.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Early brain injury (EBI) refers to a severe brain injury that occurs within hours to days after subarachnoid hemorrhage (SAH). Neuronal damage in EBI is considered a key factor leading to poor prognosis. Currently, our understanding of the mechanisms of neuronal damage, such as neuronal autophagy, is still incomplete. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in metabolism and plays an important role in autophagy. Based on this, this study will further explore the regulation of autophagy by GAPDH after SAH, which may provide a new treatment strategy for improving the prognosis of SAH patients. METHODS The rat SAH model was established by endovascular puncturing, and the trend of autophagy in hippocampal neurons at different time points was discussed. Additionally, an in vitro SAH model was created using the oxygenated hemoglobin and hippocampal neuronal HT22 cell line. Through siRNA and overexpression adenovirus techniques, we further investigated the relationship between the key enzyme GAPDH and autophagy in the in vitro SAH model. RESULTS We observed significant neuronal damage in the hippocampus 24 h after SAH, and the proteomics showed significant enrichment of autophagy-related pathways at this time point. Further studies showed that the expression of LC3 and Beclin1 peaked at 24 h, and the nuclear translocation of GAPDH occurred simultaneously with SAH-induced neuronal autophagy. Our in vitro SAH model confirmed the role of GAPDH in regulating the level of autophagy in HT22 cells. Knockdown of GAPDH significantly reduced the level of autophagy, while overexpression of GAPDH increased the level of autophagy. CONCLUSION This study shows the trend of autophagy in hippocampal neurons after SAH, and reveals the regulatory role of GAPDH in SAH-induced autophagy. However, further studies are needed to reveal the exact mechanism of GAPDH in the nuclear translocation regulation of autophagy and validate in animal models.
Collapse
Affiliation(s)
- Junfeng Huo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Wei Dong
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiake Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
El-Latif AMA, Rabie MA, Sayed RH, Fattah MAAE, Kenawy SA. Inosine attenuates rotenone-induced Parkinson's disease in rats by alleviating the imbalance between autophagy and apoptosis. Drug Dev Res 2023; 84:1159-1174. [PMID: 37170799 DOI: 10.1002/ddr.22077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Growing evidence points to impaired autophagy as one of the major factors implicated in the pathophysiology of Parkinson's disease (PD). Autophagy is a downstream target of adenosine monophosphate-activated protein kinase (AMPK). Inosine has already demonstrated a neuroprotective effect against neuronal loss in neurodegenerative diseases, mainly due its anti-inflammatory and antioxidant properties. We, herein, aimed at investigating the neuroprotective effects of inosine against rotenone-induced PD in rats and to focus on the activation of AMPK-mediated autophagy. Inosine successfully increased p-AMPK/AMPK ratio in PD rats and improved their motor performance and muscular co-ordination (assessed by rotarod, open field, and grip strength tests, as well as by manual gait analysis). Furthermore, inosine was able to mitigate the rotenone-induced histopathological alterations and to restore the tyrosine hydroxylase immunoreactivity in PD rats' substantia nigra. Inosine-induced AMPK activation resulted in an autophagy enhancement, as demonstrated by the increased striatal Unc-S1-like kinase1 and beclin-1 expression, and also by the increment light chain 3II to light chain 3I ratio, along with the decline in striatal mammalian target of rapamycin and p62 protein expressions. The inosine-induced stimulation of AMPK also attenuated neuronal apoptosis and promoted antioxidant activity. Unsurprisingly, these neuroprotective effects were antagonized by a preadministration of dorsomorphin (an AMPK inhibitor). In conclusion, inosine exerted neuroprotective effects against the rotenone-induced neuronal loss via an AMPK activation and through the restoration of the imbalance between autophagy and apoptosis. These findings support potential application of inosine in PD treatment.
