1
|
Kumar P, Kumar A, Nagaraj C, Sadashiva N, Saini J, Mangalore S, Rajan A, Sitani K, Beniwal M, Santosh V, Basavaraja H, Hazari PP, Mishra AK. Evaluating the Diagnostic Efficacy of 99mTc-Methionine Single-Photon Emission Computed Tomography-Computed Tomography: A Head-to-Head Comparison with 11C-Methionine Positron Emission Tomography-Magnetic Resonance Imaging in Glioma Patients. Cancer Biother Radiopharm 2024; 39:349-357. [PMID: 38324045 DOI: 10.1089/cbr.2023.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Background: Amino acid positron emission tomography (PET) imaging plays a significant role in the diagnosis of gliomas and in differentiating tumor recurrence from necrosis. In this study, the authors evaluated the diagnostic efficacy of [99mTc]Tc-methionine single-photon emission computed tomography-computed tomography (SPECT-CT) in comparison with [11C]methionine PET-magnetic resonance imaging (MRI) in delineating tumors. Methods: Thirty-one (primary: 16 and postoperative: 15) patients of confirmed (either MRI or histopathological proven) glioma underwent both [99mTc]Tc-methionine SPECT-CT and [11C]methionine PET-MRI. A comparative analysis was performed between SPECT, PET, and MR images to calculate the concordance between the modalities and to evaluate the diagnostic efficacy of the [99mTc]Tc-methionine SPECT. Results: [99mTc]Tc-methionine SPECT showed comparable uptake in the tumor lesions in comparison to [11C]methionine PET. A significant and strong positive correlation was observed between the volume of tumor (Vt) in PET and Vt MR (p < 0.004). Likewise, a significant and strong positive correlation was found between Vt SPECT and Vt MR. [99mTc]-methionine has a sensitivity and specificity of 91% and 75%, respectively, compared with 82% and 100% for [11C]methionine in postoperative cases to differentiate the tumor recurrence from necrosis. The sensitivity and specificity of [99mTc]Tc-methionine was 92% and 100%, respectively, compared with 92% and 67% for [11C]methionine in primary tumors. Conclusion: [99mTc]Tc-methionine SPECT-CT is as equally good as [11C]methionine for diagnosing and differentiating it from necrosis especially in high-grade glioma.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Aishwarya Kumar
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Sandhya Mangalore
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Archith Rajan
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Keerti Sitani
- Department of Neuroimaging and Interventional Radiology (NI&IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Manish Beniwal
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Harish Basavaraja
- Department of Nuclear Medicine, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | | | - Anil Kumar Mishra
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| |
Collapse
|
2
|
Ninatti G, Moresco RM, Sollini M. Molecular imaging of IDH-mutant gliomas in the new era of IDH inhibitors: preparing for future challenges. Eur J Nucl Med Mol Imaging 2024; 51:1421-1422. [PMID: 38191815 DOI: 10.1007/s00259-024-06591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Gaia Ninatti
- University of Milano-Bicocca, Monza, Italy.
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Rosa Maria Moresco
- University of Milano-Bicocca, Monza, Italy
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Sollini
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Filippi L, Evangelista L, Schillaci O. [ 18F]Fluoropivalate, mitochondria, and the resurrection of short-chain fatty acids. Eur J Nucl Med Mol Imaging 2023; 50:3802-3805. [PMID: 37523016 DOI: 10.1007/s00259-023-06367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy.
