1
|
Akiyama R, Ishii A, Kikuchi T, Okawa M, Yamao Y, Abekura Y, Ono I, Sasaki N, Tsuji H, Matsukawa S, Miyamoto S. Predictors of aneurysm shrinkage after flow diversion treatment for internal carotid artery aneurysms: quantitative volume analysis with MRI. Front Neurol 2023; 14:1266460. [PMID: 38187156 PMCID: PMC10768176 DOI: 10.3389/fneur.2023.1266460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Background and purpose Although aneurysm shrinkage often occurs after flow diversion treatment for intracranial aneurysms, no reports have addressed the factors associated with aneurysm shrinkage. Materials and methods This retrospective single-center study was performed to examine patients with unruptured internal carotid artery aneurysms who were treated using flow diversion and followed up by imaging for at least 12 months. The study outcome was aneurysm shrinkage (volume reduction of ≥10%) 12 months after treatment. Aneurysm volume was quantitatively assessed using the MRIcroGL software. Patient and aneurysm characteristics were statistically analyzed. Results This study involved 81 patients with 88 aneurysms. At the 6 months, 12 months, and last follow-ups, the proportion of aneurysms that had shrunk was 50, 64, and 65%, respectively. No adjunctive coiling (odds ratio, 56.7; 95% confidence interval, 7.03-457.21; p < 0.001) and aneurysm occlusion (odds ratio, 90.7; 95% confidence interval, 8.32-988.66; p < 0.001) were significantly associated with aneurysm shrinkage. In patients treated by flow diversion with adjunctive coiling, only the volume embolization rate was a factor significantly associated with aneurysm shrinkage (p < 0.001). Its cutoff value was 15.5% according to the receiver operating characteristic curve analysis (area under the curve, 0.87; sensitivity, 0.87; specificity, 0.83). Conclusion The rate of aneurysm shrinkage after flow diversion increased during the first 12 months after treatment, but not thereafter. No adjunctive coiling and aneurysm occlusion were predictors of aneurysm shrinkage, respectively. If adjunctive coiling is required, a volume embolization rate of ≤15.5% may be suggested for aneurysm regression.
Collapse
Affiliation(s)
- Ryo Akiyama
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Ishii
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Okawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Abekura
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Isao Ono
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurosurgery, Hikone Municipal Hospital, Hikone, Japan
| | - Natsuhi Sasaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirofumi Tsuji
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - So Matsukawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Eisenmenger LB, Spahic A, McNally JS, Johnson KM, Song JW, Junn JC. MR Imaging for Intracranial Vessel Wall Imaging: Pearls and Pitfalls. Magn Reson Imaging Clin N Am 2023; 31:461-474. [PMID: 37414472 DOI: 10.1016/j.mric.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Conventional vascular imaging methods have primarily focused on evaluating the vascular lumen. However, these techniques are not intended to evaluate vessel wall abnormalities where many cerebrovascular pathologies reside. With increased interest for the visualization and study of the vessel wall, high-resolution vessel wall imaging (VWI) has gained traction.Over the past two decades, there has been a rapid increase in number of VWI publications with improvements in imaging techniques and expansion on clinical applications. With increasing utility and interest in VWI, application of proper protocols and understanding imaging characteristics of vasculopathies are important for the interpreting radiologists to understand.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| | - Alma Spahic
- University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | | | - Kevin M Johnson
- University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jae W Song
- University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Jacqueline C Junn
- Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1234, New York City, NY 10029, USA
| |
Collapse
|
3
|
Abstract
Vessel wall MR imaging (VW-MRI) has been introduced into clinical practice and applied to a variety of diseases, and its usefulness has been reported. High-resolution VW-MRI is essential in the diagnostic workup and provides more information than other routine MR imaging protocols. VW-MRI is useful in assessing lesion location, morphology, and severity. Additional information, such as vessel wall enhancement, which is useful in the differential diagnosis of atherosclerotic disease and vasculitis could be assessed by this special imaging technique. This review describes the VW-MRI technique and its clinical applications in arterial disease, venous disease, vasculitis, and leptomeningeal disease.