Collapse
Affiliation(s)
- Aya M Abd El-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Zhou Z, Liu Z, Zhang C, Zhang W, Zhang C, Chen T, Wang Y. Mild hypothermia alleviates early brain injury after subarachnoid hemorrhage via suppressing pyroptosis through AMPK/NLRP3 inflammasome pathway in rats. Brain Res Bull 2023; 193:72-83. [PMID: 36535306 DOI: 10.1016/j.brainresbull.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
As a subtype of stroke, subarachnoid hemorrhage (SAH) has a notoriously high rate of disability and mortality owing to the lack of effective intervention. Early brain injury (EBI) is the main factor responsible for the dismal prognosis of SAH patients. The current study intends to explore the molecular mechanism underlying the effect of MH on EBI after SAH from a novel perspective of pyroptosis, a highly specific inflammatory programmed cell death, in the SAH rat model. Sprague-Dawley (SD) rats were divided into different groups in accordance with various treatments. In the treatment group, the rats underwent mild hypothermia for 4 h after modeling; in the inhibitor group, Compound C (an inhibitor of AMPK) was administered intravenous injections (i.v.) 30 min before modeling. Neurological score, neuronal death, brain water content, inflammatory reaction, and expression levels of pyroptosis-related proteins were evaluated in the rats. Our results indicate that the MH therapy significantly increased the neurological score and assuaged brain edema, neuronal injury, and inflammatory reaction induced by SAH. Meanwhile, MH therapy upregulated the level of AMPK phosphorylation whereas downregulated the protein expressions of NLRP3, ASC, cleaved caspase-1, GSDMD, IL-1β, and IL-18. The reversed effect of MH therapy by Compound C concretely indicated that MH therapy inhibited pyroptosis through an AMPK-dependent pathway. Our study also found that MH therapy potently curbed the increasing trend of brain temperature (BT), rectal temperature (RT), and ICP after SAH. Taken together, our data indicate that the neuroprotective effects of MH therapy were manifested by inhibiting pyroptosis via the AMPK/NLRP3 inflammasome pathway, which may serve as a promising therapy for the intervention of SAH.
Collapse
Affiliation(s)
- Zhaopeng Zhou
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Zhuanghua Liu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Chenxu Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wang Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Chunlei Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| |
Collapse
|
5
|
Makowska M, Smolarz B, Romanowicz H. microRNAs in Subarachnoid Hemorrhage (Review of Literature). J Clin Med 2022; 11:jcm11154630. [PMID: 35956244 PMCID: PMC9369929 DOI: 10.3390/jcm11154630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, many studies have shown that microRNAs (miRNAs) in extracellular bioliquids are strongly associated with subarachnoid hemorrhage (SAH) and its complications. The article presents issues related to the occurrence of subarachnoid hemorrhage (epidemiology, symptoms, differential diagnosis, examination, and treatment of the patient) and a review of current research on the correlation between miRNAs and the complications of SAH. The potential use of miRNAs as biomarkers in the treatment of SAH is presented.
Collapse
Affiliation(s)
- Marianna Makowska
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
- Correspondence: ; Tel.: +48-42-271-12-90
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
6
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Xie Z, Enkhjargal B, Nathanael M, Wu L, Zhu Q, Zhang T, Tang J, Zhang JH. Exendin-4 Preserves Blood-Brain Barrier Integrity via Glucagon-Like Peptide 1 Receptor/Activated Protein Kinase-Dependent Nuclear Factor-Kappa B/Matrix Metalloproteinase-9 Inhibition After Subarachnoid Hemorrhage in Rat. Front Mol Neurosci 2022; 14:750726. [PMID: 35002615 PMCID: PMC8733623 DOI: 10.3389/fnmol.2021.750726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
In this study, we investigated the role of Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, in blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH) in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats. Ex-4 was intraperitoneally injected 1 h after SAH induction. To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and Dorsomorphin, a specific inhibitor of adenosine monophosphate-activated protein kinase (AMPK), were intracerebroventricularly injected 48 h before induction of SAH correspondingly. Immunofluorescence results supported GLP-1R expressed on the endothelial cells of microvessels in the brain after SAH. Administration of Ex-4 significantly reduced brain water content and Evans blue extravasation in both hemispheres, which improved neurological scores at 24 h after SAH. In the mechanism study, Ex-4 treatment significantly increased the expression of GLP-1R, p-AMPK, IκB-α, Occludin, and Claudin-5, while the expression of p-nuclear factor-kappa B (NF-κB) p65, matrix metalloproteinase-9 (MMP-9), and albumin was significantly decreased. The effects of Ex-4 were reversed by the intervention of GLP-1R siRNA or Dorsomorphin, respectively. In conclusion, Ex-4 could preserve the BBB integrity through GLP-1R/AMPK-dependent NF-κB/MMP-9 inhibition after SAH, which should be further investigated as a potential therapeutic target in SAH.