| | - Laura Evangelista
- IRCCS Humanitas Research Hospital, Via Manzoni 56Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4Pieve Emanuele, 20072, Milan, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
The new era of bio-molecular imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) in neurosurgery of gliomas. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Silva M, Vivancos C, Duffau H. The Concept of «Peritumoral Zone» in Diffuse Low-Grade Gliomas: Oncological and Functional Implications for a Connectome-Guided Therapeutic Attitude. Brain Sci 2022; 12:brainsci12040504. [PMID: 35448035 PMCID: PMC9032126 DOI: 10.3390/brainsci12040504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022] Open
Abstract
Diffuse low-grade gliomas (DLGGs) are heterogeneous and poorly circumscribed neoplasms with isolated tumor cells that extend beyond the margins of the lesion depicted on MRI. Efforts to demarcate the glioma core from the surrounding healthy brain led us to define an intermediate region, the so-called peritumoral zone (PTZ). Although most studies about PTZ have been conducted on high-grade gliomas, the purpose here is to review the cellular, metabolic, and radiological characteristics of PTZ in the specific context of DLGG. A better delineation of PTZ, in which glioma cells and neural tissue strongly interact, may open new therapeutic avenues to optimize both functional and oncological results. First, a connectome-based “supratotal” surgical resection (i.e., with the removal of PTZ in addition to the tumor core) resulted in prolonged survival by limiting the risk of malignant transformation, while improving the quality of life, thanks to a better control of seizures. Second, the timing and order of (neo)adjuvant medical treatments can be modulated according to the pattern of peritumoral infiltration. Third, the development of new drugs specifically targeting the PTZ could be considered from an oncological (such as immunotherapy) and epileptological perspective. Further multimodal investigations of PTZ are needed to maximize long-term outcomes in DLGG patients.
Collapse
Affiliation(s)
- Melissa Silva
- Department of Neurosurgery, Hospital Garcia de Orta, 2805-267 Almada, Portugal;
| | - Catalina Vivancos
- Department of Neurosurgery, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, 34295 Montpellier, France
- Correspondence:
| |
Collapse
|
6
|
Nerella SG, Singh P, Sanam T, Digwal CS. PET Molecular Imaging in Drug Development: The Imaging and Chemistry Perspective. Front Med (Lausanne) 2022; 9:812270. [PMID: 35295604 PMCID: PMC8919964 DOI: 10.3389/fmed.2022.812270] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography with selective radioligands advances the drug discovery and development process by revealing information about target engagement, proof of mechanism, pharmacokinetic and pharmacodynamic profiles. Positron emission tomography (PET) is an essential and highly significant tool to study therapeutic drug development, dose regimen, and the drug plasma concentrations of new drug candidates. Selective radioligands bring up target-specific information in several disease states including cancer, cardiovascular, and neurological conditions by quantifying various rates of biological processes with PET, which are associated with its physiological changes in living subjects, thus it reveals disease progression and also advances the clinical investigation. This study explores the major roles, applications, and advances of PET molecular imaging in drug discovery and development process with a wide range of radiochemistry as well as clinical outcomes of positron-emitting carbon-11 and fluorine-18 radiotracers.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Tulja Sanam
- Department of Microbiology and Applied Sciences, University of Agricultural Sciences, Bangalore, India
| | - Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
7
|
Ninatti G, Sollini M, Bono B, Gozzi N, Fedorov D, Antunovic L, Gelardi F, Navarria P, Politi LS, Pessina F, Chiti A. Preoperative [11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro Oncol 2022; 24:1546-1556. [PMID: 35171292 PMCID: PMC9435504 DOI: 10.1093/neuonc/noac040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND PET with radiolabelled amino acids is used in the preoperative evaluation of patients with glial neoplasms. This study aimed to assess the role of [ 11C]methionine (MET) PET in assessing molecular features, tumour extent, and prognosis in newly-diagnosed lower-grade gliomas (LGGs) surgically treated. METHODS 153 patients with a new diagnosis of grade 2/3 glioma who underwent surgery at our Institution and were imaged preoperatively using [ 11C]MET PET/CT were retrospectively included. [ 11C]MET PET images were qualitatively and semiquantitatively analyzed using tumour-to-background ratio (TBR). Progression-free survival (PFS) rates were estimated using the Kaplan-Meier method and Cox proportional-hazards regression was used to test the association of clinicopathological and imaging data to PFS. RESULTS Overall, 111 lesions (73%) were positive, while thirty-two (21%) and ten (6%) were isometabolic and hypometabolic at [ 11C]MET PET, respectively. [ 11C]MET uptake was more common in oligodendrogliomas than IDH-mutant astrocytomas (87% vs 50% of cases, respectively). Among [ 11C]MET-positive gliomas, grade 3 oligodendrogliomas had the highest median TBRmax (3.22). In 25% of patients, PET helped to better delineate tumour margins compared to MRI only. In IDH-mutant astrocytomas, higher TBRmax values at [ 11C]MET PET were independent predictors of shorter PFS. CONCLUSIONS This work highlights the role of preoperative [ 11C]MET PET in estimating the type, assessing tumour extent, and predicting biological behaviour and prognosis of LGGs. Our findings support the implementation of [ 11C]MET PET in routine clinical practice to better manage these neoplasms.