Collapse
|
4
|
Mazzacane F, Mazzoleni V, Scola E, Mancini S, Lombardo I, Busto G, Rognone E, Pichiecchio A, Padovani A, Morotti A, Fainardi E. Vessel Wall Magnetic Resonance Imaging in Cerebrovascular Diseases. Diagnostics (Basel) 2022; 12:diagnostics12020258. [PMID: 35204348 PMCID: PMC8871392 DOI: 10.3390/diagnostics12020258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Cerebrovascular diseases are a leading cause of disability and death worldwide. The definition of stroke etiology is mandatory to predict outcome and guide therapeutic decisions. The diagnosis of pathological processes involving intracranial arteries is especially challenging, and the visualization of intracranial arteries’ vessel walls is not possible with routine imaging techniques. Vessel wall magnetic resonance imaging (VW-MRI) uses high-resolution, multiparametric MRI sequences to directly visualize intracranial arteries walls and their pathological alterations, allowing a better characterization of their pathology. VW-MRI demonstrated a wide range of clinical applications in acute cerebrovascular disease. Above all, it can be of great utility in the differential diagnosis of atherosclerotic and non-atherosclerotic intracranial vasculopathies. Additionally, it can be useful in the risk stratification of intracranial atherosclerotic lesions and to assess the risk of rupture of intracranial aneurysms. Recent advances in MRI technology made it more available, but larger studies are still needed to maximize its use in daily clinical practice.
Collapse
Affiliation(s)
- Federico Mazzacane
- Department of Emergency Neurology and Stroke Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Valentina Mazzoleni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (V.M.); (A.P.)
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Elisa Scola
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Sara Mancini
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Ivano Lombardo
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Giorgio Busto
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy; (E.S.); (S.M.); (I.L.); (G.B.)
| | - Elisa Rognone
- Department of Neuroradiology, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Department of Neuroradiology, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (V.M.); (A.P.)
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Andrea Morotti
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili, 25123 Brescia, Italy;
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
- Correspondence:
| |
Collapse
|
5
|
Coolen BF, Schoormans J, Gilbert G, Kooreman ES, de Winter N, Viessmann O, Zwanenburg JJM, Majoie CBLM, Strijkers GJ, Nederveen AJ, Siero JCW. Double delay alternating with nutation for tailored excitation facilitates banding-free isotropic high-resolution intracranial vessel wall imaging. NMR IN BIOMEDICINE 2021; 34:e4567. [PMID: 34076305 PMCID: PMC8459252 DOI: 10.1002/nbm.4567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/26/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to evaluate the use of a double delay alternating with nutation for tailored excitation (D-DANTE)-prepared sequence for banding-free isotropic high-resolution intracranial vessel wall imaging (IC-VWI) and to compare its performance with regular DANTE in terms of signal-to-noise ratio (SNR) as well as cerebrospinal fluid (CSF) and blood suppression efficiency. To this end, a D-DANTE-prepared 3D turbo spin echo sequence was implemented by interleaving two separate DANTE pulse trains with different RF phase-cycling schemes, but keeping all other DANTE parameters unchanged, including the total number of pulses and total preparation time. This achieved a reduction of the banding distance compared with regular DANTE enabling banding-free imaging up to higher resolutions. Bloch simulations assuming static vessel wall and flowing CSF spins were performed to compare DANTE and D-DANTE in terms of SNR and vessel wall/CSF contrast. Similar image quality measures were assessed from measurements on 13 healthy middle-aged volunteers. Both simulation and in vivo results showed that D-DANTE had only slightly lower vessel wall/CSF and vessel wall/blood contrast-to-noise ratio values compared with regular DANTE, which originated from a 10%-15% reduction in vessel wall SNR but not from reduced CSF or blood suppression efficiency. As anticipated, IC-VWI acquisitions showed that D-DANTE can successfully remove banding artifacts compared with regular DANTE with equal scan time or DANTE preparation length. Moreover, application was demonstrated in a patient with an intracranial aneurysm, indicating improved robustness to slow flow artifacts compared with clinically available 3D turbo spin echo scans. In conclusion, D-DANTE provides banding artifact-free IC-VWI up to higher isotropic resolutions compared with regular DANTE. This allows for a more flexible choice of DANTE preparation parameters in high-resolution IC-VWI protocols.