Collapse
Affiliation(s)
- Zhiyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Matei Nathanael
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Lingyun Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
8
|
Gareev I, Beylerli O, Yang G, Izmailov A, Shi H, Sun J, Zhao B, Liu B, Zhao S. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms. Neurosurg Rev 2020; 44:2025-2039. [PMID: 33094424 DOI: 10.1007/s10143-020-01427-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Intracranial aneurysm (IA) is an abnormal focal dilation of an artery in the brain that results from a weakening of the inner muscular layer of a blood vessel wall. IAs represent the most common etiology of nontraumatic subarachnoid hemorrhage (SAH). Despite technological advances in the treatment and use of new diagnostic methods for IAs, they continue to pose a significant risk of mortality and disability. Thus, early recognition of IA with a high risk of rupture is crucial for the stratification of patients with such a formidable disease. MicroRNAs (miRNA) are endogenous noncoding RNAs of 18-22 nucleotides that regulate gene expression at the post-transcriptional level through interaction with 3'-untranslated regions (3'UTRs) of the target mRNAs. MiRNAs are involved in the pathogenesis of IAs, including in the mechanisms of formation, growth, and rupture. It is known that in many biological fluids of the human body, such as blood or cerebrospinal fluid (CSF), numerous miRNAs, called circulating miRNAs, have been detected. The expression profile of circulating miRNAs represents a certain part of the cells in which they are modified and secreted in accordance with the physiological or pathological conditions of these cells. Circulating miRNAs can be secreted from cells into human biological fluids in extracellular vesicles or can be bound to Ago2 protein, which makes them resistant to the effects of RNAse. Therefore, circulating miRNAs are considered as new potential biomarkers of interest in many diseases, including IA.
Collapse
Affiliation(s)
| | | | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| | - Adel Izmailov
- Republican Clinical Oncological Dispensary, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Binbing Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China.
- Institute of Brain Science, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Ezetimibe Attenuates Oxidative Stress and Neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4717258. [PMID: 31998437 PMCID: PMC6964721 DOI: 10.1155/2020/4717258] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 12/05/2022]
Abstract
Oxidative stress and neuroinflammation play essential roles in ischemic stroke-induced brain injury. Previous studies have reported that Ezetimibe (Eze) exerts antioxidative stress and anti-inflammatory properties in hepatocytes. In the present study, we investigated the effects of Eze on oxidative stress and neuroinflammation in a rat middle cerebral artery occlusion (MCAO) model. One hundred and ninety-eight male Sprague-Dawley rats were used. Animals assigned to MCAO were given either Eze or its control. To explore the downstream signaling of Eze, the following interventions were given: AMPK inhibitor dorsomorphin and nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA. Intranasal administration of Eze, 1 h post-MCAO, further increased the endogenous p-AMPK expression, reducing brain infarction, neurologic deficits, neutrophil infiltration, microglia/macrophage activation, number of dihydroethidium- (DHE-) positive cells, and malonaldehyde (MDA) levels. Specifically, treatment with Eze increased the expression of p-AMPK, Nrf2, and HO-1; Romo-1, thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), Cleaved Caspase-1, and IL-1β were reduced. Dorsomorphin and Nrf2 siRNA reversed the protective effects of Eze. In summary, Eze decreases oxidative stress and subsequent neuroinflammation via activation of the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Therefore, Eze may be a potential therapeutic approach for ischemic stroke patients.
Collapse
|
10
|
Xu W, Li T, Gao L, Zheng J, Yan J, Zhang J, Shao A. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J Neuroinflammation 2019; 16:247. [PMID: 31791369 PMCID: PMC6889224 DOI: 10.1186/s12974-019-1620-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Neuroinflammation and oxidative stress play important roles in early brain injury following subarachnoid hemorrhage (SAH). This study is the first to show that activation of apelin receptor (APJ) by apelin-13 could reduce endoplasmic reticulum (ER)-stress-associated inflammation and oxidative stress after SAH. Methods Apelin-13, apelin siRNA, APJ siRNA, and adenosine monophosphate-activated protein kinase (AMPK) inhibitor-dorsomorphin were used to investigate if the activation of APJ could provide neuroprotective effects after SAH. Brain water content, neurological functions, blood-brain barrier (BBB) integrity, and inflammatory molecules were evaluated at 24 h after SAH. Western blotting and immunofluorescence staining were applied to assess the expression of target proteins. Results The results showed that endogenous apelin, APJ, and p-AMPK levels were significantly increased and peaked in the brain 24 h after SAH. In addition, administration of exogenous apelin-13 significantly alleviated neurological functions, attenuated brain edema, preserved BBB integrity, and also improved long-term spatial