Collapse
Affiliation(s)
- Gaia Ninatti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Beatrice Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Noemi Gozzi
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Daniil Fedorov
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy
| | - Lidija Antunovic
- Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele - Milan, Italy.,Diagnostic Imaging Department, IRCCS Humanitas Research Hospital, Via Manzoni, Rozzano - Milan, Italy
| |
Collapse
|
8
|
Majewska P, Sagberg LM, Reinertsen I, Gulati S, Jakola AS, Solheim O. What is the current clinico-radiological diagnostic accuracy for intracranial tumours? Acta Neurol Scand 2021; 144:142-148. [PMID: 33960409 DOI: 10.1111/ane.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the diagnostic accuracy of routine clinico-radiological workup for a population-based selection of intracranial tumours. METHODS In this prospective cohort study, we included consecutive adult patients who underwent a primary surgical intervention for a suspected intracranial tumour between 2015 and 2019 at a single-neurosurgical centre. The treating team estimated the expected diagnosis prior to surgery using predefined groups. The expected diagnosis was compared to final histopathology and the accuracy of preoperative clinico-radiological diagnosis (sensitivity, specificity, positive and negative predictive values) was calculated. RESULTS 392 patients were included in the data analysis, of whom 319 underwent a primary surgical resection and 73 were operated with a diagnostic biopsy only. The diagnostic accuracy varied between different tumour types. The overall sensitivity, specificity and diagnostic mismatch rate of clinico-radiological diagnosis was 85.8%, 97.7% and 4.0%, respectively. For gliomas (including differentiation between low-grade and high-grade gliomas), the same diagnostic accuracy measures were found to be 82.2%, 97.2% and 5.6%, respectively. The most common diagnostic mismatch was between low-grade gliomas, high-grade gliomas and metastases. Accuracy of 90.2% was achieved for differentiation between diffuse low-grade gliomas and high-grade gliomas. CONCLUSIONS The current accuracy of a preoperative clinico-radiological diagnosis of brain tumours is high. Future non-invasive diagnostic methods need to outperform our results in order to add much value in a routine clinical setting in unselected patients.