Collapse
Affiliation(s)
- Bram F. Coolen
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | - Jasper Schoormans
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | | | - Ernst S. Kooreman
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
- Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Naomi de Winter
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | - Olivia Viessmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical SchoolMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Jaco J. M. Zwanenburg
- Department of Radiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Gustav J. Strijkers
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology & Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Jeroen C. W. Siero
- Department of Radiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Spinoza Centre for NeuroimagingAmsterdamThe Netherlands
| |
Collapse
|
6
|
Eisenmenger LB, Junn JC, Cooke D, Hetts S, Zhu C, Johnson KM, Manunga JM, Saloner D, Hess C, Kim H. Presence of Vessel Wall Hyperintensity in Unruptured Arteriovenous Malformations on Vessel Wall Magnetic Resonance Imaging: Pilot Study of AVM Vessel Wall "Enhancement". Front Neurosci 2021; 15:697432. [PMID: 34366779 PMCID: PMC8334001 DOI: 10.3389/fnins.2021.697432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose: High-resolution vessel wall magnetic resonance imaging (VW-MRI) could provide a way to identify high risk arteriovenous malformation (AVM) features. We present the first pilot study of clinically unruptured AVMs evaluated by high-resolution VW-MRI. Methods: A retrospective review of clinically unruptured AVMs with VW-MRI between January 1, 2016 and December 31, 2018 was performed documenting the presence or absence of vessel wall “hyperintensity,” or enhancement, within the nidus as well as perivascular enhancement and evidence of old hemorrhage (EOOH). The extent of nidal vessel wall “hyperintensity” was approximated into five groups: 0, 1–25, 26–50, 51–75, and 76–100%. Results: Of the nine cases, eight demonstrated at least some degree of vessel wall nidus “hyperintensity.” Of those eight cases, four demonstrated greater than 50% of the nidus with hyperintensity at the vessel wall, and three cases had perivascular enhancement adjacent to nidal vessels. Although none of the subjects had prior clinical hemorrhage/AVM rupture, of the six patients with available susceptibility weighted imaging to assess for remote hemorrhage, only two had subtle siderosis to suggest prior sub-clinical bleeds. Conclusion: Vessel wall “enhancement” occurs in AVMs with no prior clinical rupture. Additional studies are needed to further investigate the implication of these findings.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jacqueline C Junn
- Department of Radiology, Mount Sinai Hospital, New York, NY, United States
| | - Daniel Cooke
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Steven Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jesse M Manunga
- Division of Vascular and Endovascular Surgery, Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, MN, United States
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Helen Kim
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Evaluation of cerebral arteriovenous shunts: a comparison of parallel imaging time-of-flight magnetic resonance angiography (TOF-MRA) and compressed sensing TOF-MRA to digital subtraction angiography. Neuroradiology 2020; 63:879-887. [PMID: 33063222 DOI: 10.1007/s00234-020-02581-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Time-of-flight (TOF)-MR angiography (MRA) is an important imaging sequence for the surveillance and analysis of cerebral arteriovenous shunt (AVS), including arteriovenous malformation (AVM) and arteriovenous fistula (AVF). However, this technique has the disadvantage of a relatively long scan time. The aim of this study was to compare diagnostic accuracy between compressed sensing (CS)-TOF and conventional parallel imaging (PI)-TOF-MRA for detecting and characterizing AVS. METHODS This study was approved by the institutional review board for human studies. Participants comprised 56 patients who underwent both CS-TOF-MRA and PI-TOF-MRA on a 3-T MR unit with or without cerebral AVS between June 2016 and September 2018. Imaging parameters for both sequences were almost identical, except the acceleration factor of 3× for PI-TOF-MRA and 6.5× for CS-TOF-MRA, and the scan time of 5 min 19 s for PI-TOF-MRA and 2 min 26 s for CS-TOF-MRA. Two neuroradiologists assessed the accuracy of AVS detection on each sequence and analyzed AVS angioarchitecture. Concordance between CS-TOF, PI-TOF, and digital subtraction angiography was calculated using unweighted and weighted kappa statistics. RESULTS Both CS-TOF-MRA and PI-TOF-MRA yielded excellent sensitivity and specificity for detecting intracranial AVS (reviewer 1, 97.3%, 94.7%; reviewer 2, 100%, 100%, respectively). Interrater agreement on the angioarchitectural features of intracranial AVS on CS-MRA and PI-MRA was moderate to good. CONCLUSION The diagnostic performance of CS-TOF-MRA is comparable to that of PI-TOF-MRA in detecting and classifying AVS with a reduced scan time under 2.5 min.
Collapse
|
8
|
Targeted endovascular treatment for ruptured brain arteriovenous malformations. Neurosurg Rev 2019; 43:1509-1518. [DOI: 10.1007/s10143-019-01205-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/08/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022]
|