learning and memory abilities after SAH. The underlying mechanism of the neuroprotective effects of apelin-13 is that it suppresses microglia activation, prevents ER stress from overactivation, and reduces the levels of thioredoxin-interacting protein (TXNIP), NOD-like receptor pyrin domain-containing 3 protein (NLRP3), Bip, cleaved caspase-1, IL-1β, TNFα, myeloperoxidase (MPO), and reactive oxygen species (ROS). Furthermore, the use of APJ siRNA and dorsomorphin abolished the neuroprotective effects of apelin-13 on neuroinflammation and oxidative stress. Conclusions Exogenous apelin-13 binding to APJ attenuates early brain injury by reducing ER stress-mediated oxidative stress and neuroinflammation, which is at least partly mediated by the AMPK/TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China. .,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
11
|
Huang J, Liu W, Doycheva DM, Gamdzyk M, Lu W, Tang J, Zhang JH. Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-1α/AMPK/Sirt1/PGC-1α/UCP2 pathway in a rat model of neonatal HIE. Free Radic Biol Med 2019; 141:322-337. [PMID: 31279091 PMCID: PMC6718314 DOI: 10.1016/j.freeradbiomed.2019.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/26/2022]
Abstract
Neuronal apoptosis induced by oxidative stress is one of the major pathological processes involved in neurological impairment after hypoxic-ischemic encephalopathy (HIE). Ghrelin, the unique endogenous ligand for the growth hormone secretagogue receptor-1α (GHSR-1α), could take an anti-apoptotic role in the brain. However, whether ghrelin can attenuate neuronal apoptosis by attenuating oxidative stress after hypoxia-ischemia (HI) insult remains unknown. To investigate the beneficial effects of ghrelin on oxidative stress injury and neuronal apoptosis induced by HI, ten-day old unsexed rat pups were subjected to HI injury and exogenous recombinant human ghrelin(rh-Ghrelin) was administered intranasally at 1 h and 24 h after HI induction. [D-Lys3]-GHRP-6, a selective inhibitor of GHSR-1α and Ex527, a selective inhibitor of GHSR-1α were administered intranasally at 1 h before HI induction respectively. Small interfering ribonucleic acid (siRNA) for GHSR-1α were administered by intracerebroventricular (i.c.v) injection at 24 h before HI induction. Neurological tests, immunofluorescence, MitoSox staining, Fluoro-Jade C staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blot experiments were performed. Our results indicated that ghrelin significantly improved neurobehavioral outcomes and reduced oxidative stress and neuronal apoptosis. Moreover, ghrelin treatment significantly promoted phosphorylation of AMPK, upregulated the expression of Sirt1, PGC-1α, UCP2 and the ratio of Bcl2/Bax, while it downregulated cleaved caspase-3 levels. The protective effects of ghrelin were reversed by [D-Lys3]-GHRP-6, GHSR-1α siRNA or Ex527. In conclusion, our data demonstrated that ghrelin reduced oxidative stress injury and neuronal apoptosis which was in part via the GHSR-1α/AMPK/Sirt1/PGC-1α/UCP2 signalling pathway after HI. Ghrelin may be a novel therapeutic target for treatment after neonatasl HI injury.
Collapse
Affiliation(s)
- Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wei Liu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
12
|
Yang R, Wang H, Wen J, Ma K, Chen D, Chen Z, Huang C. Regulation of microglial process elongation, a featured characteristic of microglial plasticity. Pharmacol Res 2018; 139:286-297. [PMID: 30476531 DOI: 10.1016/j.phrs.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/08/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Microglia, a type of glia within the brain characterized by a ramified morphology, are essential for removing neuronal debris and restricting the expansion of a lesion site. Upon moderate activation, they undergo a transformation in morphology inducing beneficial responses. However, upon strong stimulation, they mediate neuronal damage via production of pro-inflammatory cytokines. The inhibition of this cascade is considered an effective strategy for neuroinflammation-associated disorder therapy. During this pathological activation microglia also undergo a shortening of process length which contributes to the pathogenesis of such disorders. Thus, microglial plasticity should be considered to have two components: one is the production of inflammatory mediators, and the other is the dynamic changes in their processes. The former role has been well-documented in previous studies, while the latter one remains largely unknown. Recently, we and others have reported that the elongation of microglial process is associated with the transformation of microglia from a pro-inflammatory to an anti-inflammatory state, suggesting that the shortening of process length would make the microglia lose their ability to restrict pathological injury, while the elongation of microglial process would help attenuate neuroinflammation. Compared with the traditional anti-neuroinflammatory strategy, stimulating elongation of microglial process not only reduces the production of pro-inflammatory cytokines, but restores the ability of microglia to scan their surrounding environments, thus rendering their homeostasis regulation more effective. In this review, we provide a discussion of the factors that regulate microglial process elongation in vitro and in vivo, aiming to further drive the understanding of microglial process plasticity.