Collapse
Affiliation(s)
- Paulina Majewska
- Department of Neurosurgery St. Olav’s University Hospital Trondheim Norway
| | - Lisa Millgård Sagberg
- Department of Neurosurgery St. Olav’s University Hospital Trondheim Norway
- Department of Public Health and Nursing NTNU Trondheim Norway
| | | | - Sasha Gulati
- Department of Neurosurgery St. Olav’s University Hospital Trondheim Norway
- Department of Neuromedicine and Movement Science NTNU Trondheim Norway
| | - Asgeir Store Jakola
- Department of Neurosurgery St. Olav’s University Hospital Trondheim Norway
- Department of Neurosurgery Sahlgrenska University Hospital Gothenburg Sweden
- Institute of Neuroscience and Physiology Department of Clinical Neurosciences Sahlgrenska Academy Gothenburg
| | - Ole Solheim
- Department of Neurosurgery St. Olav’s University Hospital Trondheim Norway
- SINTEF Trondheim Norway
| |
Collapse
|
9
|
Tatekawa H, Uetani H, Hagiwara A, Yao J, Oughourlian TC, Ueda I, Raymond C, Lai A, Cloughesy TF, Nghiemphu PL, Liau LM, Bahri S, Pope WB, Salamon N, Ellingson BM. Preferential tumor localization in relation to 18F-FDOPA uptake for lower-grade gliomas. J Neurooncol 2021; 152:573-582. [PMID: 33704629 DOI: 10.1007/s11060-021-03730-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Although tumor localization and 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (FDOPA) uptake may have an association, preferential tumor localization in relation to FDOPA uptake is yet to be investigated in lower-grade gliomas (LGGs). This study aimed to identify differences in the frequency of tumor localization between FDOPA hypometabolic and hypermetabolic LGGs using a probabilistic radiographic atlas. METHODS Fifty-one patients with newly diagnosed LGG (WHO grade II, 29; III, 22; isocitrate dehydrogenase wild-type, 21; mutant 1p19q non-codeleted,16; mutant codeleted, 14) who underwent FDOPA positron emission tomography (PET) were retrospectively selected. Semiautomated tumor segmentation on FLAIR was performed. Patients with LGGs were separated into two groups (FDOPA hypometabolic and hypermetabolic LGGs) according to the normalized maximum standardized uptake value of FDOPA PET (a threshold of the uptake in the striatum) within the segmented regions. Spatial normalization procedures to build a 3D MRI-based atlas using each segmented region were validated by an analysis of differential involvement statistical mapping. RESULTS Superimposition of regions of interest showed a high number of hypometabolic LGGs localized in the frontal lobe, while a high number of hypermetabolic LGGs was localized in the insula, putamen, and temporal lobe. The statistical mapping revealed that hypometabolic LGGs occurred more frequently in the superior frontal gyrus (close to the supplementary motor area), while hypermetabolic LGGs occurred more frequently in the insula. CONCLUSION Radiographic atlases revealed preferential frontal lobe localization for FDOPA hypometabolic LGGs, which may be associated with relatively early detection.
Collapse
Affiliation(s)
- Hiroyuki Tatekawa
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Uetani
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Issei Ueda
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Linda M Liau
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shadfar Bahri
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Whitney B Pope
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA. .,Department of Radiological Science, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA. .,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Solnes LB, Jacobs AH, Coughlin JM, Du Y, Goel R, Hammoud DA, Pomper MG. Central Nervous System Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Marques A, Luz SMD. Use of biodegradable polymer for development of environmental tracers: a bibliometric review. POLIMEROS 2021. [DOI: 10.1590/0104-1428.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Adriana Marques
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brasil
| | | |
Collapse
|
12
|
Maximum Uptake and Hypermetabolic Volume of 18F-FDOPA PET Estimate Molecular Status and Overall Survival in Low-Grade Gliomas: A PET and MRI Study. Clin Nucl Med 2020; 45:e505-e511. [PMID: 33031233 DOI: 10.1097/rlu.0000000000003318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We evaluated F-FDOPA PET and MRI characteristics in association with the molecular status and overall survival (OS) in a large number of low-grade gliomas (LGGs). METHODS Eighty-six patients who underwent F-FDOPA PET and MRI and were diagnosed with new or recurrent LGGs were retrospectively evaluated with respect to their isocitrate dehydrogenase (IDH) and 1p19q status (10 IDH wild type, 57 mutant, 19 unknown; 1p19q status in IDH mutant: 20 noncodeleted, 37 codeleted). After segmentation of the hyperintense area on fluid-attenuated inversion recovery image (FLAIRROI), the following were calculated: normalized SUVmax (nSUVmax) of F-FDOPA relative to the striatum, F-FDOPA hypermetabolic volume (tumor-to-striatum ratios >1), FLAIRROI volume, relative cerebral blood volume, and apparent diffusion coefficient within FLAIRROI. Receiver operating characteristic curve and Cox regression analyses were performed. RESULTS PET and MRI metrics combined with age predicted the IDH mutation and 1p19q codeletion statuses with sensitivities of 73% and 76% and specificities of 100% and 94%, respectively. Significant correlations were found between OS and the IDH mutation status (hazard ratio [HR] = 4.939), nSUVmax (HR = 2.827), F-FDOPA hypermetabolic volume (HR = 1.048), and FLAIRROI volume (HR = 1.006). The nSUVmax (HR = 151.6) for newly diagnosed LGGs and the F-FDOPA hypermetabolic volume (HR = 1.038) for recurrent LGGs demonstrated significant association with OS. CONCLUSIONS Combining F-FDOPA PET and MRI with age proved useful for predicting the molecular status in patients with LGGs, whereas the nSUVmax and F-FDOPA hypermetabolic volume may be useful for prognostication.