Collapse
Affiliation(s)
- Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854, NJ, United States
| | - Jie Wen
- Beijing Allwegene Health, B-607 Wanlin Technology Mansion, 8 Malianwa North Road, Beijing 100094, China
| | - Kai Ma
- Probiotics Australia, 24-30 Blanck Street, Ormeau, QLD, 4208, Australia
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
13
|
Yu J, Li X, Matei N, McBride D, Tang J, Yan M, Zhang JH. Ezetimibe, a NPC1L1 inhibitor, attenuates neuronal apoptosis through AMPK dependent autophagy activation after MCAO in rats. Exp Neurol 2018; 307:12-23. [PMID: 29852178 DOI: 10.1016/j.expneurol.2018.05.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 12/25/2022]
Abstract
Autophagy activation exerts neuroprotective effects in the ischemic stroke model. Ezetimibe (Eze), a Niemann-Pick disease type C1-Like 1 (NPC1L1) pharmacological inhibitor, has been reported to protect hepatocytes from apoptosis via autophagy activation. In this study, we explored whether Eze could attenuate neuronal apoptosis in the rat model of middle cerebral artery occlusion (MCAO), specifically via activation of the AMPK/ULK1/autophagy pathway. Two hundred and one male Sprague-Dawley rats were subjected to transient MCAO followed by reperfusion. Eze was administered 1 h after MCAO. To elucidate the underlying molecular mechanism, Dorsomorphin, a selective AMPK inhibitor, and 3-methyladenine (3-MA), an autophagy inhibitor, were injected intracerebroventricularly before MCAO. Infarct volume, neurological score, brain cholesterol levels, immunofluorescence staining, Western blot, and Fluoro-Jade C (FJC) staining were used to evaluate the effects of Eze. The endogenous NPC1L1 expression increased and mainly expressed in neurons after MCAO. Intranasal administration of Eze reduced brain infarct volume at 24 and 72 h after MCAO, with improved short and long-term neurological functions after MCAO. Eze reduced brain cholesterol levels (total cholesterol, free cholesterol and cholesteryl esters) and the number of FJC-positive neurons. The expression of phosphorylated AMPK (p-AMPK) and downstream ULK1, Beclin1, LC3BII, Bcl-2, and Bcl-xl increased, while P62 and proapoptotic Bax decreased after treatment with Eze. Pretreatment with Dorsomorphin and 3-MA reversed the beneficial effects of Eze. These findings suggest that intranasal administration of Eze plays neuroprotective role through autophagy activation after MCAO in rats. Lowered cholesterol levels and AMPK activation may act in conjunction to induce autophagy after treatment with Eze. Eze merits further investigation as a potential therapeutic agent in ischemic stroke patients.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Devin McBride
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA; The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiping Tang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.
| | - John H Zhang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
14
|
Zhu J, Liu K, Huang K, Gu Y, Hu Y, Pan S, Ji Z. Metformin Improves Neurologic Outcome Via AMP-Activated Protein Kinase-Mediated Autophagy Activation in a Rat Model of Cardiac Arrest and Resuscitation. J Am Heart Assoc 2018; 7:e008389. [PMID: 29895585 PMCID: PMC6220525 DOI: 10.1161/jaha.117.008389] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sudden cardiac arrest (CA) often results in severe injury to the brain, and neuroprotection after CA has proved to be difficult to achieve. Herein, we sought to investigate the effects of metformin pretreatment on brain injury secondary to CA and cardiopulmonary resuscitation. METHODS AND RESULTS Rats were subjected to 9-minute asphyxial CA after receiving daily metformin treatment for 2 weeks. Survival rate, neurologic deficit scores, neuronal loss, AMP-activated protein kinase (AMPK), and autophagy activation were assessed at indicated time points within the first 7 days after return of spontaneous circulation. Our results showed that metformin pretreatment elevated the 7-day survival rate from 55% to 85% and significantly reduced neurologic deficit scores. Moreover, metformin ameliorated CA-induced neuronal degeneration and glial activation in the hippocampal CA1 region, which was accompanied by augmented AMPK phosphorylation and autophagy activation in affected neuronal tissue. Inhibition of AMPK or autophagy with pharmacological inhibitors abolished metformin-afforded neuroprotection, and augmented autophagy induction by metformin treatment appeared downstream of AMPK activation. CONCLUSIONS Taken together, our data demonstrate, for the first time, that metformin confers neuroprotection against ischemic brain injury after CA/cardiopulmonary resuscitation by augmenting AMPK-dependent autophagy activation.
Collapse
Affiliation(s)
- Juan Zhu
- Department of Neurology, Nanfang Hospital Southern Medical University, Guangdong, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital Southern Medical University, Guangdong, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital Southern Medical University, Guangdong, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital Southern Medical University, Guangdong, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital Southern Medical University, Guangdong, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital Southern Medical University, Guangdong, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital Southern Medical University, Guangdong, China
| |
Collapse
|
15
|
Zhang L, Wang H. Autophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. Front Mol Neurosci 2018; 11:190. [PMID: 29922127 PMCID: PMC5996030 DOI: 10.3389/fnmol.2018.00190] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most devastating forms of brain injury. Many pathological mechanisms such as oxidative stress, apoptosis and inflammation all contribute to the secondary brain damage and poor outcomes of TBI. Current therapies are often ineffective and poorly tolerated, which drive the explore of new therapeutic targets for TBI. Autophagy is a highly conserved intracellular mechanism during evolution. It plays an important role in elimination abnormal intracellular proteins or organelles to maintain cell stability. Besides, autophagy has been researched in various models including TBI. Previous studies have deciphered that regulation of autophagy by different molecules and pathways could exhibit anti-oxidative stress, anti-apoptosis and anti-inflammation effects in TBI. Hence, autophagy is a promising target for further therapeutic development in TBI. The present review provides an overview of current knowledge about the mechanism of autophagy, the frequently used methods to monitor autophagy, the functions of autophagy in TBI as well as its potential molecular mechanisms based on the pharmacological regulation of autophagy.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Chen S, Zhao L, Sherchan P, Ding Y, Yu J, Nowrangi D, Tang J, Xia Y, Zhang JH. Activation of melanocortin receptor 4 with RO27-3225 attenuates neuroinflammation through AMPK/JNK/p38 MAPK pathway after intracerebral hemorrhage in mice. J Neuroinflammation 2018; 15:106. [PMID: 29642894 PMCID: PMC5896146 DOI: 10.1186/s12974-018-1140-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neuroinflammation plays an important role in the pathogenesis of intracerebral hemorrhage (ICH)-induced secondary brain injury. Activation of melanocortin receptor 4 (MC4R) has been shown to elicit anti-inflammatory effects in many diseases. The objective of this study was to explore the role of MC4R activation on neuroinflammation in a mouse ICH model and to investigate the contribution of adenosine monophosphate-activated protein kinase (AMPK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway in MC4R-mediated protection. Methods Adult male CD1 mice (n = 189) were subjected to intrastriatal injection of bacterial collagenase or sham surgery. The selective MC4R agonist RO27-3225 was administered by intraperitoneal injection at 1 h after collagenase injection. The specific MC4R antagonist HS024 and selective AMPK inhibitor dorsomorphin were administered prior to RO27-3225 treatment to elucidate potential mechanism. Short- and long-term neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. Results The expression of MC4R and p-AMPK increased after ICH with a peak at 24 h. MC4R was expressed by microglia, neurons, and astrocytes. Activation of MC4R with RO27-3225 improved the neurobehavioral functions, decreased brain edema, and suppressed microglia/macrophage activation and neutrophil infiltration after ICH. RO27-3225 administration increased the expression of MC4R and p-AMPK while decreasing p-JNK, p-p38 MAPK, TNF-α, and IL-1β expression, which was reversed with inhibition of MC4R and AMPK. Conclusions Our study demonstrated that activation of MC4R with RO27-3225 attenuated neuroinflammation through AMPK-dependent inhibition of JNK and p38 MAPK signaling pathway, thereby reducing brain edema and improving neurobehavioral functions after experimental ICH in mice. Therefore, the activation of MC4R with RO27-3225 may be a potential therapeutic approach for ICH management. Electronic supplementary material The online version of this article (10.1186/s12974-018-1140-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China.,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Lianhua Zhao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.,Department of Neurology, Tianjin TEDA Hospital, Tianjin, 300457, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jing Yu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Derek Nowrangi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| |
Collapse
|
17
|
Cui Y, Liu X, Li X, Yang H. In-Depth Proteomic Analysis of the Hippocampus in a Rat Model after Cerebral Ischaemic Injury and Repair by Danhong Injection (DHI). Int J Mol Sci 2017; 18:ijms18071355. [PMID: 28672812 PMCID: PMC5535848 DOI: 10.3390/ijms18071355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
Stroke is the second most common cause of death worldwide. A systematic description and characterization of the strokes and the effects induced in the hippocampus have not been performed so far. Here, we analysed the protein expression in the hippocampus 24 h after cerebral ischaemic injury and repair. Drug intervention using Danhong injection (DHI), which has been reported to have good therapeutic effects in a clinical setting, was selected for our study of cerebral ischaemia repair in rat models. A larger proteome dataset and total 4091 unique proteins were confidently identified in three biological replicates by combining tissue extraction for rat hippocampus and LC-MS/MS analysis. A label-free approach was then used to quantify the differences among the four experimental groups (Naive, Sham, middle cerebral artery occlusion (MCAO) and MCAO + DHI groups) and showed that about 2500 proteins on average were quantified in each of the experiment group. Bioinformatics analysis revealed that in total 280 unique proteins identified above were differentially expressed (P < 0.05). By combining the subcellular localization, hierarchical clustering and pathway information with the results from injury and repair phase, 12 significant expressed proteins were chosen and verified with respect to their potential as candidates for cerebral ischaemic injury by Western blot. The primary three signalling pathways of the candidates related may be involved in molecular mechanisms related to cerebral ischaemic injury. In addition, a glycogen synthase kinase-3β (Gsk-3β) inhibitor of the candidates with the best corresponding expression trends between western blotting (WB) and label-free quantitative results were chosen for further validation. The results of Western blot analysis of protein expression and 2,3,5- chloride three phenyl tetrazole (TTC) staining of rat brains showed that DHI treatment and Gsk-3β inhibitor are both able to confer protection against ischaemic injury in rat MCAO model. The observations of the present study provide a novel understanding regarding the regulatory mechanism of cerebral ischaemic injury.