Collapse
|
13
|
Lombardi G, Barresi V, Castellano A, Tabouret E, Pasqualetti F, Salvalaggio A, Cerretti G, Caccese M, Padovan M, Zagonel V, Ius T. Clinical Management of Diffuse Low-Grade Gliomas. Cancers (Basel) 2020; 12:E3008. [PMID: 33081358 PMCID: PMC7603014 DOI: 10.3390/cancers12103008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Diffuse low-grade gliomas (LGG) represent a heterogeneous group of primary brain tumors arising from supporting glial cells and usually affecting young adults. Advances in the knowledge of molecular profile of these tumors, including mutations in the isocitrate dehydrogenase genes, or 1p/19q codeletion, and in neuroradiological techniques have contributed to the diagnosis, prognostic stratification, and follow-up of these tumors. Optimal post-operative management of LGG is still controversial, though radiation therapy and chemotherapy remain the optimal treatments after surgical resection in selected patients. In this review, we report the most important and recent research on clinical and molecular features, new neuroradiological techniques, the different therapeutic modalities, and new opportunities for personalized targeted therapy and supportive care.
Collapse
Affiliation(s)
- Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy;
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Emeline Tabouret
- Team 8 GlioMe, CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, 13005 Marseille, France;
| | | | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| |
Collapse
|
14
|
Dimou J, Kelly J. The biological and clinical basis for early referral of low grade glioma patients to a surgical neuro-oncologist. J Clin Neurosci 2020; 78:20-29. [PMID: 32381393 DOI: 10.1016/j.jocn.2020.04.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
The discovery of IDH1/2 (isocitrate dehydrogenase) mutation in large scale, genomewide mutational analyses of gliomas has led to profound developments in understanding tumourigenesis, and restructuring of the classification of both high and low grade gliomas. Owing to this progress made in the recognition of molecular markers which predict tumour behavior and treatment response, the increasing importance of adjuvant treatments such as chemo- and radiotherapy, and the tremendous advances in surgical technique and intraoperative monitoring which have facilitated superior extents of resection whilst preserving neurological functioning and quality of life, contemporary management of low grade glioma (LGG) has switched from a passive, observant approach to a more active, interventional one. Furthermore, this has implications for the manner in which patients with incidentally discovered and/or asymptomatic LGG are managed, and this review of the biological behaviour of LGG, as well as its clinical investigation and management, should act as a timely reminder to all clinicians of the importance of referring LGG patients early to a surgical neuro-oncologist who is not only familiar and acquainted with the vagaries of this disease process, but who, in addition, is devoted to delivering care to these patients with the support of a multi-disciplinary clinical decision-making unit, comprising medical neuro-oncologists, radiation oncologists and allied health professionals.