Collapse
Affiliation(s)
- Yiran Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| | - Xin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| |
Collapse
|
18
|
Li D, Luo L, Xu M, Wu J, Chen L, Li J, Liu Z, Lu G, Wang Y, Qiao L. AMPK activates FOXO3a and promotes neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia. Brain Res Bull 2017; 132:1-9. [PMID: 28499802 DOI: 10.1016/j.brainresbull.2017.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/29/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key metabolic and stress sensor/effector. Few investigations have been performed to study the role of AMPK in developing rat brain with hypoxia-ischemia (HI). Forkhead transcriptional factor (FOXO3a) has been revealed to be a critical effector of AMPK-mediated celluar apoptosis. However, it is not clear whether AMPK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after HI. In this study, we generated hypoxia-ischemia brain damage (HIBD) model using postnatal day 7 rats. We found that activation of AMPK was accompanied by the decrease of p-mTOR, p-Akt and p-FOXO3a, which induced FOXO3a translocation into the nucleus and up-regulated the expression of Bim and cleaved caspase 3 (CC3). Furthermore, we discovered that AMPK inhibition by Compound C, a selective inhibitor for AMPK activity, significantly increased the phosphorylation levels of mTOR, Akt and FOXO3a, attenuated the nuclear translocation of FOXO3a, and inhibited Bim and CC3 expression after HI. Moreover, AMPK inhibition reduced cellular apoptosis, attenuated brain infarct volume and promoted neurological recovery in the developing rat brain after HI. Our findings suggest that AMPK participates in the regulation of FOXO3a-mediated neuronal apoptosis in the developing rat brain after HI. Agents targeting AMPK may offer promise for rescuing neurons from HI-induced damage.
Collapse
Affiliation(s)
- Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Lili Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Jinlin Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Lina Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Zhongqiang Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Guoyan Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Yang Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China
| | - Lina Qiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu,Sichuan 610041, China.
| |
Collapse
|
19
|
Wu Y, Ma S, Xia Y, Lu Y, Xiao S, Cao Y, Zhuang S, Tan X, Fu Q, Xie L, Li Z, Yuan Z. Loss of GCN5 leads to increased neuronal apoptosis by upregulating E2F1- and Egr-1-dependent BH3-only protein Bim. Cell Death Dis 2017; 8:e2570. [PMID: 28125090 PMCID: PMC5386373 DOI: 10.1038/cddis.2016.465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Cellular acetylation homeostasis is a kinetic balance precisely controlled by histone acetyl-transferase (HAT) and histone deacetylase (HDAC) activities. The loss of the counterbalancing function of basal HAT activity alters the precious HAT:HDAC balance towards enhanced histone deacetylation, resulting in a loss of acetylation homeostasis, which is closely associated with neuronal apoptosis. However, the critical HAT member whose activity loss contributes to neuronal apoptosis remains to be identified. In this study, we found that inactivation of GCN5 by either pharmacological inhibitors, such as CPTH2 and MB-3, or by inactivation with siRNAs leads to a typical apoptosis in cultured cerebellar granule neurons. Mechanistically, the BH3-only protein Bim is transcriptionally upregulated by activated Egr-1 and E2F1 and mediates apoptosis following GCN5 inhibition. Furthermore, in the activity withdrawal- or glutamate-evoked neuronal apoptosis models, GCN5 loses its activity, in contrast to Bim induction. Adenovirus-mediated overexpression of GCN5 suppresses Bim induction and apoptosis. Interestingly, the loss of GCN5 activity and the induction of Egr-1, E2F1 and Bim are involved in the early brain injury (EBI) following subarachnoid haemorrhage (SAH) in rats. HDAC inhibition not only significantly rescues Bim expression and apoptosis induced by either potassium deprivation or GCN5 inactivation but also ameliorates these events and EBI in SAH rats. Taken together, our results highlight a new mechanism by which the loss of GCN5 activity promotes neuronal apoptosis through the transcriptional upregulation of Bim, which is probably a critical event in triggering neuronal death when cellular acetylation homeostasis is impaired.
Collapse
Affiliation(s)
- Yanna Wu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shanshan Ma
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yong Xia
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yangpeng Lu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shiyin Xiao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yali Cao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Sidian Zhuang
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Xiangpeng Tan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Qiang Fu
- Department of General Dentistry, 323 Hospital of the People's Liberation Army, Xi'an, China
| | - Longchang Xie
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Zhiming Li
- Department of Radiology, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongmin Yuan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
| |
Collapse
|
20
|
Compound C induces the ramification of murine microglia in an AMPK-independent and small rhogtpase-dependent manner. Neuroscience 2016; 331:24-39. [DOI: 10.1016/j.neuroscience.2016.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
|
21
|
Fu L, Huang L, Cao C, Yin Q, Liu J. Inhibition of AMP-activated protein kinase alleviates focal cerebral ischemia injury in mice: Interference with mTOR and autophagy. Brain Res 2016; 1650:103-111. [PMID: 27569585 DOI: 10.1016/j.brainres.2016.08.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/10/2023]
Abstract
Ischemic stroke is one of the most frequent acute cerebrovascular events worldwide. This study evaluated the variability of AMPK and mTOR and their relevance on LC3 and Beclin-1 expression, and further expounded the possible protective mechanism of inhibiting AMPK activity in the cerebral cortex after permanent focal cerebral ischemia injury in mice. Western blot and immunohistochemistry showed that p-AMPK expression was low in the cerebral cortex of the sham group; whereas it was significantly increased at 3h and 6h and peaked at 3h after pMCAO in the cerebral ischemic cortex, and was decreased at 12h and 24h. The expression patterns of LC3 and Beclin-1 were the same as that of p-AMPK after occlusion, and the variability pattern between p-AMPK and p-mTOR levels was completely inverted. After treatment with the AMPK inhibitor Compound C, p-AMPK/LC3/Beclin-1 expression was decreased significantly, whereas p-mTOR level was increased significantly. Deficiency of Nissl bodies was reduced compared with that in the vehicle group at all times points after occlusion. Neurological deficits, infarct areas, and brain water content were also significantly reduced 24h after occlusion with compound C treatment. The results suggested that the AMPK-autophagy pathway was activated, concomitant with mTOR inhibition in cerebral cortex after ischemic injury in mice. Moreover, inhibition of AMPK activity by Compound C inhibited autophagy and conferred protection against brain damage by restoring mTOR activity.
Collapse
Affiliation(s)
- Le Fu
- Emergency Department, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang Huang
- Emergency Department, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Chunshui Cao
- Emergency Department, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qin Yin
- Emergency Department, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Liu
- Emergency Department, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Lan AP, Xiong XJ, Chen J, Wang X, Chai ZF, Hu Y. AMPK Inhibition Enhances the Neurotoxicity of Cu(II) in SH-SY5Y Cells. Neurotox Res 2016; 30:499-509. [PMID: 27435481 DOI: 10.1007/s12640-016-9651-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022]
Abstract
The involvement of copper in the pathophysiology of neurodegenerative disorders has been documented but remains poorly understood. This study aimed at investigating the molecular mechanism underlying copper-induced neurotoxicity. Human neuroblastoma SH-SY5Y cells were treated with different concentrations of Cu(II) (25-800 μM). The relative levels of AMPKα, phosphorylated (p)-AMPKα were examined by western blotting. The results showed that copper reduced cell viability and enhanced apoptosis of SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine, a common ROS scavenger, decreased copper-induced cytotoxicity. Furthermore, the levels of p-AMPKα in SH-SY5Y cells were increased by a relatively low concentration of copper and decreased by a relatively high concentration of copper at 24 h. Moreover, inhibition of AMPK with compound C or RNA interference aggravated concentration-dependent cytotoxicity of Cu(II). Taken together, these results indicated that AMPK activity might be important for the neurotoxicity of Cu(II).
Collapse
Affiliation(s)
- Ai-Ping Lan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xian-Jia Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China.,Department of Physiology, School of Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xi Wang
- Department of Physiology, School of Medicine, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi-Fang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China.
| |
Collapse
|