Collapse
Affiliation(s)
- James Dimou
- Department of Neurosurgery, University of Calgary, Alberta, Canada.
| | - John Kelly
- Department of Neurosurgery, University of Calgary, Alberta, Canada
| |
Collapse
|
15
|
Jakola AS, Sagberg LM, Gulati S, Solheim O. Advancements in predicting outcomes in patients with glioma: a surgical perspective. Expert Rev Anticancer Ther 2020; 20:167-177. [PMID: 32114857 DOI: 10.1080/14737140.2020.1735367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Diffuse glioma is a challenging neurosurgical entity. Although surgery does not provide a cure, it may greatly influence survival, brain function, and quality of life. Surgical treatment is by nature highly personalized and outcome prediction is very complex. To engage and succeed in this balancing act it is important to make best use of the information available to the neurosurgeon.Areas covered: This narrative review provides an update on advancements in predicting outcomes in patients with glioma that are relevant to neurosurgeons.Expert opinion: The classical 'gut feeling' is notoriously unreliable and better prediction strategies for patients with glioma are warranted. There are numerous tools readily available for the neurosurgeon in predicting tumor biology and survival. Predicting extent of resection, functional outcome, and quality of life remains difficult. Although machine-learning approaches are currently not readily available in daily clinical practice, there are several ongoing efforts with the use of big data sets that are likely to create new prediction models and refine the existing models.
Collapse
Affiliation(s)
- Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway
| | - Lisa Millgård Sagberg
- Department of Neurosurgery, St.Olavs Hospital, Trondheim, Norway.,Department of Public Health and Nursing, NTNU, Trondheim, Norway
| | - Sasha Gulati
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St.Olavs Hospital, Trondheim, Norway
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St.Olavs Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis? J Clin Med 2019; 8:jcm8050753. [PMID: 31137815 PMCID: PMC6572063 DOI: 10.3390/jcm8050753] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
The metabolic rewiring of tumor cells and immune cells has been viewed as a promising source of novel drug targets. Many of the molecular pathways implicated in rheumatoid arthritis (RA) directly modify synovium metabolism and transform the resident cells, such as the fibroblast-like synoviocytes (FLS), and the synovial tissue macrophages (STM), toward an overproduction of enzymes, which degrade cartilage and bone, and cytokines, which promote immune cell infiltration. Recent studies have shown metabolic changes in stromal and immune cells from RA patients. Metabolic disruption in the synovium provide the opportunity to use in vivo metabolism-based imaging techniques for patient stratification and to monitor treatment response. In addition, these metabolic changes may be therapeutically targetable. Thus, resetting metabolism of the synovial membrane offers additional opportunities for disease modulation and restoration of homeostasis in RA. In fact, rheumatologists already use the antimetabolite methotrexate, a chemotherapy agent, for the treatment of patients with inflammatory arthritis. Metabolic targets that do not compromise systemic homeostasis or corresponding metabolic functions in normal cells could increase the drug armamentarium in rheumatic diseases for combination therapy independent of systemic immunosuppression. This article summarizes what is known about metabolism in synovial tissue cells and highlights chemotherapies that target metabolism as potential future therapeutic strategies for RA.
Collapse
|
17
|
|
18
|
The Emerging Role of Amino Acid PET in Neuro-Oncology. Bioengineering (Basel) 2018; 5:bioengineering5040104. [PMID: 30487391 PMCID: PMC6315339 DOI: 10.3390/bioengineering5040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Imaging plays a critical role in the management of the highly complex and widely diverse central nervous system (CNS) malignancies in providing an accurate diagnosis, treatment planning, response assessment, prognosis, and surveillance. Contrast-enhanced magnetic resonance imaging (MRI) is the primary modality for CNS disease management due to its high contrast resolution, reasonable spatial resolution, and relatively low cost and risk. However, defining tumor response to radiation treatment and chemotherapy by contrast-enhanced MRI is often difficult due to various factors that can influence contrast agent distribution and perfusion, such as edema, necrosis, vascular alterations, and inflammation, leading to pseudoprogression and pseudoresponse assessments. Amino acid positron emission tomography (PET) is emerging as the method of resolving such equivocal lesion interpretations. Amino acid radiotracers can more specifically differentiate true tumor boundaries from equivocal lesions based on their specific and active uptake by the highly metabolic cellular component of CNS tumors. These therapy-induced metabolic changes detected by amino acid PET facilitate early treatment response assessments. Integrating amino acid PET in the management of CNS malignancies to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.
Collapse
|